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Abstract

Property Directed Reachability (PDR) is a relatively new
SAT-based search paradigm for classical AI planning. Com-
pared to earlier SAT-based paradigms, PDR proceeds without
unrolling the system transition function, and therefore with-
out having the underlying procedure reason about potentially
computationally expensive multi-step formulae. By main-
taining a queue of obligations—i.e., a state at a timestep—
and knowledge about what is possible at each planning step,
PDR iteratively evaluates whether an obligation can be pro-
gressed by one step towards the goal. We develop and eval-
uate two new distributed PDR algorithms for planning, and
additionally implement serial and portfolio PDR algorithms
for planning. We are the first to consider distributed PDR for
planning and the first to consider PDR based on incremental
SAT solving in that setting. Our first new algorithm, PS-
PDR, evaluates many obligations independently in parallel
using a pool of incremental SAT workers. PS-PDR is unique
amongst distributed PDR algorithms in centrally maintaining
a single queue of obligations, enabling an efficient focused
search compared to a PDR portfolio. Our second new al-
gorithm, PD-PDR, sequences subproblems according to the
compositional structure of the concrete problem at hand. Sub-
problems are solved independently in parallel, with a con-
crete plan obtained by combining subproblem plans. Our ex-
perimental evaluation exhibits strong runtime gains for both
new algorithms in both satisfiable and unsatisfiable planning
benchmarks.

1 Introduction
We study the classical planning problem. This is the prob-
lem of determining whether a finite discrete deterministic
transition system can, via a sequence of actions, transition
from an initial state to a state satisfying a goal condition.
The system is represented succinctly in a formalism such
as STRIPS (Fikes and Nilsson 1971) or PDDL (McDermott
et al. 1998). A range of solution procedures for this prob-
lem proceed by solving a series of Boolean SAT queries,
with each query corresponding to a horizon limited version
of the planning problem (Kautz and Selman 1992; ; Biere
et al. 1999; Rintanen 2004; Streeter and Smith 2007; Rinta-
nen 2012; Gocht and Balyo 2017). The earliest such proce-
dures date back to last century (Kautz and Selman 1992; ;
Biere et al. 1999). They proceed by posting a series of SAT
queries, each corresponding to a horizon limited version

of the planning problem. Recent developments have im-
proved runtime performance using specific tailoring of deci-
sion procedures (Rintanen 2012), careful allocation of (dis-
tributed) computing resources to queries (Rintanen 2004;
Streeter and Smith 2007), and by adopting novel innova-
tions (e.g., incrementality) in SAT solving (Gocht and Ba-
lyo 2017). Such approaches face two core difficulties: (i) it
is difficult to prove that no plan exists, and (ii) if the small-
est plan is long, they do require a lot of memory because the
solution procedure must represent an unrolling of the transi-
tion system model over a large number of steps. 1

PDR is a general sound and complete approach devised to
address these core difficulties. First described for a hardware
model checking algorithm (Bradley 2011), the approach was
subsequently adapted to describe planning algorithms (Suda
2014; Eriksson and Helmert ). PDR operates by iteratively
refining reachability information, represented by a formula
describing an overapproximation of the set of states that are
N steps away from the goal. Queries in PDR, called obliga-
tions, are 1 step planning problems, asking whether a state
satisfying the N -step formula can be progressed to a succes-
sor state satisfying the N−1 step formula. A satisfiable obli-
gation leads to the derivation of a new obligation. An unsat-
isfiable obligation leads to the derivation of a tighter reach-
ability overapproximation. A satisfiable obligation from the
formula 1 step away from the goal, to the goal formula, in-
dicates a plan is found. If no plan exists, a computationally
efficient syntactic check on successive reachability formulae
determine this.

PDR is recognised as being highly amenable to dis-
tributed computing, with existing portfolio algorithms de-
scribed for model checking (Chaki and Karimi 2016;
Marescotti et al. 2017). We develop and evaluate two new
complete High-Performance Computing (HPC) PDR algo-
rithms for classical planning. Both use an incremental SAT
solver as the underlying decision procedure, with the HPC
skeleton based on DAGSTER (Burgess et al. 2022). The
first, called PS-PDR, evaluates multiple obligations concur-
rently in a distributed computing environment using a cen-
trally managed pool of incremental SAT solvers. Our second

1Given a (tight) completeness threshold the classical bounded
model checking approach is complete (Baumgartner, Kuehlmann,
and Abraham 2002; Kroening et al. 2011; Abdulaziz and Berger
2021).
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algorithm, called PD-PDR, operates by decomposing the
planning problem into a sequence of subproblems, so that
a concrete problem solution corresponds to a concatenation
of subproblem plans. Candidate subproblems are initially
identified and sequenced according to a partition of prob-
lem variables, indicated by well known dependency/causal
analysis. Each subproblem is solved independently in paral-
lel using a PDR algorithm. If the partition does not yield a
concrete plan, either the problem is proved unsatisfiable as
indicated by the unsatisfiability of a subproblem, or the pro-
cess repeats on a contracted partition until a plan is produced
or the concrete planning problem is proved unsatisfiable.

2 Background and Notation
We assume familiarity with propositional logic and incre-
mental SAT solving (Gocht and Balyo 2017). A literal is
a formula consisting of a proposition x or its negation ¬x.
A formula in Conjunctive Normal Form (CNF) is a formula
consisting of a conjunction of disjunctive clauses. For a for-
mula F and assignment v, we write SAT(F) to denote that
there exists an assignment which satisfies F , UNSAT(F) if
there does not, and v � F to denote that v is a satisfying
assignment for F – i.e., SAT(F) iff ∃v.v � F , and otherwise
UNSAT(F). The classical planning problem is given by a tu-
ple 〈X,A, I,G〉, where X is a set of Boolean-valued state
facts, A is a set of actions, I is the initial state, and G is
the goal condition. A full problem state can be described
by a cube, a conjunctive clause, and specifically a conjunc-
tion containing exactly one literal for each element in X . A
full state is a representation of a total truth assignment to X .
The concept of a partial state is also useful, which can be de-
scribed by a cube over a subset of X – i.e., a representation
of a partial assignment over X . The initial state I is a full
state and the goal condition G is typically a partial state.

Each action a ∈ A is specified in relation to a partial or
full state s, by a precondition formula pre(a) and an ef-
fect formula eff (a). For the sake of a simple exposition,
we restrict our attention to precondition and effect formulae
that are consistent cubes – i.e., if literal ` appears in such a
cube, then we cannot have ¬` also in that cube. An action
a is applicable in a state s iff SAT(s ∧ pre(a)). The state
s′ = succ(s, a) resulting from executing a at s satisfies:
SAT(s′∧eff (a)) and for every f ∈ X absent from eff (a) we
have that for all `f ∈ {f,¬f} if SAT(s∧`f) then SAT(s′∧`f).
In the case of a partial state, the successor is not fully deter-
mined, and should be taken to be any one total state satisfy-
ing the above condition – e.g., for the sake of formalities, we
take the lexicographic minimal. An action a conflicts with
another a′ if UNSAT(eff (a) ∧ eff (a′)). Those two actions in-
terfere if either UNSAT(eff (a) ∧ pre(a′)) or UNSAT(eff (a′) ∧
pre(a)) – i.e., if the preconditions and effects of the two ac-
tions are inconsistent. We say that sn is instantaneously
reachable from s0, written reachable∀(s0, sn), if there ex-
ists a sequence [s0, a0.., sn−1, an−1, sn] satisfying: (i) ∀i ∈
{1, .., n}, si = succ(si−1, an−1), (ii) for all pairs of actions
ai and aj we have that these neither conflict nor interfere,
and (iii) ∀i ∈ {1, .., n}, SAT(pre(ai) ∧ s0). In other words,
the set of actions {a0, .., an−1} can be executed in any or-

der at s0, and the resulting state is sn. Moreover, we can
imagine executing that set of actions instantaneously in par-
allel at s0 to reach sn, as per the ∀-step semantics (Rinta-
nen, Heljanko, and Niemelä 2006). We restrict our atten-
tion to ∀-step semantics in this paper. We call a state s′ a
successor of s if reachable∀(s, s′) holds. A ∀-step execu-
tion of length n between states s0 and sn is a sequence of
states s0, s1, .., sn where successive states si and si+1 sat-
isfy reachable∀(si, si+1). A planning problem solution is a
∀-step execution from I to a total state s satisfying s � G.
Such a solution is called a plan.

We will find it convenient to refer to abstract planning
problems and subproblem artefacts, defined by restrictions
and projections to a subset Y ⊆ X of the planning facts.
For a set of actions A and a set Y ⊆ X , the restriction
A↓Y is the subset of actions in A that can be described
completely if we restrict ourselves to using the symbols
from Y only. Writing Σ(f) for the set of all proposi-
tions mentioned in a formula f , we have: A↓Y = {a ∈
A|Σ(pre(a)) ∪Σ(eff (a)) ⊆ Y }. In the case of a cube s and
a set Y , s�Y is the cube projected to elements in Y . For
example, (¬a ∧ ¬b ∧ c)�{a, c} = (¬a ∧ c).

Finally, we make use of invariants, which in general are
formulae that hold true in the initial state, and all states
reachable from the initial state. (Gerevini and Schubert
1998; Rintanen 2008). We shall use mutex invariants, of
the form ¬f1 ∨ ¬f2, in particular. That disjunctive clause
says that one of the facts f1 or f2 must be false. Sets of use-
ful mutex invariants are routinely supplied by preprocessing
routines in planning tools, such as MADAGASCAR (Rinta-
nen 2012).

2.1 Problem Decomposition for Planning
We develop a new portfolio-style PDR algorithm for plan-
ning that first decomposes a concrete problem into a se-
quence of abstract subproblems that can be solved indepen-
dently in parallel. The notation and background required for
the elicitation of subproblems is described here, and later
we will describe our compositional PDR portfolio. We write
X± to denote the set of elements in X that occur only pos-
itively or only negatively in the effects of actions. That is,
for each element x ∈ X± only one of either x, or ¬x ap-
pears in the conjunction

∧
a∈A eff (a). The problem depen-

dency graph, sometimes called a causal graph, was first de-
scribed by (Knoblock 1994; Williams and Nayak 1997). We
present the slight variation that is motivated in our setting,
and described originally in (Rintanen and Gretton 2013). Al-
though the concepts generalise, here we restrict our attention
to STRIPS problems.
Definition 1 (Dependency Graph). A dependency graph
for a planning problem 〈X,A, I,G〉 is a directed graph
(V,E) with vertices V in one-to-one correspondence with
X , and an edge (x, x′) ∈ E for each pair of vertices
where: (i) There exists an action a where x, x′ ∈ Σ(eff(a))
and x′ 6∈ X±, or (ii) There exists an action a such that
x ∈ Σ(eff(a)) and x′ ∈ Σ(pre(a)).

For a graph (V,E) with v, v′ ∈ V , we write v
(V,E)
 v′

to signify that there is a path from v to v′. We also define
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the Problem Specific Dependency Graph (PSDG), a variant
of the Dependency Graph which only includes variables rel-
evant to achieving the goal.

Definition 2 (Problem Specific Dependency Graph). Given
a dependency graph (V,E) for problem 〈X,A, I,G〉, the
problem specific dependency graph is obtained by removing
all vertices (and thereby their adjacent edges) that are not

in the set {v′|∃v ∈ Σ(G), v
(V,E)
 v′}.

Definition 3 (Strongly Connected Component (SCC)). A
SCC of a directed graph is a subgraph in which there is a
directed path from each vertex to every other vertex, and ev-
ery vertex v′ reciprocally reachable from a vertex v in the
subgraph is also in the subgraph – i.e., SCCs are maximal."

Definition 4 (Lifted Acyclic Dependency Graph (LADG)).
Given a dependency graph (V,E), a labelled directed
acyclic graph (P,E) is a corresponding LADG iff: (i) ver-
tices P are bijectively labelled by members of a partition of
variables V , and (ii) E contains an edge (p,p′) iff there is
an edge (v, v′) ∈ E such that v appears in p and v′ appears
in p′. This definition follows that of a lifted dependency
graph described by Abdulaziz, Norrish, and Gretton (2018).

A natural LADG has one vertex for each SCC in the de-
pendency graph, with that set of SCCs providing a suitable
partition.

Example 1 (Analysing a Logistics Domain). Consider a
Logistics domain with two locations, L1 and L2, two pack-
ages, P1 and P2, and one truck T . Objects, namely pack-
ages and trucks, can be at locations, and packages can be
in trucks. There is one fact for each object-location setting
– e.g., at(P1, L1) representing that package P1 is at loca-
tion L1. Similarly, there is a variable for each package in
each truck – e.g., in(P1, T ) is a proposition representing
that package P1 is in truck T . An object can only be in one
place at a time – e.g., at(P1, L1)∧at(P1, L2) is not a frag-
ment of a valid state. Actions specify that a truck can drive
from any location to any other location, and that packages
can be loaded in or out of a truck at a truck’s current loca-
tion. Figure 1 shows in solid arrows the dependency graph
between propositions in this problem, and the dotted ovals
and arrows show a corresponding LADG with vertices cor-
responding to SCCs.

3 Parallel State PDR
We now describe the serial PDR planning algorithm, as well
as our first major contribution, namely Parallel State PDR
(PS-PDR). PDR and PS-PDR are both sound and complete
algorithms for solving the planning problem. We describe
these algorithms concurrently for reasons of brevity, and
also to highlight their similarities. We present pseudocode
for PDR/PS-PDR in Algorithm 1. PS-PDR is described
given an allocation of n computing cores, which in our con-
text is an HPC environment. One core is designated the “or-
chestrator” and the remaining M = n − 1 cores are desig-
nated “workers”. Each worker is given a unique worker ID
from {1, ..,M}. We note that with one worker and orches-
trator, PS-PDR emulates PDR.

at(T,L1)

at(T,L2)

at(P1,L1)

in(P1,T)

at(P1,L2)

at(P2,L1)

in(P2,T)

at(P2,L2)

Figure 1: Logistics dependency graph, depicted with a LADG
whose vertices, indicated by dashed ovals, correspond to SCCs of
that dependency graph.

PDR proceeds by maintaining and iteratively refining
overapproximations of reachability information, called layer
information about the system. The information at each layer
is represented as a CNF formula. A layer formula Li is as-
sociated with each discrete step i. Formula Li satisfies an
invariant condition: For every state s such that s 6� Li there
is no ∀-step execution of length i or less from s to a state sat-
isfying G. Initially, L0 = G and all other layers are the vac-
uously satisfied empty CNF formula containing no clauses
– i.e., the loosest possible overapproximation. A “queue”,
Q, is maintained with each element a tuple 〈s, i〉 known as
an obligation, where s is a state and i is a layer index. Each
obligation 〈s, i〉 ∈ Q represents the question: Can s reach
the goal in i steps?

PDR proceeds by taking an obligation 〈s, i〉 from the
queue, and querying whether or not there exists a successor
state s′ which satisfies the layer formula Li−1. In our work
that query is evaluated using a general purpose incremental
SAT solver. Specifically, the state s associated with an obli-
gation at i, the layer formula Li−1, and a formula represent-
ing the transition function, can be encoded into a single SAT
problem which has a solution iff s has a successor s′ such
that s′ � Li−1. To encode the transition function in SAT
we employ the direct ∀-step encoding, described by Rinta-
nen(2012).2 If that formula is satisfiable and s′ exists, then
the obligation 〈s′, i− 1〉 is added to the queue. If no succes-
sor state exists, then a reason is derived and added to Li.

A reason, r, will be a fragment of s associated with an un-
satisfiable obligation at i. In other words, r is a partial state
consistent with s, where r also does not have a successor
state satisfying Li−1. Based on the derived reason r, a new
disjunctive clause is added to Li, by conjoining the clause
¬r. After conjoining, for any state y where SAT(y ∧ r) we
have UNSAT(y∧Li). The state s is itself a reason, but adding
¬s to a layer formula is not effective. By finding a small
reason with fewer literals, the added reason is a relatively
strong constraint. Our use of incremental SAT accelerates
the process of finding good reasons, partly because incre-
mental solvers provide used assumptions (Gocht and Balyo

2∀-step is also adopted in PDRPLAN (Suda 2014).
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Algorithm 1: Distributed PDR
Input: A planning problem 〈X,A, I,G〉, M
Output: True if the problem is solvable, False

otherwise
1 Q← {},L0 ← G, for j > 0 : Lj ← True
2 if I � L0 then return True
3 for k ∈ [1, 2, 3, ...] do
4 Q← {〈I, k〉}
5 while Q 6= {}, or

workers_waiting() 6= {1, ..,M} do
6 foreach w ∈ workers_waiting() do
7 if Q 6= {} then
8 〈s, i〉 ← pop most recently added

obligation from Q with minimal i.
9 process_obligation(w,L, 〈s, i〉)

10 foreach 〈s′, s, i〉 ∈ get_successes() do
11 if i− 1 = 0 then return True
12 Q← Q ∪ {〈s, i〉, 〈s′, i− 1〉}
13 foreach 〈r, i〉 ∈ get_failures() do
14 for j ∈ {0, .., i} do
15 Lj ← Lj ∧ ¬r
16 Q← {〈z, h〉 ∈ Q, UNSAT(r ∧ z)

or h > i}
17 if i < k then Q← Q ∪ {〈s, i + 1〉}

18 for i ∈ {1, .., k + 1} do /* Clause Pushing */
19 CP← {〈¬c, i〉 |c ∈ Li−1, c 6∈ Li}
20 while CP 6= {} or

workers_waiting() 6= {1, ..,M} do
21 foreach w ∈ workers_waiting() do
22 if CP 6= {} then
23 〈¬c, i〉 ← pop from CP
24 process_pushing(w,L, 〈¬c, i〉)

25 foreach 〈¬c, _〉 ∈ get_failures() do
26 Li ← Li ∧ c

27 if Li−1 ≡ Li then return False

2017). Our planning algorithms begin with the partial state
u indicated by used assumptions. Then following existing
literature on PDR, that candidate reason is further tightened,
by further queries to an incremental SAT procedure. Specifi-
cally, we iteratively test whether each literal can be removed
from u so that the obligation 〈u, i〉 remains unsatisfied. Iter-
ation associated with reason minimisation proceeds accord-
ing to a global lexicographic order over literals. A literal
is tested for removal by using an incremental SAT solver
to determine if the obligation without that literal is still un-
satisfiable. Where the obligation is unsatisfiable, the used
assumptions are taken forward as the revised reason. This
process continues until every literal has been tested once for
removal, or is otherwise removed by being excluded for not
being a used assumption. Once all tests are complete, the
remaining cube is taken forward in PDR as the reason.

We can now tie these ideas to the pseudocode of Al-
gorithm 1. Taking M = 1 we describe serial PDR, and
M > 1 provides the control flow regarding how the PS-
PDR orchestrator coordinates with workers to implement a
distributed PDR algorithm. First, the queue and layer infor-
mation are initialised (Line 1). A check is made to see if
the initial state satisfies the goal condition, and if so then the
problem is trivially satisfiable (Line 2). After that, a loop
over the length of planning horizons k ∈ [1, 2, 3, ...] com-
mences (Line 3). When the algorithm comes to increment k
without having found a plan, then UNSAT(I∧Lk), and there-
fore there is no plan with k or fewer steps. At the beginning
of iteration k the obligation 〈I, k〉 is pushed to Q, and then
a loop starting on Line 5 is entered with break condition:
Q = {} and workers_waiting() = {1, ..,M}. The first
condition, Q = {}, is familiar to PDR, indicating that work
at k continues until there are no obligations on Q to evaluate.
The second condition, workers_waiting() = {1, ..,M}, is
peculiar to PS-PDR, and means the orchestrator cannot in-
crement k until all workers have completed their evaluations
of obligations, and therefore buffered any further obligations
to Q as required.

The process_obligation call, Line 9, encapsulates an as-
signment to a worker, which will be to process an obli-
gation 〈s, i〉 in the context of the orchestrator’s records.
For PS-PDR, the work of processing an obligation is as-
signed to, and then completed by an available worker pro-
cess. Our pseudocode indicates an entire layer formula is
communicated from the orchestrator to a worker at the time
of a work assignment. For efficiency, our implementation
communicates only the clauses added since the last assign-
ment to the indicated worker. If a valid successor state
s′ from the obligation 〈s, i〉 is found by a worker, as de-
scribed above, the tuple 〈s′, s, i〉 is sent from the worker
to the orchestrator and stored in a buffer. This buffer is
accessed by the orchestrator and then emptied, a step oc-
curring at the call to get_successes. A valid successor
may not exist, in which case the worker derives a min-
imised reason r for that, by iteratively calling an incremen-
tal SAT procedure as described above. Here, a tuple 〈r, i〉
is sent to the orchestrator and stored in a separate reasons
buffer. The reasons buffer is processed by the orchestra-
tor, which occurs at the call get_failures. The orchestrator
understands what workers are available to process obliga-
tions via workers_waiting, which returns the set of avail-
able worker IDs. Calls to process_pushing behave iden-
tically to process_obligation, except that instead of itera-
tively finding a minimised reason, the state s from the obli-
gation is returned directly as the reason.

Evaluated obligations that are satisfiable are retrieved and
processed on Lines 10-12. Where i is the layer index of an
obligation, if i−1 = 0, then s′ � L0, and as SAT(L0∧G) by
definition, s′ is a goal state. All states mentioned in queued
obligations are either the initial state, or a state that can be
reached from the initial state. Thus, in case i = 1 on Line
11, the algorithm is able to return True because a goal state
reachable from I is found. For i > 1, the obligation pro-
cessed by a worker and the successor obligation it computed
are both added to the queue Q on Line 12.
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Minimal reasons computed by workers are retrieved and
processed on Lines 13-17. Any reason calculated by a
worker processing an obligation at layer i is conjoined with
the layer formulae j ∈ [0..i],Li−j , maintained by the or-
chestrator. On Line 16, the orchestrator removes obligations
in Q comprising states forbidden by added reasons. Such
obligations are guaranteed to be unsatisfiable, therefore can
be safely removed. Additionally, obligation rescheduling is
performed. If i < k, then the queried obligation is added
back to the queue with a larger layer index, on Line 17. Obli-
gation rescheduling is not necessary for completeness, but is
important for performance in practice.

Once the queue is empty and all workers are free, then
clause pushing is performed and a test for termination is
evaluated. For each i ∈ {1, .., k + 1}, clause pushing
involves considering each clause in Li−1 and testing if it
would be a valid clause to constrain Li, and if so, adding it.
Pseudocode for this logic is on Lines 19-26. Clause pushing
is performed for performance reasons, and like obligation
rescheduling, is not required for completeness. To test for
termination, the algorithm checks if two layers are equiva-
lent. If they are then the problem has no solution, so False
is returned on Line 27. Note this equivalence check is a syn-
tactic check, of whether the set of clauses in adjacent layer
formulae are identical.

4 Parallel Decomposition PDR
Formally, given a concrete planning problem 〈X,A, I,G〉
and its corresponding PSDG (V,E), PD-PDR proceeds by
iteratively planning according to a sequence of increasingly
contracted LADGs. At any iteration a concrete plan might
be found, or otherwise the algorithm may prove that no plan
exists. In each iteration a list of subproblems is defined and
then solved, with these determined efficiently according to a
current LADG. The listed position of a subproblem identi-
fies what goals must be achieved, and also the initial condi-
tions that are obligated to be maintained by a valid plan for
that subproblem. Listed subproblems are solved indepen-
dently in parallel using PDR. A PDR process either produces
a subproblem plan, or otherwise determines subproblem un-
satisfiability. If every subproblem is solved, then a candidate
concrete plan corresponds to the concatenation of subprob-
lem plans. The algorithm terminates if that candidate is vali-
dated, or if the unsatisfiability of a subproblem indicates the
concrete problem has no solution. If the algorithm does not
terminate at an iteration, then some vertices of the LADG
are contracted, and a subsequent iteration begins using the
contracted graph.

This iterative process eventually yields an LADG with a
single vertex, at which point the algorithm behaves as PDR.
That is, the only subproblem corresponds to the concrete
problem at hand. Frequently in practice a valid plan can
be found quickly within one or two iterations.

We assume we are provided with a binary mutex relation,
identifying pairs of facts that cannot be simultaneously true
in a problem state. Through the course of its operation, PD-
PDR may have many iterations. We here develop the details
of an iteration of PD-PDR formally. Each iteration has a
corresponding LADG Γ. For the first iteration, Γ = (P,E),

with one vertex for each SCC in the PSDG (V,E). The
details of finding the Γ for later iterations is described below.
The subproblems posed at an iteration are defined as follows.

• Being directed and acyclic, Γ induces a natural partial or-
der over P. Given Γ, PD-PDR begins an iteration by
creating a list, ∆G, comprised of all the elements in P
labelled with a goal fact. The only ordering constraint is
that a path from p1 to p2 in Γ constrains p1 to occur be-
fore p2 in ∆G, and otherwise the order can be taken as
arbitrary.

• For pi ∈ Γ, let V (pi) be the facts labelling pi.
• Each pG in ∆G is associated with a set of facts F (pG):

F (pG) ≡ {f |p′ ∈ P,pG
Γ
 p′, f ∈ V (p′)} ∪ V (pG)

F (pG) contains most facts that are required to plan for
the goals in pG.

• Missing from F (pG) are exclusions:

Ex(pG) ≡ {x|x ∈ X±, v ∈ F (pG), a ∈ A,
x ∈ Σ(eff (a)), v ∈ Σ(eff (a))}\F (pG)

Exclusions are pG related facts whose truth value can
only change once in a plan.

• Let M(I,p) be all true facts from the initial state I that
are not in a binary mutex relation with facts in G�V (p).
In words, the set of initial state facts that can be true in
a state where the goal, projected to facts in V (p), is sat-
isfied. Let i(pG) be the integer index of where entry pG

occurs in list ∆G. Dependants Φ(pG) are:

Φ(pG) ≡ {f |p′ ∈ ∆G, i(p′) > i(pG), f ∈ F (p′)}
∩F (pG) ∩M(I,pG)

Φ(pG) are facts that are co-dependent on goals mentioned
after pG in ∆G. We see in a moment that intersection with
M(I,pG) is to ensure the subproblem associated with a
pG in ∆G is not trivially unsolvable given available mutex
information.

• Let X(pG) = F (pG)∪Ex(pG). Each element pG ∈ ∆G

then gives a subproblem:

〈X(pG), A↓X(pG), I�X(pG), G�V (pG) ∧ I�Φ(pG)〉

Each subproblem is passed to a PDR planning process,
with such processes run in parallel to completion. If a plan is
found for each subproblem, and the concatenation of those is
validated as a concrete plan, then PD-PDR terminates hav-
ing successfully found that concrete plan.

That concatenation operation might fail to produce a valid
plan. This only happens due to exclusions or mutex – e.g.,
two subproblem plans seek to modify the truth value of a
fact that can only be changed once. If concatenation fails
to yield a valid plan, then a fact not mentioned in the sub-
problem goal due to an exclusion, or mutex, is identified as
problematic. PD-PDR then enters a new iteration, creating
a corresponding new Γ by contracting vertices, and maybe
adding facts to the labelling of vertices, from the Γ used in
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this iteration. The details of the contractions are described
below: Each problematic fact already labels an LADG ver-
tex, or otherwise can be added as the sole label of a new
LADG vertex with arcs as per the dependency graph (it may
not label an LADG vertex yet, because it has been removed
via the construction of the PSDG). The LADG vertex the
problematic fact labels is contracted with all LADG vertices
labelled with facts in a mutex relationship with that prob-
lematic fact. Furthermore, the vertex resulting from this
contraction is contracted with all its descendants. This fi-
nal contracted vertex is labelled with the union of the labels
of all contracted vertices.

For each problematic fact, should the above operation not
result in 2 or more vertices being contracted—e.g., the ver-
tex labelled with the problem fact has no descendants or
facts in mutex relationships—then the vertex labelled with
the problematic fact and all its parents are contracted to-
gether. This ensures that when concatenation fails, the graph
derived for the next iteration has fewer vertices than the Γ
used in this iteration.

Before getting to the concatenation stage, it may be the
case that one or more subproblems does not have a solution.
If a subproblem is unsatisfiable, and its goal condition is a
subformula of the concrete goal—as happens when Φ(pG)
is empty—then the concrete problem is unsatisfiable. Other-
wise (if the concrete problem is not found to be unsatisfiable
overall), then the LADG is contracted prior to a successive
iteration being performed. The contractions are performed
as follows: For each unsatisfiable subproblem, all vertices in
the LADG whose labels mention any fact in the subproblem
are contracted to a single vertex. Additionally, for each un-
satisfiable subproblem, should the above operation not result
in 2 or more vertices being contracted, then the sole vertex
labelled with facts from the subproblem is contracted with
all its parents. The above described contractions are carried
out one unsatisfiable subproblem at a time, in the order that
their corresponding pG occurs in ∆G.

In review, PD-PDR first takes a concrete planning prob-
lem and produces a PSDG, which shows how particular facts
depend on other facts. This is used to produce a LADG Γ for
the initial iteration, which groups facts into components, and
shows how the components depend on each other. At each
iteration ∆G is then constructed, which contains all the ver-
tices in the current LADG which contain facts mentioned in
the concrete goal, with an order that satisfies the partial or-
der imposed by the edges of the LADG. Each vertex in ∆G

represents a section of the goal condition, and PD-PDR then
constructs a series of subproblems, each of which describes
the problem of computing part of a concrete plan.

To construct these subproblems, for each pG ∈ ∆G,
F (pG) is computed. This is the set of most (but not all)
of the facts needed to plan for the pG portion of the goal.
F (pG) is the union of all facts mentioned in pG, with all
facts mentioned in descendants of pG in Γ. By taking the
descendants, this ensures all facts that are depended upon are
included in the subproblem facts, and only the facts which
are not depended upon are excluded. Next the exclusions,
Ex(pG), are found. These are facts which can only change
polarity once, often representing a finite resource. Because

of this, if more than one subproblem modifies one of these
facts, then the concatenation of subproblem plans will be
invalid. Excluded facts may be necessary for finding a sub-
problem plan. To deal with exclusions, PD-PDR may ini-
tially allow multiple subproblems to modify an exclusion
fact. Then, if multiple subproblem plans modify it, sub-
problems are “merged” until only one subproblem is able
to modify it. We find this technique works well in practice.

Each subproblem goal is the conjunction of a section of
the concrete goal being achieved in that subproblem, with
a portion of the initial state. As each subproblem initial
state is a subformula of the concrete problem initial state,
each subproblem goal condition contains the conjunction of
the initial states of all subsequent subproblems. To do this,
PD-PDR calculates dependants Φ(pG). Φ(pG) is some-
what similar to F (pG), but contains all the facts relevant to
subproblems later indicated by ∆G. For the last subproblem,
Φ(pG) = ∅.

After the series of subproblems is created, each is solved
independently in parallel. This results in a few different
cases: (i) All subproblems have solutions, and no 2 sub-
problems changed the polarity of the same exclusion – i.e.
the concatenation of subplans forms a valid plan for the con-
crete problem. Then this concatenation is returned as a valid
plan for the concrete problem. (ii) There is a sole subprob-
lem (corresponding to the concrete problem) which is un-
solvable, in which case the concrete problem has no solu-
tion. (iii) All subproblems have solutions, but multiple sub-
problems changed the polarity of the same exclusion(s) – i.e.
the concatenation of subplans does not form a valid plan for
the concrete problem. Then vertices in this Γ are merged
to create a new Γ for the next iteration, and a new series of
subproblems is created. This is done so that separate sub-
problems in this new series have less of an ability to modify
the same exclusion. (iv) One or more subproblems does not
have a solution. Then similarly to case (iii), vertices in this
Γ are merged to create a new Γ and a new series of sub-
problems is created. This may loosen the subproblems goal
conditions, making it feasible for subproblems to be solved,
without compromising the correctness. Both these last two
cases result in strictly fewer vertices in the new Γ. There is
then a finite number of iterations, as the first Γ has finite ver-
tices, each successive Γ must have at least one vertex, and
the number of vertices in Γ in each iteration decreases. Be-
cause of this, and that each iteration takes a finite amount of
time, we can guarantee that the algorithm will terminate.
Example 2 (Performing PD-PDR on a Logistics Problem).
Consider a Logistics problem 〈X,A, I,G〉 using X and A
from Example 1, and where:
I+ = {at(P1, L1), at(P2, L1), at(T, L1)}:

G = at(P1, L1) ∧ at(T, L2)

I =
∧

x∈I+

x ∧
∧

x∈X,x6∈I+

¬x

To perform PD-PDR, we first compute
Γ = ({p1,p2}, {(p1,p2)}) where:

V (p1) = {at(P1, L1), at(P1, L2), in(P1, T )}
V (p2) = {at(T, L1), at(T, L2)}
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No propositions which mention P2 are included, as while
they are in the dependency graph, they are not in the PSDG.
We then compute: ∆G = [p1,p2]. All SCCs are mentioned
as they all include propositions mentioned in G. p1 occurs
before p2 as there is a path p1

Γ
 p2.

F (p1) = {at(P1, L1), at(P1, L2), in(P1, T ),
at(T, L2), at(T, L2)}

F (p2) = {at(T, L1), at(T, L2)}
Φ(p1) = {at(T, L1), at(T, L2)}
Ex(p1) = Ex(p2) = Φ(p2) = {}

The two subproblems are then:

• 〈X1, A1, I1, G1〉 where:

X1 = {at(P1, L1), at(P1, L2), in(P1, T ),
at(T, L1), at(T, L2)}

A1 : Can be described by the actions:
Load P1 into T from L1 or L2,
Unload P1 from T to L1 or L2,
Drive T between L1 and L2

I1 = at(P1, L1) ∧ ¬at(P1, L2) ∧ ¬in(P1, T )∧
at(T, L1) ∧ ¬at(T, L2)

G1 = at(P1, L2) ∧ at(T, L1) ∧ ¬at(T, L2)

• 〈X2, A2, I2, G2〉 where:

X2 = {at(T, L1), at(T, L2)}
A2 : Can be described by the actions:

Drive T between L1 and L2
I2 = at(T, L1) ∧ ¬at(T, L2)
G2 = at(T, L2)

Two corresponding example subproblem plans are:

• Load P1 into T from L1; Drive T to L2; Unload P1 from
T to L2; Drive T to L1

• Drive T to L2

When concatenated, these two plans for the subproblems
make a valid plan for the concrete problem. In this example,
there is no need to start another iteration of the algorithm

5 Experiments
We implemented PS-PDR and PD-PDR planners in C++,
using the MADAGASCAR (Rintanen 2012) codebase for
parsing and preprocessing. We also implemented a serial
PDR planner, called PDR-S, and a distributed PDR port-
folio, called PDR-P.3 LINGELING (Biere 2010) is used as
the incremental SAT solver in all our systems. PDR-P op-
erates by having n distinct serial PDR processes running
in parallel. These processes share some information: (i)
Clauses found by one process are given to all other pro-
cesses - strengthening each other’s layer information, and
(ii) Their k-values (PDR upper layer number) are synchro-
nized. When progressing to the next layer (incrementing k),
instead of pushing layer clauses independently, this work is

3Source available at https://doi.org/10.5281/zenodo.8020680.
Updated version may be available at: https://github.com/ANU-
HPC/parallel-pdr

distributed amongst the workers as their layer information is
synchronized.

Our motivations for implementing the comparison algo-
rithms, PDR-S and PDR-P planners, are threefold: (i) we
isolate the reasons for performance gaps, employing the
same data structures and SAT decision procedure across all
implementations, (ii) all algorithms we implemented feature
obligation rescheduling, which is an algorithmic choice in
PDR that is generally motivated in planning benchmarks,
and not generally supported by existing PDR portfolios,
and (iii) we are able to natively parse and process planning
benchmarks in PDDL, which is not possible using existing
PDR portfolios that are implemented for hardware and soft-
ware model checking.

Finally, our experimentation also evaluates PDR-
PLAN(Suda 2014), an implementation of serial PDR for
planning that uses bespoke decision procedures for evalu-
ating obligations. We include PDRPLAN as it is an impor-
tant historical precedent and relevant contribution, however
comparing it with our solvers is not a like for like compari-
son. Its bespoke decision procedure, differing parsing abili-
ties and internal representations, makes it a significantly dif-
ferent procedure, while still being a PDR solver. We use
PDR-S as our serial PDR baseline to showcase differences
in algorithms, instead of implementation details.

We evaluate planners over the comprehensive benchmark
set from (Rintanen 2012), which is compatible with MADA-
GASCAR. These are satisfiable benchmarks from Interna-
tional Planning Competitions (IPCs). We additionally use
the “unplannability” benchmarks from the 2016 IPC un-
plannability track, which are unsatisfiable – i.e., they are
designed with the intent that problems will not have solu-
tions. We exclude reporting on some unplannability do-
mains, namely: BAG-BARMAN, BAG-GRIPPER, OVER-
TPP and SLIDING-TILES, because no systems evaluated are
able to produce UNSAT proofs in those domains under our
timeout and memory limits.

We use two systems for evaluation. An Intel(R) Xeon(R)
Platinum 8274 CPU host with 198GBs memory was used
for the satisfiable benchmarks. An Intel(R) Xeon(R) Gold
6252 CPU host with 187GBs memory was used for the un-
satisfiable benchmarks. The use of two separate hosts was
based solely on the availability of computing infrastructure.

All problem instances were run with a 30-minute (1800s)
timeout. Each PS-PDR/PDR-P run used 48 cores (one
thread per core), with 47 workers and one orchestrator. Our
choice of 48 core configurations is based on available com-
puting infrastructure during our experimentation, and is not
indicative of where to expect optimal performance. In the
case of PD-PDR, our implementation first decomposes the
problem using a single core process to create a list of sub-
problems. Subproblems are solved independently in paral-
lel, using our PDR-S implementation. As PD-PDR can
produce many subproblems, the runtimes reported for PD-
PDR are a simulated runtime where the number of simu-
lated cores is the number of subproblems, all with sufficient
memory. PD-PDR candidate concrete plan validity is de-
termined using VAL (Howey, Long, and Fox 2004). We
evaluate PD-PDR, along with all other PDR systems, on all
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satisfiable planning benchmarks that we know to be suscep-
tible to compositional analysis.

In total, 58 domains are reported on, with PS-PDR,
PDR-P and PDR-S able to parse all of them. There are
16 domains that PDRPLAN is not able to parse. PS-PDR
is able to solve 1481 problem instances, PDR-P can solve
1455, PDR-S can solve 1421 and PDRPLAN can solve
990.4 There are 12 satisfiable domains susceptible to the
decomposition used by PD-PDR where PD-PDR produces
a plan during an iteration which has more than one subprob-
lem. In our reporting, when considering PD-PDR, only
these 12 domains are reported on. We exclude reporting
on PD-PDR runtimes on domains which do not meet this
criteria, as when there is only one subproblem, PD-PDR
behaves as PDR-S with some additional overheads. Of the
12 domains reported on here, PD-PDR has the best or equal
best coverage in 10 domains. PD-PDR can solve 331 of the
346 instances that are amenable to decomposition.

We note that when comparing all systems, and only con-
sidering the 42/58 domains that PDRPlan can parse, PDR-
plan solves the largest number of problems. However PDR-
plan has the sole best coverage in only 12/42 domains, and
the best average time in only 19/42 domains. Because of
this, while having the best coverage, we do not consider
PDRplan to be the clearly superior solver.

Scatterplots of the time taken by each solver compared to
the baseline PDR-S, to solve each problem is provided in
Figure 3. Note, the number of solved instances in the PD-
PDR plot is relatively low, because we only report instances
amenable to decomposition. Figure 2 features the cumula-
tive number of problems solved, as a function of time, for
each solver. There are separate figures, with and without
PS-PDR. The figure excluding PS-PDR considers all prob-
lems, and the figure including PD-PDR only includes prob-
lems where PD-PDR is applicable.

We find PD-PDR (when it is applicable) and PS-PDR to
be the fastest solvers. Due to the startup cost of MPI, PS-
PDR/PDR-P solved fewer instances in the first ∼10 sec-
onds than the other solvers. In 39 cases, PS-PDR exhausted
the memory of the host, and PDR-P did in 40 cases, no other
solver did this.

6 Related Work
The first PDR algorithm was IC3, which stood for “Incre-
mental Construction of Inductive Clauses for Indubitable
Correctness” (Bradley 2011). The algorithm is a SAT-based
procedure for reasoning about problem safety without ex-
plicitly unrolling the transition relation, Property Directed
Reachability was a phrase later coined in (Eén, Mishchenko,
and Brayton ). IC3 featured in the 2010 Hardware Model
Checking Competition (HWMCC’10), and a range of se-
rial PDR procedures were subsequently adapted, developed,
and evaluated for planning(Suda 2014). Of special interest
here is PDRPLAN, a fast bespoke implementation of PDR
that takes advantage of the common structure of many clas-
sical planning benchmarks—e.g., uniformly positive action

4Low coverage in the case of PDRPLAN is exacerbated by
parser issues.
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Figure 2: Cumulative Number of Instances Solved

preconditions—replacing all SAT inference with specialised
constraint processing procedures that perform guaranteed
polynomial time inference.

The question of how to use distributed computing to im-
prove the runtime of PDR is of interest in our setting. In the
original IC3 manuscript (Bradley 2011), the author, Bradley,
recognised the potential for accelerating PDR using dis-
tributed computing. He introduced a portfolio scheme, us-
ing a small set of IC3 processes that synchronise so that
clause pushing (Alg. 1, Lines 18-27) can be performed by
one serial process, and problem safety (Alg. 1, Line 27)
can be detected by that process where applicable. In this
original work, search diversity is enhanced using a nonde-
terministic SAT-solver ZCHAFF (Vizel, Weissenbacher, and
Malik 2015). IC3 portfolio members share reasons periodi-
cally via a central coordinating process and, when an IC3
instance receives reasons found by other processes, it re-
moves all obligations from its queue that are inconsistent
with those reasons. With these modifications, Bradley was
able to demonstrate that a portfolio using 12 cores can com-
plete an additional 12 proofs in HWMCC’10 competition
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(a) PS-PDR (b) PDR-P (c) PD-PDR

Figure 3: Scatterplots Comparing Problem Runtimes Between Each New Solver and the Baseline PDR-S.

settings, compared with a serial IC3 baseline.
Preliminary investigations of portfolio PDR are extended

in (Chaki and Karimi 2016), where a variety of strategies
for distributed portfolios with reason sharing between mem-
bers are described. Designed for hardware model checking
problems, which can have many initial states, each portfo-
lio member is a variant of IC3 that uses the deterministic
SAT solver MINISAT (Eén and Sörensson 2003). Portfo-
lio members perform their own clause pushing, thus there
is no need to synchronise the individual portfolio elements.
In the two best strategies described, portfolio members are
required to check if the portfolio has proved the problem
safe. One strategy requires each portfolio element to derive
their own proof, and another has portfolio elements con-
sider the cumulative knowledge of all portfolio members,
checking if the problem is safe when the process is due to
increment k. The headline contribution is a detailed statisti-
cal and empirical analysis of portfolios in hardware bench-
marks. In (Chaki and Karimi 2016), the exploration of port-
folios in software verification is left as future work, and that
challenge is taken up by Marescotti et al.(2017). Those au-
thors develop a divide-and-conquer portfolio approach using
SPACER (Komuravelli, Gurfinkel, and Chaki 2016), “parti-
tioning” the problem at hand syntactically into a set of sub-
problems, so that the concrete problem is safe iff every sub-
problem is safe. In addition to the innovation of partitioning,
the authors also develop a “heuristic” for how members of
the portfolio share reasons and search.

Our approach to decompositional planning using PDR is
based on the dependency graph concept that was first de-
scribed in (Knoblock 1994; Williams and Nayak 1997). In-
tuitively, that idea is to synthesise a concrete plan through
a process of iteratively refining plans using the abstraction
hierarchy associated with the causal graph. For example,
in Logistics we first plan for the delivery of packages ig-
noring the detail of having to drive trucks, and then we at-

tempt to refine that abstract plan, by interleaving the ap-
propriate driving actions. These seminal ideas were ad-
vanced in concert with literature related to (tree) decompo-
sitions (Darwiche 2001; Huang and Darwiche 2003; Robert-
son and Seymour 1991), with the planning literature devel-
oping conceptual frameworks and algorithms that fall under
the banner of factored planning (Amir and Engelhardt 2003;
Brafman and Domshlak 2006). These ideas are showcased
and contrasted in relation to the DTREEPLAN planning sys-
tem in (Kelareva et al. 2007). Unlike factoring/abstraction-
refinement, our approach forms concrete plans by a sim-
ple concatenation operation, and not by sub-plan/action in-
terleaving. Our approach is enabled because we “edit”
the goals of abstract subproblems, thereby ensuring that—
at least in practice on common planning benchmarks—our
subplan concatenation operation yields a valid solution to
the concrete problem at hand. In this last respect, our contri-
bution is related to (Abdulaziz, Norrish, and Gretton 2015),
a work in which the authors employ a goal editing idea to
plan in systems composed of a set of symmetric subsystems.

7 Conclusions

We are the first to develop and evaluate distributed PDR sys-
tems for planning. Our PS-PDR algorithm improves on
existing PDR portfolio algorithms by: (i) using obligation
rescheduling, and (ii) using a centralised queue. Distinct
from existing decompositional approaches, our PD-PDR al-
gorithm analyses the structure of problems to break them
into subproblems which are solved independently. We find
our additions, PD-PDR and PS-PDR are generally able to
outperform baseline PDR. Additionally, using PS-PDR in
place of PDR-S in PD-PDR may wield even greater per-
formance increases than we have measured so far.
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