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1LMF, CNRS, ENS Paris-Saclay, University Paris-Saclay, France
2Faculty of Information Technology and Communication Sciences, Tampere University, Finland

demri@lmf.cnrs.fr, raine.ronnholm@tuni.fi

Abstract

We study ATL+ enriched with one resource (written
ATL+(1)) extending ATL+ with the possibility to manage a
budget. We propose a game-theoretic semantics via the in-
troduction of two evaluation games so that the compositional
semantics is captured by strategies in the games. We show
that the model-checking problem for ATL+(1) is in PSPACE
and we identify fragments in PTIME. By-products of our in-
vestigations include a simplified PSPACE decision procedure
for resource-free ATL+ based on small strategy skeletons, the
synthesis of constraints in ATL+(1) with parameters and a
PSPACE bound to solve a close energy game problem with
one counter and objectives of temporal depth one.

1 Introduction
ATL-like logics with resources. Reasoning about the abil-
ity of autonomous agents to achieve a goal, possibly in
cooperation or against other agents, is essential to reason
about knowledge and many logical formalisms have been
introduced to perform such tasks, including alternating-
time temporal logic ATL, see e.g. (Alur, Henzinger, and
Kupferman 2002) and strategy logic SL, see e.g. (Chat-
terjee, Henzinger, and Piterman 2010). Since the semi-
nal work (Alur, Henzinger, and Kupferman 2002) about
ATL-like logics to reason about concurrent game struc-
tures (CGS), alternating-time temporal logics have been
the subject of numerous investigations related to expres-
sive power (see e.g. (Laroussinie, Markey, and Oreiby
2008)), game-based semantics (see e.g. (Goranko, Kuusisto,
and Rönnholm 2018; Goranko, Kuusisto, and Rönnholm
2021)), computational complexity (see e.g. (Bulling and
Jamroga 2010; Goranko and Vester 2014; Goranko, Kuu-
sisto, and Rönnholm 2021)) and reasoning with resources
(see e.g. (Bulling and Farwer 2009; Alechina et al. 2017;
Bulling and Goranko 2022)), to quote a few examples.
Adding resources to ATL-like logics can be done in many
ways, see e.g. (Alechina et al. 2009; Bulling and Farwer
2010; Alechina et al. 2017; Bulling and Goranko 2022)
(see also (Laroussinie, Markey, and Oreiby 2006; Vester
2014)). This is a natural framework in which each ac-
tion done by some agent either consumes or produces re-
sources. Decidability and complexity issues are consid-
ered in (Bulling and Farwer 2010; Alechina et al. 2015;
Alechina et al. 2017; Alechina et al. 2018), some of them

related to energy games, see e.g. (Colcombet et al. 2017),
and to games on vector addition systems with states (VASS),
see e.g. (Brázdil, Jancar, and Kucera 2010). In this pa-
per, we are mainly interested in ATL+, following investi-
gations in (Bulling and Jamroga 2010; Cerrito, David, and
Goranko 2015; Goranko, Kuusisto, and Rönnholm 2017;
Cerrito 2021), but enriched with one resource.
Our motivations. The logic ATL+ extends the more popu-
lar ATL in the same way CTL+ extends CTL: the objectives
for the coalitions are Boolean combinations of LTL formu-
lae of temporal depth one. ATL+ is a non-trivial extension
of ATL as its model-checking problem is PSPACE-complete
(see e.g. (Alur and La Torre 2001; Bulling and Jamroga
2010) for the PSPACE-hardness and (Goranko, Kuusisto,
and Rönnholm 2021) for the PSPACE-membership) whereas
only in PTIME for ATL (Alur, Henzinger, and Kupferman
2002). The game-theoretic semantics for ATL+ formulae
designed in (Goranko, Kuusisto, and Rönnholm 2021) pro-
vides a neat characterisation for the winning strategies wit-
nessing the satisfaction of formulae. Our main motivation
in this work is to provide a game-theoretic semantics for
resource-aware ATL-like logics. Moreover, we aim at char-
acterising the complexity of model-checking. To do so,
we consider ATL+ enriched with one resource (ATL+(1)).
A version of ATL enriched with one resource is solved in
PSPACE in (Alechina et al. 2017, Theorem 2). We al-
ready know that the model-checking problem for ATL+(1)
is PSPACE-hard (inherited from ATL+) and for a variant
of ATL+(1), in EXPTIME (Belardinelli and Demri 2021,
Theorem 14). The fact that we restrict ourselves to a sin-
gle resource is motivated by the need to elaborate the first
steps to design game-theoretic semantics for resource-aware
ATL-like logics. Besides, bounding the number of coun-
ters is a natural approach to study decision problems on
VASS, see e.g. (Czerwinski et al. 2020; Leroux and Schmitz
2019), or to analyse energy games, see e.g. (Jurdziński,
Lazić, and Schmitz 2015). Energy games with one re-
source are also investigated, see e.g. (Bouyer et al. 2008;
Chatterjee, Doyen, and Henzinger 2017).
Our contributions. We introduce the logic ATL+(1) fol-
lowing first principles from (Alechina et al. 2017). We keep
to the minimum the conditions about the resource values,
typically non-negativity for winning strategies (no compul-
sory idle action, no proponent restriction condition). Our
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intention remains to define a simple version of ATL+ with
one resource, although our results can be adapted to vari-
ants with more conditions (dropping such conditions herein
is not due to hidden technical difficulties).

We design two evaluation games, along the lines
of (Goranko, Kuusisto, and Rönnholm 2018; Goranko, Ku-
usisto, and Rönnholm 2021) (see Section 3), that are shown
equivalent to the compositional semantics for ATL+(1). The
games are played between two players, Eloise (E) and
Abelard (A). Intuitively, E is trying to verify that a state
from a CGS satisfies a formula in ATL+(1). The first eval-
uation game admits a transition game (subgame of the eval-
uation game) in which loop checking is performed leading
to specific winning positions for E. Each position of a play
carries a resource value and winning conditions depend on
the negativity status of the current resource value and/or of
the visited loops. Once the equivalence with compositional
semantics is shown, a PSPACE upper bound for the model-
checking problem for ATL+(1) (written MC(ATL+(1))) can
be easily concluded. The other evaluation game is parame-
terised by a threshold value β > 0 for which any resource
value strictly above β is immediately truncated to β. Conse-
quently, if β is too small, truncation may effectively change
the existence of a winning strategy for E. This version of
the game is shown equivalent to the compositional seman-
tics for β large enough. For each β, existence of a win-
ning strategy for E is equivalent to existence of a winning
strategy in a Büchi game, for which we can then use all the
nice properties, see e.g (Chatterjee, Henzinger, and Piter-
man 2008). This is the way we design PTIME fragments of
MC(ATL+(1)). Our games are inspired from (Goranko, Ku-
usisto, and Rönnholm 2021) but are sometimes more com-
plex due to the presence of a resource value in positions; still
we provide several technical simplifications.

In Section 5.2, we define a parameterised version of
ATL+(1) for which we explain how quantifier-free Pres-
burger formulae can be synthetised in polynomial space. In
such a parameterised version, the strategy modality ⟨⟨Ab⟩⟩Ψ
from ATL+(1) where b ∈ N (initial budget) and Ψ is an
ATL+(1) path formula is replaced by ⟨⟨Ax⟩⟩Ψ where x is
a variable. The synthesis problem that we solve consists
in building an arithmetical constraint that captures exactly
the values for initial budgets that make true a given param-
eterised formula on a given state. Finally, in Section 5.3,
we prove that an energy game problem with LTL objec-
tives of temporal depth one can be reduced in logspace to
MC(ATL+(1)), leading to its PSPACE upper bound.

2 Preliminaries
2.1 ATL+ Enriched With One Resource Type
Below, we write ATL+(1) to denote the logic ATL+

(see e.g. (Bulling and Jamroga 2010; Cerrito, David, and
Goranko 2015)) augmented with one resource. Its models
are concurrent game structures in which each action has a
weight defined as an integer. The weight is subject to sev-
eral interpretations, for example to be understood as a cost.
A concurrent game structure with one resource (in short, a
CGS) is a tuple M = ⟨Ag, S,Act, act, wf, δ, L⟩ such that:

• Ag (resp. S, Act) is a finite and non-empty set of agents
(resp. states, actions).

• act : S × Ag → (P(Act) \ {∅}) is the protocol function
assigning to each pair (s, a) the set of available actions
for the agent a at the state s. A joint action f : Ag → Act
at the state s is a map such that for all a ∈ Ag, f(a) ∈
act(s, a). Restrictions g : A→ Act withA ⊆ Ag of joint
actions, are also called joint actions w.r.t. A at s. The set
of joint actions w.r.t to A at s is written DA(s).

• wf : S × Ag × Act → Z is a (partial) weight function
such that for all s ∈ S, a ∈ Ag, and a ∈ Act, wf(s, a, a)
is defined exactly when a ∈ act(s, a).

• δ : S×(Ag → Act)→ S is a (partial) transition function
with δ(s, f) defined whenever f is a joint action at s.

• L : AP → ℘(S) is the labelling function, where AP is a
set of propositional variables.

We write ∆(M) to denote max{|DAg(s)| : s ∈ S}. Ob-
serve that ∆(M) ≤ |Act||Ag| and ∆(M) corresponds to the
maximal number of outgoing transitions from a state when
M is represented as a labelled graph. We also write ||M ||∞
to denote max{|wf(s, a, a)| : s ∈ S, a ∈ Ag, a ∈ Act}.
Since we shall deal with complexity issues, the integers are
encoded with a binary representation. We adopt a reason-
ably succinct encoding forM such that its size, written |M |,
is polynomial in |Ag|+ |S|+ |Act|+ log(||M ||∞)+∆(M).

Given joint actions f and g, we write g ⊑ f if dom(g) ⊆
dom(f), and for every agent a ∈ dom(g), f(a) = g(a).
For a joint action g ∈ DA(s), out(s, g) is the set of im-
mediate outcomes: out(s, g) def

= {δ(s, f) | for some f ∈
DAg(s), g ⊑ f}. Given a coalition A ⊆ Ag, the coali-
tion (Ag \ A), also written A, is called the opposing coali-
tion. We write g ⊕ g to denote the joint action in DAg(s)
when g ∈ DA(s) and g ∈ DA(s). The weight of a tran-
sition from s by f ∈ DAg(s) is defined as wf(s, f) def

=∑
a∈Ag wf(s, a, f(a)) ∈ Z.

A computation λ is a finite or infinite sequence s0
f0−→

s1
f1−→ s2 . . . such that for all 0 ≤ i < |λ| − 1 we have

si+1 = δ(si, fi). A computation can be also defined as
a sequence s0s1s2 · · · (obtained by removing the joint ac-
tions) assuming that for all 0 ≤ i < |λ| − 1, there is some
fi such that si+1 = δ(si, fi). When we use the notation
s0s1s2 · · · , we assume that the joint actions f0f1f2 · · · are
known. Moreover, if λ = s0 · · · sK , we write λ(i) to denote
si and λ[i, j] for the sequence si · · · sj . A similar notation is
used with infinite computations.

A strategy σ for the coalition A is a map from the set of
finite computations to the set of joint actions of A such that

σ(s0
f0−→ s1 . . . sn−1

fn−1−−→ sn) ∈ DA(sn).
Positional strategies are such that σ(s0 · · · sn) only depends

on sn. A computation λ = s0
f0−→ s1

f1−→ s2 . . . respects the

strategy σ iff for all i < |λ| − 1, si+1 ∈ out(si, σ(s0
f0−→

s1 . . . si−1
fi−1−−→ si)). The set of all the infinite computations

starting from s and respecting σ is written comp(s, σ).

Given b ∈ N and an infinite computation λ = s0
f0−→ s1

f1−→
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s2 . . ., let the resource availability vi at step i ∈ N be de-
fined as: v0

def
= b and for all i ≥ 0, vi+1

def
= wf(si, fi)+vi. In

short, each vi is the accumulated weight at position i, assum-
ing that the initial budget is b. The infinite computation λ is
b-consistent iff for all i ∈ N, we have vi ≥ 0. A strategy σ
is a b-strategy w.r.t. s iff all the computations in comp(s, σ)
are b-consistent. A state-resource history π is a sequence
((s0, v0), . . . , (sk, vk)) for some k ≥ 0.

The models of the logic ATL+(Ag, 1) (parameterised by
the set of agents Ag) are CGSs containing the set of agents
Ag. When defining formulae we make explicit the set of
agents as (finite) coalitions occur in formulae. The state for-
mulae ϕ and path formulae Ψ in the logic ATL+(Ag, 1) are
built according to the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ⟨⟨Ab⟩⟩Ψ
Ψ ::= ϕ | ¬Ψ | Ψ ∨Ψ | Xϕ | ϕUϕ,

where p ∈ AP, A ⊆ Ag, and b ∈ N. The peculiarity
of the path formulae Ψ rests on the closure under Boolean
connectives but no nesting of temporal connectives X and
U is allowed, similarly to syntactic constraints for ATL+

and CTL+, see also the unnested-path-formula fragment
in (Chatterjee, Henzinger, and Piterman 2010, Section 3.3).
The standard Boolean connectives ∧ and → are used as
shorthands as well as for the temporal operators G and F. For
instance, Gϕ def

= ¬(⊤U¬ϕ). Below, the formula ⟨⟨Ab⟩⟩Ψ
can be read as “the coalition A has a joint strategy imple-
mentable with initial budget b such that all the computa-
tions respecting that strategy satisfy the objective Ψ”. By
ATL+(Ag, 1) formulae, by default we understand the state
formulae. The satisfaction relation |= is defined as follows.
M, s |= p iff s ∈ L(p)
M, s |= ¬ϕ iff M, s ̸|= ϕ
M, s |= ϕ1 ∨ ϕ2 iff M, s |= ϕ1 or M, s |= ϕ2
M, s |= ⟨⟨Ab⟩⟩Ψ iff for some b-strategy σ w.r.t. s for

A, for all λ ∈ comp(s, σ), M,λ |= Ψ
M,λ |= ϕ iff M,λ(0) |= ϕ
M,λ |= ¬Ψ iff M,λ ̸|= Ψ
M,λ |= Ψ1 ∨Ψ2 iff M,λ |= Ψ1 or M,λ |= Ψ2

M,λ |= Xϕ iff M,λ(1) |= ϕ
M,λ |= ϕ1 Uϕ2 iff for some i ≥ 0, M,λ(i) |= ϕ2, and

for all 0 ≤ j < i, M,λ(j) |= ϕ1
Below, we present a CGS M with two agents (our running
example), the transitions are labelled by pairs of actions with
the respective weights. For instance, the total weight of the
transition from s1 to s2 is −2. One can show that M, s1 |=
⟨⟨{1}3⟩⟩(G p1 ∨ F p2) but there is no positional strategy for
agent 1 that witnesses the satisfaction of the formula.

s1

p1

s2 s3 p2(a/1, a/2)
(a/1, b/− 3)

(a/5, a/0)

(b/− 8, a/0)

(a/0, a/0)

Let M be a finite CGS with Ag = [1, k] for some k ≥ 1,
s be a state in M and ϕ be a formula in ATL+(Ag, 1) built
overAg. The model-checking problem for ATL+(1), written
MC(ATL+(1)), amounts deciding whether M, s |= ϕ. This
is the main problem we investigate in this work.

Given a path formula Ψ, we write atoms(Ψ) to denote its
finite set of temporal atoms made of

1. the maximal state formulae occurring in Ψ not in the
scope of a temporal connective, and

2. the path formulae of the form either Xϕ1 or ϕ1 Uϕ2 in Ψ
but none of them in the scope of a strategy modality.

With Ψ0 = (⟨⟨Ab⟩⟩Ψ′ ∨ p) ∧ (Xϕ1 ∧ (ϕ3 U⟨⟨Ab⟩⟩Ψ′′)),
atoms(Ψ0) = {⟨⟨Ab⟩⟩Ψ′ ∨ p,Xϕ1, ϕ3 U⟨⟨Ab⟩⟩Ψ′′}. We
write msf(Ψ) to denote the maximal state formulae ob-
tained from the temporal atoms in atoms(Ψ). For instance,
msf(Ψ0) = {⟨⟨Ab⟩⟩Ψ′∨p, ϕ1, ϕ3, ⟨⟨Ab⟩⟩Ψ′′}. The temporal
width of Ψ, written tw(Ψ), is defined as |atoms(Ψ)|. The
temporal width of a state formula ϕ, written tw(ϕ), is de-
fined as max{tw(Ψ) | path formula Ψ occurs in ϕ}. Given
a state formula ϕ, we write subf(ϕ) its set of (state) subfor-
mulae (built as usual).

MC(ATL+(1)) can be solved with a standard labelling al-
gorithm as soon as we know how to decide M, s |= ⟨⟨Ab⟩⟩Ψ.
The algorithm determines bottom-up on the structure of the
subformulae ψ of ϕ which states in M satisfy ψ. Assum-
ing that the satisfaction of formulae in msf(Ψ) is already
known, the verification of M, s |= ⟨⟨Ab⟩⟩Ψ is the key part of
the algorithm. If checking M, s |= ⟨⟨Ab⟩⟩Ψ can be done in
PSPACE using an oracle for the formulae in msf(Ψ), then
MC(ATL+(1)) is in PSPACE. Later on, we use the same rea-
soning with PTIME for fragments of MC(ATL+(1)). This
approach does not work, if the formulae were interpreted on
pairs (s, v) ∈ S × N, see e.g. (Vester 2014, Section 4).

2.2 Variants
ATL+ corresponds to ATL+(1) with all weights and bud-
gets equal to zero. MC(ATL+) is PSPACE-hard (Bulling
and Jamroga 2010) and in PSPACE (Goranko, Kuusisto,
and Rönnholm 2021). Herein we focus on MC(ATL+(1))
but our developments can be adapted to variant log-
ics. For instance, we write ATL+

p (1) for the variant of
ATL+(1) in which the proponent restriction condition is
assumed: the weight of a transition from s by f ∈
DAg(s) when the proponent coalition is A is defined as
wf(s, f) =

∑
a∈A wf(s, a, f(a)). Only the agents in A

are taken into account for computing weights, see the log-
ics from (Alechina et al. 2017; Alechina et al. 2018). Our
results for MC(ATL+(1)) can be adapted to MC(ATL+

p (1)).
The above variant rests on a slightly different semantics,

but it is also possible to define relevant syntactic fragments,
such as ATL(1), for which the path formulae are those from
ATL+(1) but restricted to Ψ ::= Xϕ | Gϕ | ϕUϕ.

3 Evaluation Games with Resources
In (Goranko, Kuusisto, and Rönnholm 2021), a game-
theoretic semantics is designed for ATL+. Not only this
leads to a semantics that is alternative to the compositional
semantics but also the PSPACE upper bound for MC(ATL+)
is shown (correcting a flaw in (Bulling and Jamroga 2010,
Theorem 4), see also an attempt in (Wang, Schewe, and
Huang 2015)). Fragments for which the model-checking
problem is in PTIME are also designed there (the tempo-
ral width is bounded as in ATL). Assuming that G(M, s, ϕ)
denotes the evaluation game for ATL+ in (Goranko, Kuu-

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

190



sisto, and Rönnholm 2021), it is shown that M, s |= ϕ iff
the player E has a winning strategy for G(M, s, ϕ).

In this section, we introduce two evaluation games related
to ATL+(1) extending the games for ATL+. We perform
several simplifications (for instance, our games do not deal
with so-called timer and seeker role) but as a new feature,
each position of the plays needs to carry a resource value.
Each evaluation game comes with its version of a so-called
transition game understood as a subgame of the evaluation
game (related to the satisfaction of formulae ⟨⟨Ab⟩⟩Ψ). We
distinguish the transition game with loop checking from the
resource-capped transition game. In the winning conditions,
the resource value is taken into account in several ways.
Firstly, a negative resource value most often is winning for
A as a b-strategy does not admit computations leading to
negative resource values. Secondly, in the version of the
transition game with loop checking, non-negative loops can
lead to a winning position for E only if it ends the play and
the truth function satisfies the path formula Ψ. By contrast,
in the resource-capped transition game, no loop checking is
performed and the current resource value is truncated to a
value β that is a parameter of the whole game.

3.1 Loop-Minimal Evaluation Game
Let M be a CGS, sin be a state in M and ϕin be an
ATL+(1)-formula. The (loop-minimal) evaluation game
GLM(M, sin, ϕin) is played between two players Eloise (E)
and Abelard (A). The positions of the game are of the form
(V, s, ϕ), where V ∈ {E,A} is the (current) verifier, s ∈ S
and ϕ ∈ subf(ϕin). The opponent of a player P is denoted
by P (that is, {P} = {E,A} \ {P}). The opponent V of the
verifier can be also called the falsifier.

The game begins from the initial position (E, sin, ϕin),
where intuitively “Eloise is trying to verify that ϕin is true
at sin”. The game is played according to the following rules.

1. In (V, s, ϕ1 ∨ ϕ2), the verifier V selects whether the next
position is (V, s, ϕ1) or (V, s, ϕ2).

2. In (V, s,¬ϕ), the game proceeds to the position (V, s, ϕ).
A negation swaps the roles of the verifier and the falsifier.

3. In (V, s, ⟨⟨Ab⟩⟩Ψ), the game enters the transition game
T GLM(V, s, A, b,Ψ) which is defined below.

4. In (V, s, p) the evaluation game ends and the verifier V
wins if and only if s ∈ L(p) (else the falsifier V wins).

An essential part of transition games is the use of truth
functions for a path formula Ψ which are mappings T :
atoms(Ψ) → {⊤,⊥, open}. The value ⊤ refers to “true”,
⊥ refers to “false”. If T (Φ) = open, then the satisfaction of
Φ remains undecided but if the truth function does not evolve
anymore, then open refers to “false”. However, a truth func-
tion T can be updated during the game so that some values
that are still open are remapped to either ⊤ or ⊥. Since the
values⊤ and⊥ cannot be modified any further, there can be
only finitely many such updates (atoms(Ψ) is finite). The
truth of Φ with respect to T (atoms(Φ) ⊆ atoms(Ψ)), de-
noted by T |= Φ, is defined as follows:
• T |= Φ iff T (Φ) = ⊤, when Φ ∈ atoms(Ψ).
• T |= ¬Φ iff T ̸|= Φ; T |= Φ1∨Φ2 iff T |= Φ1 or T |= Φ2.

E.g., [⊤U¬p1 7→ open,⊤U p2 7→⊥] |= G p1 ∨ F p2.
Below, we define the transition games which can be seen

as subgames within evaluation games for verifying strate-
gic subformulae ⟨⟨Ab⟩⟩Ψ. Note that the outcome of a tran-
sition game may either be: an immediate win for one of
the players; or position from which the evaluation game
is continued with the rules above (possibly leading to new
transition games for subformulae). The transition game
T GLM(V, s, A, b,Ψ) is defined as follows. The positions of
the game are triples of the form (π, T, l+).

• π is a state-resource history ((s0, b0), . . . , (sk, bk)). The
last state sk in π is called the current state and bk is called
the current resource value; T is a truth function for Ψ.

• l+ ∈ {0, 1} is bit indicating whether a “positive loop” has
been observed during the transition game (see (ii) below).

The initial position of T GLM(V, s, A, b,Ψ) is
(π0, Topen, 0), where π0 = ((s, b)) and Topen maps
all temporal atoms to open. Then the game is played by
iterating phases (i)→ (ii)→ (iii)→ (iv)→ (i)→ · · · .
(i) Verification phase. In this phase the players may attempt
to verify or falsify the temporal atoms in Φ ∈ atoms(Ψ).
Only Φ such that T (Φ) = open may be verified (resp. falsi-
fied) by mapping them to ⊤ (resp. ⊥).

First, either player P ∈ {E,A} may attempt to verify for-
mulae ϕ1 Uϕ2 ∈ atoms(Ψ), by claiming that ϕ2 is true at
current sk. If the opponent P does not object this claim, then
T is updated by mapping ϕ1 Uϕ2 to⊤. If P objects, then the
claim is evaluated by exiting the transition game and resum-
ing to the evaluation game from the position (P, sk, ϕ2).

Then, similarly either player P may attempt to falsify
ϕ1 Uϕ2 ∈ atoms(Ψ) by claiming that ϕ1 and ϕ2 are false
at sk. If P does not object, then ϕ1 Uϕ2 is mapped to ⊥
by T ; and if P objects, the evaluation game continues from
(P, sk, ϕ1) or (P, sk, ϕ2) depending on P’s choice.

The state formulae ϕ and X-formulae Xϕ in atoms(Ψ)
can be both verified by P by claiming that ϕ is true at sk;
if the opponent objects, the evaluation game continues from
(P, sk, ϕ). However, ϕ (resp. Xϕ) may only be verified in
the 1st (resp. 2nd) verification phase of the transition game.

Resetting the history π: If at least one modification is done
to T during (i), then π is initialized to π := ((sk, bk)).

Steps (ii) and (iii) below are related to loop detection.
In (ii), the parameters are updated but the play contin-
ues. By contrast, in (iii), a loop is detected and the play
terminates with a winner. A loop is detected on π =
((s0, b0), . . . , (sk, bk)) if there is j < k such that sj = sk.
One can check that (ii) and (iii) cover all the possible cases.
(ii) First positive loop. If a loop is made in π =
((s0, b0), . . . , (sk, bk)) with j < k, sj = sk, bj < bk and
l+ = 0, then l+ is set to 1 and π is reset to ((sk, bk)).
(iii) Loop check phase (terminal position). If a loop is
made in π = ((s0, b0), . . . , (sk, bk)) with j < k (excluding
l+ just updated) and sj = sk, two cases are distinguished.

• Negative loop: bj > bk. V loses the evaluation game.
• Zero loop or a 2nd positive loop: (bj = bk & l+ = 0)

or (bj ≤ bk & l+ = 1). V wins the evaluation game if
T |= Ψ, and else V wins.
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In (ii) and (iii) the intuitive idea is that if one player can make
a certain type of loop (without changing T ), then such loops
could be repeated infinitely - because otherwise the oppo-
nent should have been able to prevent the first such loop.
Thus in (ii) the verifier is given unlimited budget, because
(s)he has shown that arbitrarily many positive loops could
be made. The rules in (iii) follow a similar idea.
(iv) Transition phase. First, V chooses a joint action g ∈
DA(sk). Then, V chooses a joint action g ∈ DA(sk). Let
sk+1 := δ(sk, g ⊕ g) and bk+1 := bk + wf(sk, g ⊕ g). If
bk+1 < 0 and l+ = 0, the game ends and V loses. Else, π
is extended with the new pair (sk+1, bk+1).

This concludes the rules of the transition game. There
are no infinite plays and each play ends as soon as at most
two loops are detected. One can show that the length of
the plays is bounded by |S| × (tw(Ψ) + 2). That is why,
the transition game T GLM(V, s, A, b,Ψ) is said to be loop-
minimal (LM). To be exact, the complete positions of the
transition game should also include the current phase (i)–
(iv) (and their subphases) for indicating how the rules are
applied. However, we omitted this additional information
for ease of presentation.

3.2 Capped Games
In this section, we define the resource-capped evaluation
game GRC[β](M, s, ϕ) for some β ∈ N that differs from
GLM(M, s, ϕ) only by its transition game. In the game
GRC[β](M, s, ϕ), the transition game T GRC[β](V, s, A, b,Ψ)
is parameterised by a resource cap β ∈ N, which pro-
vides an upper bound on the resource value. When a tran-
sition game has a resource cap β, then we say that it is
β-capped. The differences between T GRC[β](V, s, A, b,Ψ)
and T GLM(V, s, A, b,Ψ) are defined below.

• Instead of having the state-resource history π in positions,
there is only one pair (s′, b′), containing the current state
s′ ∈ S and the current resource value b′ ∈ Z. The initial
pair is (s,min(b, β)). The positions of the game are of
the form ((s′, b′), T ′) with initial truth function Topen.

• The verification phase (i) from T GLM(V, s, A, b,Ψ) is
also included in the game T GRC[β](V, s, A, b,Ψ).

• There is no loop check phase in the game, i.e. the phases
(ii) and (iii) from T GLM(V, s, A, b,Ψ) are not present in
T GRC[β](V, s, A, b,Ψ) (no l+ bit either).

• T GRC[β](V, s, A, b,Ψ) has also a transition phase (iv):
(iv) Transition phase. V chooses a joint action g ∈
DA(s

′). Then V chooses a joint action g ∈ DA(s
′). Let

s′ := δ(s′, g⊕ g) and b′ := min(β, b′ +wf(s, g⊕ g)). If
b′ < 0, the game ends and V loses. Else, the play contin-
ues with the new pair (s′, b′) in the verification phase.

If a play of a transition game T GRC[β](V, s, A, b,Ψ) is
infinite, then from some position onwards all positions must
have the same truth function T (as truth functions can be
updated only finitely often). V wins such a play iff T |= Ψ.

This version of the transition game is somewhat simpler
because there is no need to keep track of state-resource his-
tories or to check if any loop is made. However, these
games last typically much longer because the players may

do a huge numbers of loops (for accumulating/exhausting
resources or just for prolonging the game out of spite). Be-
sides, the update b′ := min(β, b′ + wf(s, g ⊕ g)) is rem-
iniscent to the way the accumulated weight is computed in
the lower-weak-upper-bound problem (Bouyer et al. 2008;
Hélouët, Markey, and Raha 2019). T GRC[β](V, s, A, b,Ψ)
is said to be resource-capped (RC).

In GRC[β](M, s, ϕ), the number of positions of the form
(V, r, ψ) is in O(|S| · subf(ϕ)); the number of positions of
the form ((r, b), T ) is inO(subf(ϕ) · |S| ·β ·3tw(ϕ)). Hence,
the number of positions of GRC[β](M, s, ϕ) is in O(|S| · β ·
subf(ϕ) · 3tw(ϕ)). As truth functions in GRC[β](M, s, ϕ) are
updated monotonously, we get the following.
Proposition 1. (I) GRC[β](M, s, ϕ) can be reduced to Büchi
games. (II) Given K ∈ N and a polynomial P (·),
GRC[β](M, s, ϕ) can be solved in polynomial-time when β ≤
P (|M |+ |ϕ|) and tw(ϕ) ≤ K.

To prove Proposition 1(I), we simply take the set of po-
sitions of the evaluation game (including transition games)
as the set positions of the Büchi game and add a self-loop
for all the winning positions. Player 1 (resp. Player 2)
takes a turn where A (resp. E) would take a turn. The
winning set for Player 2 (which needs to be visited in-
finitely often) is defined as the union of: (a) ending positions
where E wins; and (2) positions ((s, b), T ) from the sub-
game T GRC[β](V, s, A, b,Ψ) such that T |= Ψ. To prove
Proposition 1(II) it is sufficient to observe that Büchi games
can be solved in polynomial-time when β ≤ P (|M | + |ϕ|)
and tw(ϕ) ≤ K for some fixed K and P (·), O(|S| × β ×
subf(ϕ)× 3tw(ϕ)) is polynomial in |S|+ subf(ϕ).

3.3 Equivalence With Compositional Semantics
Let M be a CGS and ϕ be an ATL+(1) formula. By
||M ||−∞ we mean the highest negative weight for a tran-
sition, i.e. ||M ||−∞ = max{|wf(s, f)| : s ∈ S, f ∈
DAg(s), wf(s, f) ≤ 0}∪{0}. We write F (M,ϕ) to denote
||M ||−∞(||M ||−∞(|S| × tw(ϕ))2 + |S| × tw(ϕ)). The cor-
rectness of GLM(M, s, ϕ) and of GRC[β](M, s, ϕ) for β large
enough is one of our main results.
Theorem 2. (I) M, s |= ϕ is equivalent to (II) and (III).
(II) E has a winning strategy for GLM(M, s, ϕ).
(III) E has a winning strategy for GRC[F (M,ϕ)](M, s, ϕ).
F (M,ϕ) depends on ||M ||−∞ but not on ||M ||∞ as what

matters is the maximal decrement, similarly to the complex-
ity analysis for the covering problem for VASS in (Rackoff
1978, Lemma 3) and (Demri et al. 2013, Lemma 4).

The equivalence between (I) and (II) is proven by struc-
tural induction on ϕ. We only need to consider the case
ϕ = ⟨⟨Ab⟩⟩Ψ since the other cases are proven exactly as
in (Goranko, Kuusisto, and Rönnholm 2021). By way
of example, if there is σ witnessing M, s |= ⟨⟨Ab⟩⟩Ψ,
we use forthcoming Lemma 5 to eliminate all unneces-
sary loops from σ, leading to a small strategy skeleton (see
Section 4). Then, we show that a winning strategy for E
in T GLM(E, s, A, b,Ψ) can be read from the small strat-
egy skeleton. Similarly, to prove (I) equivalent to (III),
we take advantage of forthcoming Lemma 7, which allows
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us to put in correspondence winning strategies witnessing
M, s |= ⟨⟨Ab⟩⟩Ψ but truncated to F (M,ϕ) and strategies for
E to win T GRC[F (M,ϕ)](E, s, A, b,Ψ).

4 Representing Strategies Finitely
In this section, we provide developments about the compo-
sitional semantics, interesting for itself, but above all useful
to establish the equivalence with evaluation games (see The-
orem 2). It culminates with Lemma 6 that states an equiva-
lence between satisfaction of M⋆, s⋆ |= ⟨⟨A⋆,b⟩⟩Ψ⋆ and the
existence of a finite tree of polynomial depth and branching
width (forthcoming tree t⋆σ), see a refinement in Lemma 7.

Let M⋆ be a CGS, s⋆ ∈ S, ⟨⟨A⋆,b⟩⟩Ψ⋆ be an ATL+(1)
state formula and σ be a strategy for A⋆. The set of compu-
tations starting at s⋆ and respecting σ can be organised as an
infinite tree tσ . Such a tree is usually called a strategy tree (it
summarises the choices made by the strategy). Our intention
below is to define a finite subtree t⋆σ of tσ via the intermedi-
ate tree tωσ . Assuming that D⊥

Ag
def
=

⋃
s∈S DAg(s) ⊎ {⊥}, a

node in tσ labelled by an element in S × Z ×D⊥
Ag records

the last state of the history, the accumulated weight and the
joint action leading to this state (joint actions are useful to
compute weights). tσ is defined as the smallest labelled tree
tσ : dom(tσ)→ S×Z×D⊥

Ag as follows (as usual dom(tσ)
is a prefix-closed subset of N∗).

• ε ∈ dom(tσ) and tσ(ε)
def
= (s0, b,⊥) with s0 = s⋆. ⊥ is

a dummy value used only at the root node.

• Assuming that the transitions of the form s⋆
σ(s⋆)⊕g−−−−→ r

are s⋆
σ(s⋆)⊕g0−−−−−→ r0, . . . , s⋆

σ(s⋆)⊕gα−1−−−−−−−→ rα−1 for some
α ≥ 1, we require 0, . . . , α − 1 ∈ dom(tσ). For all
i ∈ {0, . . . , α − 1}, tσ(i)

def
= (ri, wf(s

⋆, σ(s⋆) ⊕ gi) +
b, σ(s⋆)⊕ gi). Observe that α ≤ ∆(M⋆) ≤ |M⋆|.

• For the general case, assume that n ∈ dom(tσ), the label
of the branch leading to n is (s0, n0, f0) · · · (sk, nk, fk)

and the transitions of the form sk
σ(s0···sk)⊕g−−−−−−−→ r are

sk
σ(s0···sk)⊕g0−−−−−−−−→ r0, . . . , sk

σ(s0···sk)⊕gα−1−−−−−−−−−→ rα−1. We
require n · 0, . . . ,n · (α − 1) ∈ dom(tσ) and for all
i ∈ {0, . . . , α− 1}, tσ(n · i) is equal to
(ri, wf(sk, σ(s0 · · · sk)⊕ gi) + nk, σ(s0 · · · sk)⊕ gi).

The S-label of the sequence (s0, n0, f0) · · · (sk, nk, fk) . . .
is the sequence s0s1 · · · sk · · · . Lemma 3 is by an easy veri-
fication and summarises the main properties of tσ .
Lemma 3. (I) For all λ ∈ comp(s⋆, σ), there is an infi-
nite branch in tσ whose S-label is λ. (II) For every infinite
branch of tσ , its S-label is a computation in comp(s⋆, σ).
(III) The following are equivalent: (1) for all the computa-
tions λ ∈ comp(s⋆, σ), M⋆, λ |= Ψ⋆; (2) for every infinite
branch of tσ with S-label π, M⋆, π |= Ψ⋆.

Below, we define the functions U0, U1 and U>1 that up-
date deterministically a truth function depending on which
state formulae from atoms(Ψ⋆) hold true on a state (corre-
sponding to the verification phase in transition games with
systematic and correct updates). This is essential to define
next the trees tωσ . The strategy trees tσ shall be enriched with

truth functions on nodes, while updating the truth functions
using U0, U1 or U>1. We need to distinguish three functions
to handle maximal state formulae in atoms(Ψ⋆) not in the
scope of X and U, from the X-formulae, and finally from the
Boolean combinations of U-formulae. Let s ∈ S be a state
and T be a truth function. We write U0(s, T ) to denote the
truth function obtained from T according to clauses below.
(Cst) If ϕ ∈ atoms(Ψ⋆), T (ϕ) = open and M⋆, s |=
ϕ (resp. M⋆, s ̸|= ϕ), then U0(s, T )(ϕ) = ⊤ (resp.
U0(s, T )(ϕ) =⊥).

(CU) If ϕ1 Uϕ2 ∈ atoms(Ψ⋆), T (ϕ1 Uϕ2) = open
and M⋆, s |= ϕ2 (resp. M⋆, s ̸|= ϕ2 ∨ ϕ1), then
U0(s, T )(ϕ1 Uϕ2) = ⊤ (resp. U0(s, T )(ϕ1 Uϕ2) =⊥).

(Coth) For other temporal atoms, U0(s, T ) is defined as T .
We introduce U1(s, T ) as a slight variant of U0(s, T ) han-
dling X-formulae. We write U1(s, T ) to denote the truth
function obtained from T according to the clauses (Cst)
and (CU) and the new clause (CX).
(CX) If Xϕ1 ∈ atoms(Ψ⋆), T (Xϕ1) = open and M⋆, s |=
ϕ1 (resp. M⋆, s ̸|= ϕ1), then U1(s, T )(Xϕ1) = ⊤ (resp.
U1(s, T )(Xϕ1) =⊥).

We write U>1(s, T ) to denote the function based on (CU)
and (Coth) (assuming T is already total over the set of X-
formulae and state formulae). We write U(λ, T ) to denote
the repeated effect of updating T via λ ∈ S+.
• If λ has length 1, then U(λ, T ) = U0(λ(0), T ).
• If λ has length 2, then U(λ, T ) = U1(λ(1), U0(λ(0), T )).
• Otherwise, U(λ, T ) = U>1(λ(n), U(λ[0, n− 1], T )).

We write S(T ) to denote the set {U(λ, T ) | λ ∈ S+}.
The rationale behind its definition is best explained below.
Lemma 4. Let λ be an infinite computation of M⋆ from
s⋆. M⋆, λ |= Ψ⋆ iff there is I ≥ 0 such that for all
J ≥ I , we have U(λ[0, J ], Topen) = U(λ[0, I], Topen) and
U(λ[0, I], Topen) |= Ψ⋆.

Let σ be a strategy for A⋆, s⋆ ∈ S and b ∈ N. Below,
we define the tree tωσ : dom(tωσ) → S × S(Topen) × (Z ∪
{ω}) ×D⊥

Ag as an enriched version of tσ in which each la-
bel contains a truth function and we also introduce the value
ω that stands for “unbounded”. The symbol ω has a role
similar to the value ω in Karp-Miller trees (Karp and Miller
1969) dedicated to Petri nets. Below, we construct the in-
finite tree tωσ possibly admitting the resource value ω (with
ω = n + ω = ω + n for all n ∈ Z) and then we define
a finite tree t⋆σ from tωσ by truncating its branches. Typi-
cally, if we are about to add a new node n on a branch with
label (r, T, n, f) and there is an ancestor node with label
(r, T, n′, f ′) and n′ < n (cycle with positive accumulated
weight), then the label of n is actually set to (r, T, ω, f). By
construction, all the nodes below this new node has resource
value ω. We explain below how to build tωσ .

• ε ∈ dom(tωσ) and tωσ(ε)
def
= (s0, T0, b,⊥) with s0 = s⋆

and T0 = U0(s
⋆, Topen).

• Assuming that the transitions of the form s⋆
σ(s⋆)⊕g−−−−→ r

are s⋆
σ(s⋆)⊕g0−−−−−→ r0, . . . , s⋆

σ(s⋆)⊕gα−1−−−−−−−→ rα−1, we have
0, . . . , α− 1 ∈ dom(tωσ). For all i ∈ {0, . . . , α− 1} s.t.
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progress in the truth function︷ ︸︸ ︷
(ri, U1(ri, U0(s

⋆, Topen))) ̸= (s⋆, U0(s
⋆, Topen)) or

wf(s⋆, σ(s⋆)⊕ gi) ≤ 0︸ ︷︷ ︸
non-positive weight

,

tωσ(i)
def
= (ri, T

1
i , wf(s

⋆, f1i ) + b, f1i ) with T 1
i =

U1(ri, U0(s
⋆, Topen)) and f1i = σ(s⋆)⊕ gi. If (ri, T 1

i ) =

(s⋆, U0(s
⋆, Topen)) and wf(s⋆, f1i ) > 0, tωσ(i)

def
=

(ri, T
1
i , ω, f

1
i ). ω is introduced if a loop with positive

weight is detected with no progress on the truth function.
• For the general case, assume that n ∈ dom(tωσ),

the label of the finite branch leading to n is
(s0, T0, n0, f0) · · · (sk, Tk, nk, fk) (nk may be equal to
ω). Moreover, assuming that the transitions of the

form sk
σ(s0···sk)⊕g−−−−−−−→ r are sk

σ(s0···sk)⊕g0−−−−−−−−→ r0, . . . ,

sk
σ(s0···sk)⊕gα−1−−−−−−−−−→ rα−1, for some α ≥ 1, then n ·

0, . . . ,n · (α− 1) ∈ dom(tωσ). For all i ∈ {0, . . . , α− 1}
such that nk = ω or there is no j < k such that (sj , Tj) =
(ri, U>1(ri+1, Tk)) and nj < wf(sk, σ(s0 · · · sk)+gi)+
nk, tωσ(n · i)

def
= (ri, U>1(ri, Tk), wf(sk, σ(s0 · · · sk) ⊕

gi) + nk, σ(s0 · · · sk)⊕ gi). This case occurs when no ω
is introduced. Otherwise, when there is some j < k satis-
fying such conditions and nk ̸= ω,
tωσ(n · i)

def
= (ri, U>1(ri, Tk), ω, σ(s0 · · · sk)⊕ gi).

Let us mention a few properties about tωσ : for every
branch of tωσ with label (·, T0, ·) · (·, T1, ·) · · · , there is I ≥ 0
such that TI = TI+1 = · · · , |{Ti | i ≥ 0}| ≤ tw(Ψ⋆) and
the branching width of tωσ is bounded by ∆(M⋆).

Below, we define t⋆σ as a subtree of tωσ . Intuitively, t⋆σ
is obtained from tωσ by truncating every branch if no more
progress is to be expected on the branch and enough pieces
of information is preserved to repeat the final part of the
truncated finite branch. On each infinite branch of tωσ , we
identify a unique terminating node from which the strict sub-
tree is truncated. t⋆σ could be designed directly from σ with-
out defining tωσ but we feel it is easier that way to grasp the
whole construction. As tωσ is finite-branching, by König’s
Lemma, this allows us to guarantee that t⋆σ is a finite labelled
tree. If tωσ contains a negative value for some n ∈ dom(tωσ),
then t⋆σ is defined as a single root node with label equal
to tωσ(ε) (dummy value). Otherwise, we assume that all
weights in tωσ are non-negative and let B = i1i2i3 · · · be a
branch of tωσ with label (r0, T0, n0,⊥) · (r1, T1, n1, f1) · · · .
We make a case analysis to identify the terminating node on
B. There is always a minimal position Istab such that for all
K ≥ Istab, we have TK = TIstab

.
Case ni = ω for some i. There is a minimal posi-
tion Iωstab ≥ Istab such that for all K ≥ Iωstab, we have
nK = nIω

stab
= ω and TK = TIω

stab
. We distinguish

two cases. If there are no Iωstab ≤ K < K ′ such that
(rK , TK) = (rK′ , TK′) and ΣK′−1

ℓ=K wf(rℓ, fℓ+1) ≥ 0, then
J is the first position strictly after Iωstab for which there is
Iωstab ≤ J ′ < J such that (rJ′ , TJ′) = (rJ , TJ). Such a
position exists by the Pigeonhole Principle.

Otherwise, J is the first position strictly after Iωstab for
which there exists Iωstab ≤ J ′ < J such that (rJ′ , TJ′) =

(rJ , TJ) and ΣJ−1
ℓ=J ′ wf(rℓ, fℓ+1) ≥ 0.

Case ni ̸= ω for all i. Since ω is not in B, no cycle with
positive weight occurs on B. Hence, for all K ′ < K such
that (rK , TK) = (rK′ , TK′), nK ≤ nK′ . Since no node
along the branch is labelled by a negative value in tωσ , for all
(r, T ) ∈ S × S(Topen), there is a minimal position I(r,T )

after the position Istab such that for all I(r,T ) ≤ K < K ′

with (rK , TK) = (rK′ , TK′) = (r, T ), we have nK = nK′

(again by the Pigeonhole Principle). Let J be the first posi-
tion after Istab for which there is Istab ≤ J ′ < J such that
(rJ′ , TJ′ , nJ′) = (rJ , TJ , nJ) (J − J ′ ≤ |S|).

The terminating node of B is nJ = i1i2i3 · · · iJ .
Below, we present t⋆σ for the CGS in Section 2 for check-

ing M, s1 |= ⟨⟨{1}3⟩⟩(G p1 ∨ F p2) with the (non-winning)
strategy σ for the agent 1 that chooses the action a on s2
only if no state is visited twice, otherwise b.

(s1, Topen, 3,⊥)

(s1, Topen, ω, a)

(s1, Topen, ω, a)

(s2, T, 1, a)

(s2, T, ω, a)

(s3, Tf , ω, b)

(s3, Tf , ω, a)

(s2, T, ω, a)

(s3, Tf , ω, b)

(s3, Tf , ω, a)

+3

+0+0

T denotes [⊤U¬p1 7→ ⊤,⊤U p2 7→ open] and Tf denotes
the map [⊤U¬p1 7→ ⊤,⊤U p2 7→ ⊤]. Joint actions for
1 are represented by the action choosen by 1. E.g., Tf |=
(G p1 ∨ F p2) and T ̸|= (G p1 ∨ F p2).

In all cases, TJ′ = · · · = TJ and rJ′ = rJ . These ob-
servations can be organised a bit more. Below, we introduce
several potential properties about branches of t⋆σ labelled by
(s0, T0, n0,⊥) · (s1, T1, n1, f1) · · · (sK , TK , nK , fK).

(a) {n0, n1, n2, . . . , nK} ⊆ N ∪ {ω}. (no negative value)
(b) There is I < K such that TI = TK ,

TI |= Ψ⋆, (sI , TI , nI) = (sK , TK , nK) and∑K
j=I+1 wf(sj−1, fj) ≥ 0. (satisfaction of Ψ⋆

guaranteed and non-negative final cycle)
(c) There are no 0 ≤ J ′ < J < K such that (sJ′ , TJ′) =

(sJ , TJ) and
∑J

j=J′+1 wf(sj−1, fj) ≤ 0. (No pair (r, T )
visited twice without progress on the accumulated weight)

(d) There are no 0 ≤ J ′ < J < K such that (sJ′ , TJ′ , nJ′) =

(sJ , TJ , nJ) and
∑J

j=J′+1 wf(sj−1, fj) > 0.
(no positive internal cycle containing only ω)

(e) K ≤ |S| × (tw(Ψ⋆) + 2). (small depth)
(f) K − I ≤ |S| and (b). (small final cycle + (b))

If σ is a strategy witnessing the satisfaction of M⋆, s⋆ |=
⟨⟨A⋆,b⟩⟩Ψ⋆, one can show that t⋆σ satisfies (a)–(b). Observe
that t⋆σ defined earlier for the CGS in Section 2 satisfies (a)–
(f) but for the strategy σ′ in which the agent 1 chooses twice
the action a on s2 and then the action b the third time, t⋆σ′

violates (d) though σ′ witnesses the satisfaction of M, s1 |=
⟨⟨{1}3⟩⟩(G p1 ∨ F p2). In a way, σ′ made an unnecessary
detour by staying on s2 too long. But more importantly, one
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can always find a strategy satisfying all the conditions (a)–
(f), which is computationally appealing because t⋆σ is small
(see (e), (f) and branching width bounded by |M⋆|).
Lemma 5. If M⋆, s⋆ |= ⟨⟨A⋆,b⟩⟩Ψ⋆, then there is a strategy
σ′ such that all the branches of t⋆σ′ satisfy (a)–(f).

If M⋆, s⋆ |= ⟨⟨A⋆,b⟩⟩Ψ⋆ is witnessed by σ, then t⋆σ′ in
Lemma 5 is called a small strategy skeleton. Its proof con-
sists in eliminating the negative cycles in t⋆σ (on the al-
phabet S × S(Topen)), which requires some care because
there might be an infinite amount, then we eliminate a finite
amount of other cycles, see condition (d). Now, we state the
key result to get the PSPACE upper bound for MC(ATL+(1))
and to show equivalence with the game-theoretical seman-
tics. Indeed, (a)–(f) can be put in correspondence with win-
ning conditions for E in loop-minimal transition games.

Lemma 6. (I) M⋆, s⋆ |= ⟨⟨A⋆,b⟩⟩Ψ⋆ iff (II) there is a strat-
egy σ such that all the branches of t⋆σ satisfy (a)–(f).

The proof of “(II) ⇒ (I)” eliminates ω from t⋆σ to de-
sign a strategy σ0 witnessing the satisfaction of M⋆, s⋆ |=
⟨⟨A⋆,b⟩⟩Ψ⋆. First, a finite tree t⋆⋆ is built from t⋆σ (but with
precise resource values), its depth bounded by ||M ||−∞ ×
(|S| × tw(Ψ⋆))2 + (|S| × tw(Ψ⋆)). Then, σ0 is defined
from t⋆⋆ by imposing regularity to the strategy.

By Lemma 6, determining whether M⋆, s⋆ |= ⟨⟨A⋆,b⟩⟩Ψ⋆

holds, amounts to guess a tree of branching width at most
∆(M⋆) and of depth polynomial in the size of Ψ⋆ and in
|S|. The conditions about cycles require to keep in mem-
ory a branch of polynomial length. This can be computed
with an alternating Turing machine running in polynomial-
time, leading to PSPACE (assuming the satisfaction of max-
imal state formulae is known). Interestingly, Lemma 6 pro-
vides an original viewpoint to decide M⋆, s⋆ |= ⟨⟨A⋆⟩⟩Ψ⋆

for ATL+ (no more initial budget b). Indeed, assuming
that t⋆σ for ATL+ is designed without ω and the nodes are
only labelled by pairs (s, T ) (no resource value, no joint
action to compute accumulated weights), the restriction of
Lemma 6 to ATL+ becomes: M⋆, s⋆ |= ⟨⟨A⋆⟩⟩Ψ⋆ iff there
is σ such that for every maximal branch of t⋆σ labelled by
(s0, T0) · · · (sK , TK), K ≤ |S| × tw(Ψ⋆), there are no
0 ≤ J < J ′ < K such that (sJ , TJ) = (sJ′ , TJ′) and
there is I < K such that TI = TK and TI |= Ψ⋆. The only
possibility to see a pair (s, T ) twice on a branch is to occur
the second time on the leaf with T |= Ψ⋆. This simple crite-
rion leads to PSPACE for MC(ATL+) by using a standard la-
belling algorithm. This contrasts with the sophisticated eval-
uation games in (Goranko, Kuusisto, and Rönnholm 2021)
and proof system in (Cerrito 2021) to handle MC(ATL+).

Below, we refine the developments about tωσ by truncating
the resource values above a fixed resource value β and giv-
ing up the use of ω, possibly at the cost of introducing nega-
tive values because previous values along a branch are trun-
cated. On the positive side, we show that for a value β poly-
nomial in ||M ||−∞, |S| and tw(Ψ⋆), M⋆, s⋆ |= ⟨⟨A⋆,b⟩⟩Ψ⋆

holds iff there is σ such that tωσ truncated to β has no nega-
tive values and for all branches, the final truth function sat-
isfies Ψ⋆. Since the set of possible labels in such a truncated
tree is finite and equal to S × S(Topen)× [0, β]×D⊥

Ag , the

satisfaction of M⋆, s⋆ |= ⟨⟨A⋆,b⟩⟩Ψ⋆ is equivalent to the ex-
istence of a strategy in a Büchi game, whose accepting loca-
tions are labelled by truth functions T satisfying Ψ⋆. More
importantly, if the cardinality of S×S(Topen)×[0, β]×D⊥

Ag

is polynomial (typically by bounding β and |S(Topen)|, |S|
and |D⊥

Ag| being linear in |M⋆|), then we can identify sub-
problems of MC(ATL+(1)) in PTIME because Büchi games
are in PTIME (Chatterjee, Henzinger, and Piterman 2008).

Let β ∈ N and σ be a strategy for A⋆. We intend to
determine when M⋆, s⋆ |= ⟨⟨A⋆,b⟩⟩Ψ⋆ holds true. We write
ttβσ to denote the truncated strategy tree obtained from tωσ
by giving up the use of ω and each new resource value of the
formwf(sk, σ(s0 · · · sk)⊕g)+nk in tωσ is actually replaced
by its β-truncation min(β,wf(sk, σ(s0 · · · sk) ⊕ g) + nk).
The updates for the control states, the truth functions and the
joint actions are done in ttβσ as in tωσ . For all n ∈ dom(tωσ)
with tωσ(n) = (r, T, n, f) and ttβσ(n) = (r, T, n, f), we
have n ≥ n. Even if tωσ does not contain negative values,
the β-truncations may lead to negative values in ttβσ .

Lemma 7 below refines Lemma 6 and its consequences
include the equivalence between (I) and (III) in Theorem 2
and the design of PTIME fragments for MC(ATL+(1)).
Lemma 7. M⋆, s⋆ |= ⟨⟨A⋆,b⟩⟩Ψ⋆ iff there is a strategy σ
for A⋆ such that ttβσ with β = F (M⋆,Ψ⋆) has no negative
values and all branches stabilise to some T satisfying Ψ⋆.
F (M⋆,Ψ⋆) is exponential in |M⋆| and polynomial in

|Ψ⋆|. We believe that a value β in O(||M⋆||−∞ × |S| ×
tw(Ψ⋆)) could replace the one in Lemma 7 but our current
proof of Lemma 7 uses more direct arguments, at the cost of
having a non-optimal value for F (M⋆,Ψ⋆).

5 From Model-Checking to Synthesis
In this section, we take advantage of Lemmas 6 and 7 and
Theorem 2 to obtain new results about ATL+(1).

5.1 On the Complexity of Model-Checking
The main complexity result of this work is stated below.
Theorem 8. MC(ATL+(1)) is PSPACE-complete.

The PSPACE upper bound for MC(ATL+(1)) can be es-
tablished directly from Lemma 6 by using a standard la-
belling algorithm. The proof takes advantage of the equiva-
lence between the compositional semantics and the evalua-
tion games (whose proof is based on Lemma 6). Theorem 9
below takes advantage of Lemma 7 used in the proof for the
equivalence between (I) and (III) in Theorem 2.
Theorem 9. Given K ∈ N and a polynomial P (·), the
model-checking problem is in PTIME for the fragment of
ATL+(1) s.t. ||M ||−∞ ≤ P (|M |+ |ϕ|) and tw(ϕ) ≤ K.

If ||M ||−∞ ≤ P (|M | + |ϕ|) and tw(ϕ) ≤ K then the
number of positions in T GRC[β0](V, s, A, b,Ψ) with β0 =
F (M,ϕ), ⟨⟨Ab⟩⟩Ψ ∈ subf(ϕ) is polynomial in |M | + |ϕ|.
So, GRC[β0](M, s, ϕ) has also polynomial size in |M |+ |ϕ|.
Since Büchi games can be solved in PTIME, the bound
PTIME in Theorem 9 follows from Theorem 2 and Propo-
sition 1. As a corollary, due to syntactic restrictions on
ATL(1), we get the following.
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Corollary 10. MC(ATL(1)) is PTIME-complete, when re-
stricted to the instances s.t. ||M ||−∞ ≤ P (|M | + |ϕ|) for
some fixed polynomial P (·).

We argue that the assumption of polynomially large re-
source weights is natural for typical models and thus the
complexity of this problem can go beyond PTIME only in
the “pathological cases” where weights in the model are ex-
ponentially large. Our results can be adapted to variants of
ATL+(1), e.g. we can conclude MC(ATL+

p (1)) in PSPACE.

5.2 Synthesis of Arithmetical Constraints
A standard way in formal verification to consider prob-
lems that go beyond model-checking, see e.g. (Bruyère and
Raskin 2007), consists in replacing concrete numerical val-
ues by parameters and to synthesize constraints whose solu-
tions solve positively instances of the model-checking prob-
lem. The synthesis of such constraints is not always possible
but for MC(ATL+(1)), we can take advantage of Lemma 7
to establish that there is n ∈ N such thatM, s |= ⟨⟨An⟩⟩Ψ iff
there is n ≤ F (M,Ψ) such that M, s |= ⟨⟨An⟩⟩Ψ.

We introduce the logic ParATL+(1), a parameterised ver-
sion of ATL+(1), following the approach from (Alechina et
al. 2018, Section 6). Budget values b are replaced by vari-
ables among x1, . . . , xn, . . .. In a ParATL+(1) formula, a
variable x can occur in different places. We write M, s |=
ϕ[x1 ← b1, . . . , xm ← bm] to denote the satisfaction of ϕ
from the parameterised version in which each xi is replaced
by bi. Theorem 11 below states that we can characterise

{⃗b ∈ Nm |M, s |= ϕ[x1 ← b⃗(1), . . . , xm ← b⃗(m)]}
with a Boolean combination of atomic constraints of the
form xi ≥ B with i ∈ [1,m]. For example, the constraint
on x to satisfy M, s1 |= ⟨⟨{1}x⟩⟩(G p1 ∨ F p2) with M de-
fined in Section 2 is simply “x ≥ 2”. Such a result helps to
answer more questions: we can decide whether the set is in-
finite or whether it contains an element b⃗ satisfying a given
Presburger formula ψ(y1, . . . , ym). For instance, suppose
that C(x1, . . . , xm) is a constraint such that for all b⃗ ∈ Nm,
we have b⃗ |= C iff M, s |= ϕ[x1 ← b⃗(1), . . . , xm ← b⃗(m)].
Checking the infinity of the set {⃗b(3) ∈ N |M, s |= ϕ[x1 ←
b⃗(1), . . . , xm ← b⃗(m)]} can be done by checking the satis-
faction of ∀ y ∃ z1, . . . , zm (y < z3) ∧ C(z1, . . . , zm).

Theorem 11. Let ϕ be a formula in ParATL+(1) built over
the variables x1, . . . , xm, M be a CGS and s ∈ S. One
can build in polynomial space in |ϕ| + |M | an arithmetical
constraint C(x1, . . . , xm) built over atomic constraints of
the form x ≥ B, such that for all b⃗ ∈ Nm, we have b⃗ |=
C(x1, . . . , xm) iff M, s |= ϕ[x1 ← b⃗(1), . . . , xm ← b⃗(m)].

5.3 Energy Game with Depth-One Objectives
In this section, we show that a simple energy game problem
very closely related to ATL+(1) can be solved in PSPACE.
A game graph G is a structure (V, V1, V2, E, L) such that V
is a finite set of vertices, {V1, V2} is a partition of V , E is a
finite set of edges from V × Z × V such that every vertex
has at least one outgoing edge and L : AP→ P(V ).

Two players (1 and 2) move a token onG and a configura-
tion of G is a pair (v, b) in V ×Z. If the token is on a vertex
v in VP, then player P chooses an edge (v, u, v′) starting
from v and move the token to v′ and update the value ac-
cordingly. A play Π is an infinite sequence of configurations
(v0, b0), (v1, b1), . . . such that b0 = 0 and for all i > 0, we
have (vi−1, bi − bi−1, vi) ∈ E. A path π is a non-empty
finite prefix of a play, and we write Π|n to denote the path
(v0, b0), (v1, b1), . . . , (vn, bn). Given a player P ∈ {1, 2},
a strategy σ takes as input paths of the form π · (v, b) with
v ∈ VP and returns an edge in E of the form (v, u, v′). A
play Π respects the strategy σ iff for all i ∈ N such that
vi ∈ VP, we have σ(Π|i) = (vi, bi+1 − bi, vi+1).

A depth-one objective Ψ is a Boolean combination of for-
mulae of the form ϕ, Xϕ, and ϕ1 Uϕ2 where the ϕ’s are
propositional formulae. We consider the satisfaction relation
Π |= Ψ with the infinite play Π following the LTL seman-
tics. GivenG, v ∈ V and Ψ, player 1 has a winning strategy
iff there is a strategy σ such that all the infinite plays Π start-
ing from (v, 0) and respecting σ, we have Π |= Ψ and the
counter values are never negative. Here is the energy game
problem with depth-one LTL objectives (written P): given
G = (V, V1, V2, E, L), v ∈ V and a depth-one objective Ψ,
is there a winning strategy for the player 1? P is a frag-
ment of more general energy games, see e.g. (Colcombet et
al. 2017) and here is a consequence of Theorem 8.
Theorem 12. P is PSPACE-complete.

PSPACE-hardness is due to graph games (without re-
sources) with objectives

∧
i⊤U pi (Alur and La Torre

2001, Theorem 4.4), PSPACE-membership is by reduction to
MC(ATL+(1)) (to instances M, s |= ⟨⟨A0⟩⟩Ψ with msf(Ψ)
made of propositional formulae). For objectives G p or
⊤U p, the problem is known in NP ∩ co-NP (Chatterjee,
Doyen, and Henzinger 2017) and positional strategies suf-
fice for objectives G p, see (Bouyer et al. 2008, Lemma 10).

6 Conclusion
We studied an extension of ATL+ with one resource in which
actions of the agents may produce or consume resources.

We introduced two evaluation games for ATL+(1) formu-
lae that are equivalent to the compositional semantics, see
Theorem 2. This extends (and sometimes simplifies) what is
done for ATL+ in (Goranko, Kuusisto, and Rönnholm 2021)
and the two transition games handle the resource values dif-
ferently. The resource-capped game is particularly useful
to design PTIME fragments of MC(ATL+(1)) and we have
shown that the game is equivalent to the compositional se-
mantics whenever the resource cap β is above F (M,ϕ).

We have shown that MC(ATL+(1)) is in PSPACE, and
this is done by designing small strategy skeletons (see
Lemma 6). As a by-product, it provides a simplified deci-
sion procedure for MC(ATL+). Furthermore, we introduced
a parameterised version ParATL+(1) of ATL+(1) for which
the synthesis of Presburger formulae is done in polynomial-
space (Theorem 11). Moreover, we briefly explained how
the PSPACE bound for MC(ATL+(1)) can be used to solve in
polynomial-space an energy game problem with one counter
and LTL objectives of temporal depth one (Theorem 12).

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

196



Acknowledgments
We thank the anonymous reviewers for the comments and
suggestions that help us to improve the document.
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zowiecki, F. 2020. Reachability in Fixed Dimension Vector
Addition Systems with States. In CONCUR’20, volume 171
of LIPIcs, 48:1–48:21.
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