
A Family of Decidable Bi-intuitionistic Modal Logics

David Fernández-Duque1 , Brett McLean2 , Lukas Zenger3
1Department of Philosophy, University of Barcelona

2Department of Mathematics WE16, Ghent University
3Institute of Computer Science, University of Bern

fernandez-duque@ub.edu, brett.mclean@ugent.be, lukas.zenger@unibe.ch

Abstract

We investigate intuitionistic logics extended with both the
co-implication connective of Hilbert–Brouwer logic and with
diamond and box modalities. We use a Kripke semantics based
on frames with two ‘forth’ confluence conditions on the modal
relation with respect to the intuitionistic relation. We give
sound and strongly complete axiomatisations for entailment
on this class of frames, and give similar axiomatisations for the
subclasses of frames satisfying any combination of reflexivity,
transitivity, and seriality. We then prove that all of these
logics are decidable, by proving that they have the finite frame
property.

1 Introduction
Intuitionistic logic (Gödel 1932) and intermediate logics
(Gabbay and Olivetti 2000) have long-established roles in
the foundations of constructive reasoning and reasoning with
incomplete information. More recently, two distinct ways to
extend intuitionistic propositional logic have gained attention:
intuitionistic modal logics and bi-intuitionistic logics.

Bi-intuitionistic logic (Rauszer 1974) adds a new connect-
ive, ‘co-implication’, that is order dual to standard implica-
tion, in the same way that disjunction is dual to conjunction.
This logic and stronger versions of it have been proposed as
a framework for modelling graded, incomplete, and incon-
sistent information (Bı́lková, Frittella, and Kozhemiachenko
2022).

The standard semantics for co-implication is based on
the well-known Kripke semantics for intuitionistic logic.
Intuitionistic logic is interpreted over structures (W,≤, V ),
where W is a set of ‘worlds’, ≤ a partial order on W , and V
a valuation assigning upward-closed sets of worlds to propos-
itions. With this, we recursively define the relation w |= φ,
where φ is a formula. Conjunction and disjunction are treated
in the standard way, e.g. w |= φ ∧ ψ if w |= φ and w |= ψ.
The partial order is used in the evaluation of implication:
w |= φ→ ψ if for all v ≥ w we have v |= φ implies v |= ψ.
A defining characteristic of this semantics is that it is mono-
tone in the sense that if w ≤ v and w |= φ, then v |= φ.
Monotonicity is crucial for the information interpretation of
intuitionistic semantics, where v ≤ w indicates that w has
more complete information than v, so that ascending within
a Kripke model can be regarding as learning.

In bi-intuitionistic logic, a connective← is added whose
semantics is obtained by dualising the semantics of implic-
ation: w ̸|= φ ← ψ if for all v ≤ w we have v ̸|= ψ
implies v ̸|= φ, i.e. w |= φ ← ψ if there exists v ≤ w such
that v |= φ but v ̸|= ψ. This allows the language to ‘look
downward’ from a given world, which is impossible in pure
intuitionistic logic. Bi-intuitionistic logic continues to have
the monotonicity property, just like its intuitionistic fragment.

Where an implication asserts the consequences of obtain-
ing something, a co-implication is an assertion about los-
ing/relinquishing something. For example p → (e ← c)
could mean “If I obtain Polish nationality, then relinquishing
my Czech nationality would not entail losing EU citizenship”,
or “If I get a physical key, then forgetting my code would not
mean I lose access to the building”.

To instead extend intuitionistic logic to a modal logic,
one works with models (W,≤, R, V ), where R is used for
interpreting modalities ♢ and □. However, if one applies the
standard classical definitions—e.g. w |= ♢φ if there exists
v such that w R v and v |= φ—the resulting semantics no
longer has the monotonicity property.1 This can be remedied
by either enforcing that this condition hold for all w′ ≥ w,
or else requiring that ≤ and R ‘commute’ in some sense.

Different design choices lead to non-equivalent modal
extensions of intuitionistic logic, and at least three variants
are prominent in the literature. Intuitionistic modal logics
have been studied by Plotkin and Stirling (1986), Fischer
Servi (1977; 1984) and Simpson (1994). Here, the semantics
mimic those of intuitionistic first-order logic via the standard
translation used in classical modal logic (van Benthem 1976).
Constructive modal logics have been studied by Fitch (1948)
and Wijesekera (1990), and have the characteristic that the
addition of excluded middle does not yield classical modal
logic K. A third variant, which is also called intuitionistic
modal logic but has a somewhat different flavour has been
studied by Wolter and Zakharyaschev (1997; 1999).

Aside from differences in motivation, these logics vary
with respect to their computational properties, particularly
when modalities are interpreted via a transitive relation. Intu-
itionistic versions of the modal logic S4 have been extensively

1To understand the seriousness of this, consider that since mono-
tonic sets validate intuitionistic logic and non-monotonic sets gener-
ally do not, a semantics without monotonicity will not yield a ‘logic’
with even the most basic property: closure under substitutions.
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studied. The logic IntS4 of Wolter and Zakharyaschev is de-
cidable and enjoys the finite model property (FMP) (Wolter
and Zakharyaschev 1997; Wolter and Zakharyaschev 1999).
The constructive modal logic CS4 is also decidable (Alech-
ina et al. 2001) and has the FMP (Balbiani, Diéguez, and
Fernández-Duque 2021a). It has only recently been proven
that the logic IS4 (from the family of Plotkin, Stirling, Fischer
Servi, and Simpson) also has these properties (Girlando et
al. 2023). Balbiani, Diéguez, and Fernández-Duque (2021a)
also proposed a fourth variant, which they call S4I, based on
frames of IS4 where the roles of the intuitionistic and modal
relations are reversed.

The logic S4I (and, more generally, logics ΛI, where Λ
is some set of modal axioms) are ‘pseudo-classical’, in the
sense that the frame conditions allow modalities to be evalu-
ated as in the classical case, without compromising monoton-
icity of truth. These conditions are the basis of ‘expanding’
intuitionistic temporal logic, which has been shown to be de-
cidable (Balbiani et al. 2020) and enjoys applications to topo-
logical dynamics (Boudou, Diéguez, and Fernández-Duque
2022; Fernández-Duque 2018).

These developments beg the question of whether bi-
intuitionistic modal logics also enjoy the FMP. As in the
(mono-)intuitionistic case, this question comes in various fla-
vors. Bi-intuitionistic logics a la Wolter and Zakharyaschev
have been shown to have the FMP (Sano and Stell 2017;
Stell, Schmidt, and Rydeheard 2016) using filtration methods,
and have applications in representing spatial relations (Sin-
doni, Sano, and Stell 2021). However, such results are not
yet known for logics in the style of Fitch or Fischer Servi.

Here we consider pseudo-classical, bi-intuitionistic logics
and show that many of them are indeed decidable and en-
joy the FMP. These are particularly natural given that the
frame conditions are order-symmetric: (W,≤, R) is a pseudo-
classical frame if and only if (W,≥, R) is—a natural property
to expect in the presence of co-implication. Unfortunately,
filtration does not work in our setting and we instead turn to
techniques in the spirit of Balbiani et al. (2021b); however,
as we will see, co-implication requires a substantial expan-
sion of these techniques, in particular since we can no longer
restrict our attention to tree-like models.

As an example, suppose ♢ and □ model temporal ‘eventu-
ally’ and ‘henceforth’ respectively. Then suppose: a power
plant holds a permit to burn gas; it has been announced
that all such plants will automatically be given a permit to
burn biomass; plants holding gas or biomass permits are al-
ways awarded contracts in the winter capacity market. Then
♢(□c ← g) is a true assertion that eventually the plant can
choose not to renew its gas permit, but then still have winter
capacity contracts henceforth.

In this paper, we prove that many standard bi-intuitionistic,
pseudo-classical modal logics are decidable and have the
finite frame property. Despite being a more accessible prob-
lem than the extension of IS4 with co-implication, this is by
no means a straightforward result, requiring a rather delic-
ate combinatorial analysis of the semantics. However, our
techniques are robust in the sense that a uniform proof of de-
cidability is obtained for the logics of frame classes satisfying
any combination of reflexivity, transitivity, and seriality.

Structure of paper In Section 2, we syntactically define
six bi-intuitionistic modal logics and give their intended se-
mantics. In Section 3, we note that the logics are sound
with respect to the semantics. In Section 4 we prove (strong)
completeness, using canonical models. The remainder of
the paper is devoted to proving decidability of all six logics.
Section 5 gives a standard argument that models are equival-
ent to labelled structures whose labellings validate certain
coherency conditions. Section 6 defines dynamic simulations
and Section 7 introduces moments. In Section 8 we use
a dynamic simulation to show that any falsifiable formula
is falsifiable on a model built entirely from moments. Fi-
nally, Section 9 shows that any moment can be ‘compressed’
to one of uniformly bounded size, and it is the set of these
bounded moments that makes up our desired finite models.
We thus obtain a computable finite frame property, and hence
decidability of our logics.

2 Syntax and Semantics
In this section we first introduce the propositional modal lan-
guage shared by the six logics we consider. Then we define
the logics syntactically, and finally we give the intended rela-
tional semantics.

2.1 Language
Fix a countably infinite set P of propositional variables. The
bi-intuitionistic modal language LbIM is defined by the
grammar (in Backus–Naur form):

φ := p | φ ∧ φ | φ ∨ φ | φ→ φ | φ← φ | ♢φ | □φ

where p ∈ P. We also use ⊥ as a shorthand for p ← p
(where p is some designated element of P), ¬φ as shorthand
for φ→⊥, the symbol ⊤ as shorthand for ¬⊥, and φ↔ ψ
as shorthand for (φ→ ψ) ∧ (ψ→ φ). As usual, the unary
modalities bind tighter than the binary connectives; we also
assume that ∧ and ∨ bind tighter than→.

2.2 Deductive Calculi
In this paper a logic means a set of formulas closed under
substitution, modus ponens, and necessitation: φ/□φ.

We define the logics we are interested in syntactically, via
Hilbert-style deductive calculi. We now give the details.
Definition 1. We define the following axioms and rules.

IPC All intuitionistic tautologies
A← p→ (q ∨ (p← q))

R1←
φ→ ψ

(φ← θ)→ (ψ ← θ)
R2←

φ→ ψ ∨ γ
(φ← ψ)→ γ

K□ □(p→ q)→ (□p→□q)
K♢ □(p→ q)→ (♢p→ ♢q)

DP ♢(p ∨ q)→♢p∨ ♢q
RV □(p∨ q)→□p∨♢q
N ¬♢⊥
D ♢⊤

T□ □p→ p

T♢ p→ ♢p
4□ □p→□□p
4♢ ♢♢p→ ♢p
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We define the logics2

KbI := IPC+A← +R1← +R2← +K□ +K♢

+DP+RV +N

DbI := KbI+D

TbI := KbI+T□ +T♢

K4bI := KbI+ 4□ + 4♢

K4DbI := K4bI+D

S4bI := K4bI+T□ +T♢

Thus KbI will serve as the ‘minimal’ logic in this paper,
and the remaining logics are extensions.

2.3 Semantics
Before defining pseudo-classical frames, let us introduce the
general context of intuitionistic modal frames.
Definition 2. An intuitionistic frame is a pair (W,≤),
where W is a set and ≤ is a partial order on W .

An intuitionistic Kripke frame is a triple (W,≤, R),
where (W,≤) is an intuitionistic frame and (W,R) is a
Kripke frame (a set equipped with a binary relation).

A valuation on an intuitionistic Kripke frame F = (W,
≤, R) is a function V : P → 2W that is monotone in the
sense that each V (p) is upward closed with respect to ≤.

The satisfaction relation |= is defined recursively (tempor-
arily suppressing F and V in the notation):
• w |= p if w ∈ V (p) (for p ∈ P);
• w ̸|= ⊥;
• w |= φ ∧ ψ if w |= φ and w |= ψ;
• w |= φ ∨ ψ if w |= φ or w |= ψ;
• w |= φ→ ψ if ∀v ≥ w, v |= φ implies v |= ψ;
• w |= φ← ψ if ∃v ≤ w such that v |= φ and v ̸|= ψ;
• w |= ♢φ if ∀w′ ≥ w, ∃v such that w′ R v and v |= φ;
• w |= □φ if ∀w′, v such that w ≤ w′ R v, we have v |= φ.

It is easily proved by induction on φ that for all w, v ∈W ,
if w ≤ v, then w |= φ =⇒ v |= φ.

An intuitionistic Kripke model is an intuitionistic Kripke
frame equipped with a valuation.
Definition 3. Let S be any class of models or class of frames.
Let Γ ⊆ LbIM and φ ∈ LbIM. We write Γ |=S φ and say that
φ is a local semantic consequence of Γ if, for each model
M = (W,≤, R, V ) from S and each w ∈W , we have

∀ψ ∈ Γ, (M, w) |= ψ =⇒ (M, w) |= φ.

We say that φ is valid on S if |=S φ (that is, ∅ |=S φ),
and falsifiable otherwise. This terminology extends to single
models or frames.

Confluence conditions governing the interaction between
the order and modal relations on frames will be of recurring
importance.

2In the first definition, the meaning of the notation is the evident
one. In the subsequent definitions, the defined logic is not only
required to include the logic on the right-hand-side, but should also
be closed under the rules of that logic.
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Figure 1: Confluence conditions
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Figure 2: A pseudo-classical model, representing the power plant
example from Section 1. ♢(□c← g) holds at the marked world.

Definition 4. Let (X,≤X) and (Y,≤Y ) be posets and R ⊆
X × Y . We say R is forth–up confluent (for (≤X ,≤Y ))
if, whenever w ≤X w′ and w R v, there exists v′ such that
w′ R v′ and v ≤Y v′. Three other confluence conditions are
defined similarly as depicted in Figure 1.

We say F = (W,≤, R) is forth–up confluent if R is forth–
up confluent for (≤,≤), and so on.

Having forth–up and forth–down confluence allows us to
simplify the semantic clauses for ♢ and □, respectively.

Lemma 1 ((Balbiani, Diéguez, and Fernández-Duque
2021a)). LetM = (W,≤, R, V ) be any intuitionistic Kripke
model, w ∈W , and φ ∈ LbIM.

1. IfM is forth–up confluent, then (M, w) |= ♢φ if and only
if ∃v such that w R v and (M, v) |= φ.

2. IfM is forth–down confluent, then (M, w) |= □φ if and
only if ∀v, if w R v then (M, v) |= φ.

Definition 5.
1. The class of pseudo-classical (or KbI) frames is the class

of forth–up and forth–down confluent, intuitionistic Kripke
frames.

2. For Λ ∈ {DbI,TbI,K4bI,K4DbI, S4bI}, the class of Λ-
frames is to be the class of KbI frames such that
• if D is an axiom of Λ, then R is serial;
• if T□ is an axiom of Λ, then R is reflexive;
• if 4□ is an axiom of Λ, then R is transitive.

In view of Lemma 1, we can evaluate ♢ and □ classically
on pseudo-classical frames. Figure 2 depicts an example.

3 Soundness
In this section we note the soundness of the logics KbI, DbI,
TbI, K4bI, K4DbI, and S4bI with respect to the validities of
the corresponding frame classes. The following is standard
(see (Balbiani, Diéguez, and Fernández-Duque 2021a) and
(Simpson 1994)).

Proposition 1.
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(1) On any class of intuitionistic Kripke frames, substitution,
modus ponens, necessitation, R1←, and R2← each pre-
serves validity, and IPC, A←, K□, and K♢ are valid.

(2) Axioms N, DP, and RV are valid on the class of KbI
frames.

(3) Axiom D is valid on the class of serial frames.
(4) Axioms T□ and T♢ are valid on the class of reflexive

frames.
(5) Axiom 4♢ is valid on the class of transitive frames.
(6) Axiom 4□ is valid on any transitive frame that is forth–

down confluent.
It follows that each of the logics we consider is sound for

its respective class from Definition 5.
Corollary 1. Each of KbI, DbI, TbI, K4bI, K4DbI, and S4bI
is sound for its respective class of frames.

4 Strong Completeness
In this section, we prove the strong completeness of KbI, DbI,
TbI, K4bI, K4DbI, and S4bI with respect to their correspond-
ing semantics, using canonical models.

Fix a logic Λ. We use the standard Gentzen-style notation
Γ ⊢ ∆ to mean

∧
Γ′ →

∨
∆′ ∈ Λ for some finite Γ′ ⊆ Γ

and ∆′ ⊆ ∆ (with the convention that
∨
∅ ≡ ⊥). We call ⊢

the syntactic consequence relation. The logic Λ will always
be clear from context, which is why we do not reflect it in
the notation. When working with ⊢, we follow the usual
proof-theoretic convention of writing φ instead of {φ}.

The logic is strongly complete with respect to a class S of
frames if for all Γ ⊆ LbIM and φ ∈ LbIM:

Γ |=S φ =⇒ Γ ⊢ φ.

4.1 Prime Theories
Definition 6. Given Φ,Ξ ⊆ LbIM, we say Φ is Ξ-consistent
if Φ ̸⊢ Ξ. We say Φ is consistent if it is ∅-consistent.

Note that if Φ is Ξ-consistent, then necessarily ⊥ ̸∈ Φ.
Definition 7. We say that Γ ⊆ LbIM is a theory if it is closed
under syntactic consequence (Γ ⊢ φ implies φ ∈ Γ), and
prime if whenever φ ∨ ψ ∈ Γ, either φ ∈ Γ or ψ ∈ Γ.

We say that Ψ ⊆ LbIM extends Φ if Φ ⊆ Ψ.
Lemma 2 (Lindenbaum lemma). Any Ξ-consistent Φ can be
extended to a Ξ-consistent prime theory Φ∗.

Proof. Obtain a maximal Ξ-consistent Φ∗ ⊇ Φ by Zorn’s
lemma. Then prove by contradiction that Φ∗ is prime, using
the fact that left disjunction introduction (φ→ χ) ∧ (ψ→
χ)→ (φ ∨ ψ→ χ) is derivable in intuitionistic logic.

The proof of the following saturation lemma is stand-
ard (Alechina et al. 2001; Aguilera et al. 2022).
Lemma 3. For each prime theory Φ:

(1) φ ∧ ψ ∈ Φ if and only if φ ∈ Φ and ψ ∈ Φ,
(2) φ ∨ ψ ∈ Φ if and only if φ ∈ Φ or ψ ∈ Φ,
(3) if φ→ ψ ∈ Φ, then φ ∈ Φ =⇒ ψ ∈ Φ,
(4) if φ← ψ /∈ Φ, then ψ ̸∈ Φ =⇒ φ ̸∈ Φ,
(5) if T♢ ∈ Λ and φ ∈ Φ, then ♢φ ∈ Φ.
(6) if T□ ∈ Λ and □φ ∈ Φ, then φ ∈ Φ.

4.2 Canonical Models
In this subsection we show that the logics we consider are
strongly complete, using standard canonical model argu-
ments. We can uniformly define the canonical model for any
logic Λ including KbI and closed under R1← and R2←.

Definition 8. Let KbI ⊆ Λ ⊆ LbIM be a logic closed under
R1← and R2←. We define the canonical model for Λ as
MΛ

c = (Wc,≤c, Rc, Vc), where

a) Wc is the set of consistent prime Λ-theories;
b) ≤c ⊆Wc ×Wc is ⊆;
c) Rc ⊆ Wc × Wc is defined by Φ Rc Ψ if and only if
{φ ∈ LbIM | □φ ∈ Φ} ⊆ Ψ and {φ ∈ LbIM | ♢φ /∈
Φ} ∩Ψ = ∅;

d) Vc : P→ 2Wc is defined by Vc(p) := {Φ ∈Wc | p ∈ Φ}.
Each item of the following lemma is proven either by

(Simpson 1994) or by (Aguilera et al. 2022).

Lemma 4 (witnessing lemma). Let KbI ⊆ Λ ⊆ LbIM be a
logic closed under R1← and R2←. For any Φ ∈ Wc and
φ,ψ ∈ LbIM:

1. φ→ ψ ∈ Φ if and only if, whenever Φ ≤c Ψ we have
φ ∈ Ψ =⇒ ψ ∈ Ψ.

2. φ ← ψ ∈ Φ if and only if ∃Ψ such that Ψ ≤c Φ, φ ∈ Ψ,
and ψ /∈ Ψ.

3. ♢φ ∈ Φ if and only if ∃Ψ such that Φ Rc Ψ and φ ∈ Ψ.
4. □φ ∈ Φ if and only if, whenever Φ Rc Ψ we have φ ∈ Ψ.

Using Lemma 4 we can show that the canonical model is
indeed a model for each of the logics we consider.

Lemma 5. If Λ ∈ {KbI,DbI,TbI,K4bI,K4DbI, S4bI}, then
MΛ

c is a model based on a Λ-frame.

Proof. That MΛ
c is forth–up and forth–down confluent is

proven in (Balbiani, Diéguez, and Fernández-Duque 2021a)
for S4I, and the proof works uniformly for all logics extend-
ing KI. They show further that the axioms T□ and T♢ lead
to reflexivity of Rc, and 4♢ and 4□ lead to transitivity of Rc.
For logics with the axiom D, if Φ ∈ Wc then ♢⊤ ∈ Φ, so
Lemma 4.3 yields Ψ such that Φ Rc Ψ (and ⊤ ∈ Ψ).

The last ingredient in our proof is a standard truth lemma,
which readily follows from Lemma 4 and induction on φ.

Lemma 6 (truth lemma). Let Λ ∈ {KbI,DbI,TbI,K4bI,
K4DbI, S4bI}. For any Φ ∈Wc and φ ∈ LbIM,

φ ∈ Φ ⇐⇒ (MΛ
c ,Φ) |= φ.

From this, we obtain strong completeness for all of the
logics we consider.

Theorem 1. Let Λ ∈ {KbI,DbI,TbI,K4bI,K4DbI, S4bI}.
Let |=Λ denote semantic consequence on the class of Λ
frames as given by Definition 5, and ⊢Λ denote the syntactic
consequence relation for Λ. Then for any set of formulas
Γ ∪ {φ},

Γ |=Λ φ ⇐⇒ Γ ⊢Λ φ.
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5 Labelled Posets and Labelled Frames
The remainder of the paper is devoted to proving that our
logics have the finite frame property, which yields decidabil-
ity. Our constructions are based on labelled structures, which
are essentially partially evaluated models and particularly
amenable to a combinatorial analysis.

Definition 9. Let Σ ⊆ LbIM be closed under subformulas.
A (two-sided) Σ-type is a pair Φ = (Φ+,Φ−) of disjoint
subsets of Σ with the following properties:

1. ⊥ ̸∈ Φ+.
2. If φ ∧ ψ ∈ Φ+, then φ,ψ ∈ Φ+.
3. If φ ∧ ψ ∈ Φ−, then φ ∈ Φ− or ψ ∈ Φ−.
4. If φ ∨ ψ ∈ Φ+, then φ ∈ Φ+ or ψ ∈ Φ+.
5. If φ ∨ ψ ∈ Φ−, then φ,ψ ∈ Φ−.
6. If φ→ ψ ∈ Φ+, then φ ∈ Φ− or ψ ∈ Φ+.
7. If φ← ψ ∈ Φ−, then φ ∈ Φ− or ψ ∈ Φ+.

We emphasise that it is not necessary that Φ+ ∪ Φ− = Σ;
in this sense our types are partial. The set of all Σ-types is
denoted by TΣ.

We define two partial orders on TΣ:

1. Φ ≤T Ψ if and only if Φ+ ⊆ Ψ+ and Ψ− ⊆ Φ−,

2. Φ ⊆T Ψ if and only if Φ+ ⊆ Ψ+ and Φ− ⊆ Ψ−,

and we define Φ↾∆ = (Φ+ ∩∆,Φ− ∩∆).

Definition 10. Let Σ ⊆ LbIM be closed under subformulas.
A Σ-labelled poset is a tuple X = (X,≤X , ℓX ) where:

• (X,≤X ) is a poset.
• ℓX : X → TΣ such that:

– For all x, y ∈ X if x ≤X y, then ℓX (x) ≤T ℓX (y).
– If φ→ ψ ∈ ℓX (x)−, then there exists y ≥X x with
φ ∈ ℓX (y)+ and ψ ∈ ℓX (y)−.

– If φ ← ψ ∈ ℓX (x)+, then there exists y ≤X x with
φ ∈ ℓX (y)+ and ψ ∈ ℓX (y)−.

If the structure X is clear, we may drop X as subscript.
Next we define conditions that will allow us to interpret

the modalities on labelled posets. For example, if x R y and
□φ ∈ ℓ(x), we will want φ ∈ ℓ(y). However, for transitive
logics, it is also convenient to have □φ ∈ ℓ(y). In order
to accommodate the possible variations that may be needed,
we consider ‘sensibility conditions’ that the pair (ℓ(x), ℓ(y))
must satisfy in order to relate them via R.

Definition 11. A binary relation S ⊆ TΣ × TΣ is a sensi-
bility condition if whenever Φ S Ψ and ∆ is any set of
formulas closed under subformulas then Φ↾∆ S Ψ↾∆ and,
moreover, if Φ S Ψ and Ψ ⊆T Ψ′, then Φ S Ψ′.

We define the standard condition by setting Φ Sst Ψ if
whenever ♢φ ∈ Φ−, it follows that φ ∈ Ψ−, and whenever
□φ ∈ Φ+, it follows that φ ∈ Ψ+. The transitive condition
is defined by setting Φ Str Ψ if whenever ♢φ ∈ Φ−, it fol-
lows that φ,♢φ ∈ Ψ−, and whenever □φ ∈ Φ+, it follows
that φ,□φ ∈ Ψ+.

Definition 12. Fix a sensibility condition S. Let Σ ⊆ LbIM

be subformula-closed, and let X = (X,≤X , ℓX ) and Y =
(Y,≤Y , ℓY) be Σ-labelled posets. A relation R ⊆ X × Y is
sensible if it is both forth–up and forth–down confluent and
validates w R v =⇒ ℓX (w) S ℓY(v).
Definition 13. Fix Σ ⊆ LbIM and a sensibility condition
S. A Σ-labelled frame with respect to S is a Σ-labelled
poset X = (X,≤X , ℓX ) equipped with a sensible relation
RX ⊆ X ×X .

When the sensibility condition is not relevant to the discus-
sion we may omit mention of S and write simply Σ-labelled
frame. Observe that models can be regarded as Σ-labelled
frames by labelling worlds with the sets of formulas they sat-
isfy/falsify. The converse is not true in general;3 it requires
an additional condition on our labelled frames.
Definition 14. Let X = (X,≤X , ℓX , RX ) be a Σ-labelled
frame. We say that RX is witnessed if
• Whenever ♢φ ∈ ℓX (w)+, there is v such that w RX v

and φ ∈ ℓX (v)+.
• Whenever □φ ∈ ℓX (w)−, there is v such that w RX v

and φ ∈ ℓX (v)−.
If RX is witnessed, we say that X is a Σ-labelled model.

A Σ-labelled model X can reasonably be regarded as an
intuitionistic Kripke model by setting V (p) = {x ∈ X | p ∈
ℓX (x)+}.4 Then by structural induction on formulas:

φ ∈ ℓX (x)+ =⇒ x |= φ and φ ∈ ℓX (x)− =⇒ x ̸|= φ.

The following lemma is now immediate by regarding models
as Σ-labelled models or vice-versa. Below, a formula φ is
falsified on a Σ-labelled model X if there is v with φ ∈
ℓX (v)−. The formula φ is valid over a class M of Σ-labelled
models if it is not falsified on any element of M.
Lemma 7.

1. If Λ ∈ {KbI,DbI,TbI}, then a formula φ is valid over the
class of Λ-frames if and only if it is valid over the class
Σ-labelled models with respect to the standard condition
Sst based on a Λ-frame.

2. If Λ ∈ {K4bI,K4DbI, S4bI}, then a formula φ is valid
over the class of Λ-frames if and only if it is valid over
the class Σ-labelled models with respect to the transitive
condition Str based on a Λ-frame.
Thus our strategy for proving decidability will be to con-

struct (for finite Σ) a finite Σ-labelled model from an arbitrary
Σ-labelled model.

6 Simulations
It is crucial for our proof to identify the correct notion of
‘embedding’ in the setting of labelled models. This is given by
dynamic simulations. We first define the component notion
of simulation.

3Specifically, if a Σ-labelled frame is regarded as a model, the
truth lemma may fail: for example, ♢p ∈ ℓ(w)+ does not imply
w |= ♢p, since no witness may be available.

4Other valuations compatible with the labelling are possible, the
maximal such valuation being V (p) = {x ∈ X | p ̸∈ ℓX (x)−}.
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Definition 15. Let Σ ⊆ LbIM be subformula-closed and
let X = (X,≤X , ℓX ) and Y = (Y,≤Y , ℓY) be Σ-labelled
posets. A binary relation E ⊆ X × Y is a simulation if:

1. Whenever x E y, we have ℓX (x) ⊆T ℓY(y).
2. E is forth–up and forth–down confluent for ≤X and ≤Y .

Lemma 8. Unions and compositions of simulations are sim-
ulations.

SupposeM,N are labelled frames, w ∈ M and v ∈ N ,
and there is a simulation E ⊆M ×N with w E v. Then in
generalM can be much smaller thanN , and thus simulations
help us to ‘compress’ models. However, it may be that N is
a labelled model, butM is only a labelled frame. In order to
avoid this situation, we work with dynamic simulations.

Definition 16. Let Σ ⊆ LbIM be subformula-closed, and
let X = (X,≤X , RX , ℓX ) and Y = (Y,≤Y , RY , ℓY) be Σ-
labelled frames. A simulation E ⊆ X × Y is a dynamic
simulation if whenever x E y RY y′, there is x′ such that
x RX x′ E y′.

Below, for Z ⊆ X , the notation X ↾Z denotes the substruc-
ture obtained by restrictingX to Z, i.e.X ↾Z = (Z,≤X ∩Z2,
RX ∩ Z2, ℓX ∩ (Z × TΣ)).

Theorem 2. If Σ ⊆ LbIM is subformula-closed, X =
(X,≤X , RX , ℓX ) is a Σ-labelled frame, Y = (Y,≤Y ,
RY , ℓY) is a Σ-labelled model, and E ⊆ X × Y is a dy-
namic simulation, then X ↾E−1(Y ) is a Σ-labelled model.

Proof. Proven in (Fernández-Duque 2018). The key is to
observe that E being dynamic implies that RX ↾E−1(Y ) is
witnessed.

7 Moments
Let (P,≤) be a poset. Let x, y ∈ P . Recall that y covers
x means x < y and there is no z with x < z < y. We say
that x and y are neighbours if either y covers x or x covers
y. The poset (P,≤) is discrete if whenever x ≤ y, there are
finitely many x = x0 < x1 < . . . < xn = y where xi+1

covers xi, for each i.

Definition 17. Let (P,≤) be a poset. A path through (P,≤)
is a finite sequence (xi)0≤i≤n of elements of P such that for
all 0 ≤ i < n either xi+1 covers xi or vice versa. The length
of a path (xi)0≤i≤n is n.

Given two paths ρ1 and ρ2, denote by ρ1 ⊑ ρ2 that ρ1 is an
initial segment of ρ2. When ρ1 ⊑ ρ2, we denote by ρ2 − ρ1
the final segment of ρ2 disjoint from ρ1. Furthermore, given
a path ρ = (xi)i≤n, we write ↑(ρ) if xi < xi+1 for all i. The
notation ↓(ρ) is defined similarly.

We define the zigzag width hierarchy on paths recursively:
a length 0 path is both Π0 and Σ0. A path is Π1 if it is
decreasing and it is Σ1 if it is increasing. A path ρ is Πm+1

if there exists a decreasing path τ such that τ ⊑ ρ and ρ− τ
is Σm. A path ρ is Σm+1 if there exists an increasing path τ
such that τ ⊑ ρ and ρ− τ is Πm.

We call a path (xi)i≤n acyclic if all its elements are dis-
tinct. A discrete poset (P,≤) is called acyclic if the undirec-
ted graph induced by the neighbours relation is acyclic. A

Πx
1

Σx
2

Πx
3

Σx
1

Πx
2

Σx
3

x

Figure 3: Zigzag hierarchy relative to x

discrete poset (P,≤) has zigzag width m if all acyclic paths
through P are both Πm and Σm.

Given x, y ∈ P we say y is Πx
m if the acyclic path from

y to x is Πm. Similarly, y is Σx
m if the acyclic path from y

to x is Σm. When we use this terminology, it should usually
implicitly be understood that no lower classification in the
hierarchy is possible (see Figure 3). We write zzx(y) = m if
the acyclic path from y to x is both Πm and Σm (and nothing
lower in the hierarchy).
Definition 18. The depth d(φ) of a formula φ ∈ LbIM is
inductively defined as follows:

d(⊥) = d(p) = 0
d(φ ∧ ψ) = d(φ ∨ ψ) = max{d(φ), d(ψ)}
d(φ→ ψ) = d(φ← ψ) = max{d(φ), d(ψ)}+ 1
d(♢φ) = d(□φ) = d(φ)

Given a finite set of formulas Σ, the depth d(Σ) of Σ is
defined by

d(Σ) = max{d(φ) | φ ∈ Σ}.

Below, we fix a finite subformula-closed Σ ⊆ LbIM.
Definition 19. A Σ-moment is a tuple M = (M,≤M,
ℓM,m) where

1. (M,≤M, ℓM) is a Σ-labelled discrete poset;
2. (M,≤M) is acyclic and has zigzag width bounded by

4d(Σ) + 2;
3. m ∈M is called the initial world.

Let MΣ denote the class of all Σ-moments.5 We define a
partial order ≤Σ on MΣ as follows:

M≤Σ N ⇐⇒ M = (M,≤M, ℓM,m),
N = (M,≤M, ℓM, n) and m ≤M n.

Define a labelling function ℓΣ : MΣ → TΣ as follows:

ℓΣ(M,≤M, ℓM,m) := ℓM(m).

Fix a sensibility condition S. Given two moments M =
(M,≤M, ℓM,m) and N = (N,≤N , ℓN , n), we say that N
is a modal successor ofM if there exists a sensible relation
R ⊆M ×N such that (m,n) ∈ R.

Define the relation RΣ ⊆MΣ ×MΣ as follows:
(M,N ) ∈ RΣ ⇐⇒ N is a modal successor ofM.

Definition 20. DefineMΣ := (MΣ,≤Σ, ℓΣ, RΣ).
The following are easy to check, by reasoning about initial

worlds.
5We treat MΣ as a set; it will not matter that it is a proper class.
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Lemma 9. (MΣ,≤Σ, ℓΣ) is a Σ-labelled poset.

Lemma 10. For any sensibility condition S, the relation
RΣ ⊆MΣ ×MΣ is sensible with respect to S.

Corollary 2. MΣ is a Σ-labelled frame.

Lemma 11. If the sensibility condition forMΣ is Str, then
MΣ is transitive.

Proof. Check that if R ⊆M1 ×M2, and R′ ⊆M2 ×M3

are sensible, then the composition R′ ◦R is sensible.

8 Constructing Surjective Dynamic
Simulations

In this section we first show that without loss of generality
we can assume labelled frames are acyclic, by describing the
path unravelling Q∗ of a labelled frame Q. Then we show
that given an arbitrary acyclic labelled frameQ∗, there exists
a surjective dynamic simulation fromMΣ to Q∗.
Definition 21. Let Q = (Q,≤Q, ℓQ, RQ) be a labelled
frame with respect to S. Its path unravelling is defined
as Q∗ = (Q∗,≤∗

Q, ℓ
∗
Q, R

∗
Q) where

1. Q∗ is the set of all paths through Q;
2. ≤∗

Q ⊆ Q∗ ×Q∗ is defined by
ρ1 ≤∗

Q ρ2 ⇐⇒ (ρ1 ⊑ ρ2 and ↑(ρ2 − ρ1)) or (ρ2 ⊑ ρ1
and ↓(ρ1 − ρ2));

3. For ρ = (xi)i≤n ∈ Q∗, ℓ∗Q(ρ) := ℓQ(xn);
4. For ρ = (xi)i≤n, ρ

′ = (yi)i≤n′ ∈ Q∗,

ρ R∗
Q ρ′ ⇐⇒ n = n′ and ∀i ≤ n, xi RQ yi.

The proof of the following is then routine.
Lemma 12. If Q is a Σ-labelled frame, then Q∗ is a Σ-
labelled frame.

Lemma 13. The poset (Q∗,≤∗
Q) is discrete and acyclic.

Proof. By construction.

Clearly a formula φ is falsified on Q if and only if it is
falsified on Q∗. Thus, to check validity, it suffices to check
validity on acyclic labelled frames.

Now let Q be an acyclic Σ-labelled frame. We show that
there exists a dynamic simulation E ⊆ MΣ × Q that is
surjective, i.e. for each ρ ∈ Q there exists a momentM ∈
MΣ such thatM E ρ. To that end we are going to show that
given ρ ∈ Q, we can inductively define a substructure of Q
that corresponds to a moment.
Definition 22. Let Q = (Q,≤Q, ℓQ) be an acyclic Σ-
labelled poset, and let τ ∈ Q. The connected compon-
ent of τ is the substructure (C(τ),≤Q↾C(τ), ℓQ↾C(τ)) where
ρ ∈ C(τ) if and only if there exists a path from τ to ρ.

Observe that C(τ) does not in general have finite zig-
zag width. We define a Σ-labelled substructureMC(τ) =
(M,≤M, ℓM) of C(τ) with bounded zigzag width as fol-
lows:

• M := {ρ ∈ Q | zzτ (ρ) ≤ 2d(Σ) + 1}
• ≤M:= ≤Q↾M .

• if ρ ∈ M is Πτ
m, then ℓM(ρ)+ := ℓQ(ρ)

+↾Σd(Σ)−⌊m/2⌋

and ℓM(ρ)− := ℓQ(ρ)
−↾Σd(Σ)−⌊(m+1)/2⌋ (⌊ ⌋ is the floor

function)
if ρ ∈M is Στ

m, then ℓM(ρ)+ := ℓQ(ρ)
+↾Σd(Σ)−⌊(m+1)/2⌋

and ℓM(ρ)− := ℓQ(ρ)
−↾Σd(Σ)−⌊m/2⌋

Lemma 14. The zigzag width of MC(τ) is bounded by
4d(Σ) + 2.

Proof. By construction it is only possible for a state ρ ∈
C(τ) to occur in M if there exists an acyclic path from τ to
ρ that has zigzag width of at most 2d(Σ) + 1. Therefore, the
maximal zigzag width ofMC(τ) is at most 2(2d(Σ) + 1) =
4d(Σ) + 2.

Lemma 15. ℓM : M → TΣ is well defined.

Proof. Check that ℓM assigns to each ρ ∈M a Σ-type.

Lemma 16. MC(τ) = (M,≤M, ℓM, τ) is a Σ-moment.

Proof. Check all the defining conditions of a Σ-moment.

1. For monotonicity of ℓM : (M,≤M) → (TΣ,≤T), sup-
pose ρ ≤M ρ′. If ρ and ρ′ are both Πτ

i or both Στ
i , for

some i, then as ℓQ(ρ) ≤T ℓQ(ρ
′), we have ℓM(ρ) ≤T

ℓM(ρ′). Otherwise, either ρ is Στ
i and ρ′ is Πτ

i+1, or ρ
is Στ

i+1 and ρ is Πτ
i . In either case, one can check that

ℓM(ρ) ≤T ℓM(ρ′). It may by instructive to refer again to
Figure 3.

2. Suppose φ→ ψ ∈ ℓM(ρ)−. Then φ→ ψ ∈ ℓQ(ρ)−. As
Q is a Σ-labelled poset, ∃ρ′ ≥Q ρ with φ ∈ ℓQ(ρ′)+ and
ψ ∈ ℓQ(ρ

′)−. Since 0 ≤ d(φ), d(ψ) < d(φ→ ψ) and
zzτ (ρ

′) ≤ zzτ (ρ) + 1, we know ρ′ ∈ M and both φ ∈
ℓM(ρ′)+ and ψ ∈ ℓM(ρ′)−. ←-formulas are similar.

Proposition 2. There exists a surjective simulation E ⊆
MΣ ×Q.

Proof. Let ρ ∈ Q. By Lemma 16,MC(ρ) = (M,≤M, ℓM,
ρ) ∈ MΣ. We first define a simulation Eρ ⊆ MΣ × Q that
includes the pair (MC(ρ), ρ) as follows:

Eρ := {((M,≤M, ℓM, ρ′), ρ′) | ρ′ ∈M}.

Clearly,MC(ρ) Eρ ρ andEρ ⊆MΣ×Q. In order to show
that Eρ is a simulation we check the defining conditions.

1. Suppose M′ Eρ ρ′. By construction M′ = (M,≤M,
ℓM, ρ′). Then ℓΣ(M′) = ℓM(ρ′) ⊆T ℓQ(ρ

′).
2. For forth–up confluence, supposeM′ Eρ ρ

′ andM′ ≤Σ

M′′. This implies that M′ = (M,≤M, ℓM, ρ′) and
M′′ = (M,≤M, ℓM, ρ′′) where ρ′ ≤M ρ′′. Thus
ρ′′ ∈ Q and ρ′ ≤Q ρ′′, and by definitionM′′ Eρ ρ

′′.
3. The proof for forth–down confluence is similar.

Thus for each ρ ∈ Q we have a simulation Eρ such that
MC(ρ) Eρ ρ. Now define

E :=
⋃
ρ∈Q

Eρ.

By Lemma 8, E is a simulation, and by construction E is
surjective.
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The next step is to show that E is dynamic.
Let ρ, τ ∈ Q be such that ρ RQ τ , and writeMC(ρ) =

(M,≤M, ℓM, ρ) andMC(τ) = (N,≤N , ℓN , τ).

Lemma 17. There exists a sensible relation R ⊆ M × N
such that (ρ, τ) ∈ R.

Proof. Using the confluence conditions, inductively build up
a total function R : M → N , starting by setting R(ρ) = τ ,
and then proceeding by induction on the distance of points
ρ′ ∈ M from ρ. We can ensure that zzτ (R(ρ′)) ≤ zzρ(ρ

′)
always holds.

It remains to show thatR is sensible. By construction,R is
forth–up and forth–down confluent. Let S be the sensibility
condition, and suppose (ρ′, τ ′) ∈ R. Then (ρ′, τ ′) ∈ RQ,
so ℓQ(ρ′) S ℓQ(τ ′). Since ℓM(ρ′) and ℓN (τ ′) are given by
restrictions of ℓQ(ρ′) and ℓQ(τ ′) respectively, and ℓQ(ρ′) is
restricted more than ℓQ(τ ′) (since zzτ (τ

′) ≤ zzρ(ρ
′)), by

the properties of sensibility conditions ℓM(ρ′) S ℓN (τ ′).
Therefore R is sensible.

Lemma 18. R−1(N) =M .

Proof. The construction of R adds in step 0 the world ρ to
R−1(N) and in step 1 every world different from ρ which
has zigzag width 0. Moreover, it adds in each step n > 1
every world which has zigzag width n− 1. Therefore after
2d(Σ) + 2 steps, R−1(N) =M .

Note that for every ρ0 ∈ M , there exists τ0 ∈ N with
(ρ0, τ0) ∈ R. Thus, using the notationMC(ρ)

ρ0 to mean the
moment formed by changing the initial world ofMC(ρ) to
ρ0, we obtain the following.

Corollary 3. NC(τ)
τ0 is a modal successor ofMC(ρ)

ρ0 .

Proof. Witnessed by the sensible relation R ⊆M ×N with
(ρ0, τ0) ∈ R.

Lemma 19. Suppose ρ0 ∈ MC(ρ) and ρ0 RQ τ0. Then
there exists τ such that ρ RQ τ and τ0 ∈ NC(τ).

Proof. Since ρ0 ∈MC(ρ), there exists an acyclic path α =
(xi)i≤n such that x0 = ρ and xn = ρ0. Let α = (xn−i)i≤n.
Since ρ0 SQ τ0 we find, by using forward confluence of SQ,
a path β = (yi)i≤n such that for all 0 ≤ i ≤ n it holds that
xn−i SQ yi. In particular ρ SQ yn = τ . Observe that the
zigzag width of β is at most the zigzag width of α. Therefore,
since ρ0 ∈MC(ρ) and α connects ρ to ρ0, τ0 ∈ NC(τ).

Putting everything together, we obtain the desired result.

Proposition 3. The simulation E ⊆MΣ ×Q is dynamic.

Proof. SupposeM E ρ0 and ρ0 RQ τ0. ThenM =MC(ρ)
ρ0 .

Let τ ∈ Q such that ρ RQ τ and τ0 ∈ NC(τ). As shown
above, the moment NC(τ)

τ0 is a modal successor ofMC(ρ)
ρ0 .

Moreover, NC(τ)
τ0 E τ0.

9 Succinct Moments
In order to obtain finite Σ-labelled frames, we will restrict
MΣ to moments that are, in a sense, no bigger than necessary.
Specifically, they should not be ‘bimersive’ to a moment of
strictly smaller cardinality. Below, we make this precise.

In order to prove the main results in this section, we will
need to consider labels that are not necessarily types. Let
(C,≤) be a finite poset, which we identify with its domain
C. A C-moment is a triple M = (M,≤M, ℓM), where
(M,≤M) is an acyclic discrete poset and ℓM : M → C is
order preserving: w ≤M v =⇒ ℓM(w) ≤ ℓM(v). The
class of C-moments of zigzag width n is denoted Mn

C . We
will refer to the structure (C,≤) as the set of colors.
Definition 23. Let C be a set of colors and M, N be C-
moments. A relation σ ⊆M ×N is a simulation fromM
to N if dom(σ) =M and whenever w σ v:

1. ℓM(w) = ℓN (v);
2. σ is forth–up and forth–down confluent (for≤M and≤N ).

A simulation is called an immersion if it is a function. If
an immersion σ :M→ N exists, we writeM ⊴ N . If, in
addition, there is an immersion τ :M→N , we say thatM
and N are bimersive, writeM ≜ N , and call the pair (σ, τ)
a bimersion.

IfM is such thatM ≜ N implies that |M | ≤ |N |, we
say thatM is succinct.

Note that every moment is bimersive to a succinct moment,
simply because there must be a minimum cardinality among
all moments bimersive to it.

We wish to show that the number of bimersion classes of
Mn

C is computably bounded, and there is a computable bound
on the cardinality of the succinct moments. We will prove
this via an inductive argument, in which worlds of a moment
of maximal height are labelled by moments of smaller height,
in order to apply the induction hypothesis and reduce these
simpler moments. Thus we need to state the following lemma
for an arbitrary set of colors. Below, say that a momentM
is tree-like with root r if either ∀w ∈ M , w ≤ r or else
∀w ∈M , r ≤ w.
Lemma 20 (Boudou, Diéguez, and Fernández-Duque (2017,
Theorem 23)). Let C be a finite set of colors with |C| = c.
Then there are computable functions F and G such that
1. Given a treelike C-moment M, there is a treelike C-

moment M∗ of cardinality bounded by F (c) such that
M∗ ≜M.

2. Given a sequence of treelike C-moments M1, . . . ,Mn

with n > G(c), there are indexes i < j ≤ n such that
Mi ≜Mj .

Remark 1. Boudou et al. use a slightly different presentation.
They do not assume that C is partially ordered, but instead
consider labelling functions of a fixed level k; this is the
maximal length of a chain w1, . . . , wk of worlds such that
ℓ(wi) ̸= ℓ(wi+1). Our C-moments automatically have level
at most c, since our labelling functions are monotone.
Proposition 4. Let Σ ⊆ LbIM be finite and closed under
subformulas. Then there are natural numbers κΣ and λΣ
such that:
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1. GivenM∈MΣ, there is a Σ-momentM∗ of cardinality
bounded by κΣ such thatM∗ ≜M.

2. Given a sequence M1, . . . ,Mn ∈ MΣ with n > λΣ,
there are indexes i < j ≤ n such thatMi ≜Mj .

Proof. LetM = (M,≤, ℓ, r) be a Σ-moment. For w ∈ M
let Mw be the subset of M starting at w and away from r;
formally, if we let (w0, . . . , ws) be the unique zigzag path
from w to r (with w0 = w), then Mw is the connected com-
ponent of w in M \ {w1, . . . , ws}. Then we define zzh(w),
the zigzag height of w, to be the greatest m so that every
v ∈Mw is both Πw

m and Σw
m.

First we consider a case where whenever w < r, it follows
that zzh(w) < zzh(r). LetC be the set of pairs (c, B), where
c ∈ C and B is a set of bimersion classes of (n−1)-depth Σ-
moments (where B = ∅ if n = 0), with (c, B) ≤+ (c′, B′)
if and only if both c ≤ c′ and B′ ⊆ B. For each w ≥ r, we
define a label L(w) = (ℓ(w), B(w)), where B(w) is defined
as follows. LetM− = M↾M\w↑ . For each v ∈ M−, let
Mv be the restriction ofM− to the connected component of
v. Then let B(w) be the set of bimersion classes of frames of
the formMv with v ∈M− ∩ w↓. It is readily checked that
M↾r↑ is a treelike C-moment, since transitivity of ≤ ensures
that B(w) is inversely monotone. Hence by Lemma 20,M
is bimersive to a C-moment of size at most F (|C|), and there
are at most G(|C|) bimersion classes for suchM.

In the general case, we merely view M as M̂ ∪ M̌ , where
M̂ is the set of worlds accessible from r by a zigzag path
that first goes up and M̌ is the set of worlds accessible by a
zigzag path that first goes down. By applying the previous
case to each of the two sides, we obtain M′ ≜ M with
|M ′| ≤ 2F (|C|). Hence there isM∗ ≜ M′ with at most
this number of worlds. Since the bimersion class ofM is
determined by the two bimersion classes, there can be at most
G(|C|)2 bimersion classes.

Let IΣ be the substructure formed by restricting MΣ to suc-
cinct moments (and with isomorphic moments identified). It
follows from Proposition 4 that IΣ is finite and only contains
finite moments. Next, it would be convenient if, whenever E
is a simulation andM is any Σ-moment such thatM E x,
we could replaceM by some succinctM′ ⊴ M and still
haveM′ E x. The following operations on simulations will
help us achieve this.
Definition 24. Let Σ ⊆ LbIM be finite and closed under
subformulas, X be a Σ-labelled poset, and E ⊆MΣ ×X .

1. Define the bimersion closure of E by Ě := E ◦ ≜. If
Ě = E, we say E is bimersion invariant.

2. Define the succinct part of E by E0 := E↾IΣ .

In other words, M Ě x means that there is N such
that M ≜ N E x. Let us see that these operations in-
deed produce new simulations. The following is proven by
(Fernández-Duque 2018).
Lemma 21. Suppose that Σ ⊆ LbIM is finite and closed
under subformulas, X is a Σ-labelled frame, and E ⊆MΣ×
X is a simulation. Then

1. Ě and E0 are also simulations.

x
RX

y

M
RΣ

E

N

RΣ

E

N ′

E0

Figure 4: A diagram illustrating Lemma 21.2b.

2. If E is bimersion invariant, then
(a) E0(IΣ) = E(MΣ);
(b) ifM E x RX y andM RΣ N E y, then there exists
N ′ such thatM RΣ N ′ and N ′ E0 y (see Figure 4).

Theorem 3. Each Λ ∈ {KbI,DbI,TbI,K4bI,K4DbI, S4bI}
has the finite frame property and hence is decidable.

Proof. If φ is derivable, it is valid on finite Λ-frames by
soundness. Otherwise, it is not valid on the canonical model,
so not valid on MΣ↾E−1(Wc), and hence by Lemma 21, not
valid on IΣ↾E−1(Wc), which by Proposition 4 is finite. By
Theorem 2, φ is not valid on the class of finite Λ-frames.

10 Concluding Remarks
We have shown that many bi-intuitionistic modal logics in-
terpreted on intuitionistic Kripke models satisfying forth-up
and forth-down confluence are decidable. To the best of our
knowledge this is the first such result in this context. The
logics we have considered are inspired by intuitionistic tem-
poral logic, also based on forward confluence, so one may
ask whether similar decidability results hold for logics in the
spirit of intuitionistic modal logics in the sense of Fischer
Servi or constructive modal logics in the sense of Fitch.

In either case, we would argue that the intended duality
between implication and co-implication should give prefer-
ence to symmetric frame conditions for ≤, i.e. semantics
for constructive bi-intuitionistic logics should require back–
down confluence as well as back–up confluence, and for
intuitionistic modal logics, all four confluence conditions.

For constructive logics, this should yield a conservative ex-
tensions of logics without co-implication, and we expect our
techniques can be adapted to this setting: roughly speaking,
simulations can preserve forth conditions or back conditions,
but not both at the same time.

In contrast, for the just-mentioned reason we do not ex-
pect that the finite frame property for transitive intuitionistic
modal logics (with or without co-implication) can be obtained
from our techniques. Moreover, unlike in the constructive
case, the forth–down confluence property does lead to new
valid formulas in the original mono-intuitionistic language.
However, much as has been the case for logics without co-
implication, we expect that a combination of our techniques
with currently existing proofs (as in e.g. (Simpson 1994))
should yield decidability results for IK with co-implication.
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