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Abstract

We study multivariate decision trees (MDTs), in particular,
classes of MDTs determined by the language of relations that
can be used to split feature space. An abductive explanation
(AXp) of the classification of a particular instance, viewed
as a set of feature-value assignments, is a minimal subset of
the instance which is sufficient to lead to the same decision.
We investigate when finding a single AXp is tractable. We
identify tractable languages for real, integer and boolean fea-
tures. Indeed, in the case of boolean languages, we provide a
P/NP-hard dichotomy.

1 Background

Decision trees (DTs) are a classical family of ML mod-
els. There is considerable interest in their multivariate
extension (MDTs) in which feature-space is split accord-
ing to conditions on several features rather than on a sin-
gle feature (Brodley and Utgoff 1995; Zhu et al. 2020;
Canete-Sifuentes, Monroy, and Medina-Pérez 2021). For
example, in oblique DTs these conditions are linear inequal-
ities (Heath, Kasif, and Salzberg 1993; Murthy, Kasif, and
Salzberg 1994; Barros et al. 2014; Wickramarachchi et al.
2016; Carreira-Perpifidn and Tavallali 2018). In this paper
we study families of MDTs, parameterized by the language
of possible multivariate conditions, from the point of view
of the tractability of explaining decisions.

A multivariate condition can be seen as a constraint which
can be decomposed into its scope (a list £ of features) and its
relation of arity |£|. This allows us to study multivariate de-
cision trees according to the language of possible constraint
relations.

Definition 1. A multivariate decision tree is a decision tree
in which the condition tested at a node is a constraint on any
number of features. An L-DT is a multivariate decision tree
in which the constraint relations belong to the language L.

A multivariate DT may be exponentially smaller than a
DT. Consider the case of a parity function x on n boolean
features: trivially an £-DT of depth one can capture this
function provided x € L, whereas a classical DT would
necessarily be of exponential size.

Tractable constraint languages have been investigated in
the context of the Constraint Satisfaction Problem (CSP). A
CSP instance consists of a set of n variables, each with its
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domain, together with a set of constraints, where each con-
straint is defined by its scope (a list of variables) and the
relation that must hold on the variables in this scope. The
decision version of the CSP consists in determining whether
there exists some assignment to all n variables in the carte-
sian product of the domains that satisfies all the constraints.
Given a language L of relations, CSP(£) is the subproblem
of the decision version of the CSP in which all relations be-
long to the language £. The languages £ we consider are, as
is classical in CSPs, arbitrary sets of relations that can apply
to any variables/features.

As we will see later, testing whether a subset of the fea-
ture assignments comprising the instance is sufficient to ex-
plain the decision involves solving a constraint satisfaction
problem consisting of the conditions along each path to a
leaf corresponding to a different decision. In classical DT’s
these conditions are unary and the resulting CSP is triv-
ial, but for multivariate conditions, the resulting CSP is, in
general, NP-hard. We will see the close relationship be-
tween tractability of explaining £-DTs and the tractability
of CSP(L). However, there is an important difference. In
an MDT, for each edge corresponding to the satisfaction
of a relation R there is an alternate edge corresponding to
its complement relation —R. It follows that in the context
of MDTs, it is important to study languages closed under
complement: languages £ such that R € £ = —-R €
L. There is large body of work on the characterisation of
languages £ for which CSP(L) € P, culminating in a di-
chotomy theorem in the finite-domain case (Bulatov 2017;
Zhuk 2020). This result implies a similar dichotomy for fi-
nite languages closed under complement, but the dichotomy
criterion does not provide an explicit description of the
tractable cases.

Although DTs are sometimes considered to be inher-
ently interpretable, it has recently been shown that DT
paths can exhibit significant redundancy, both in theory
and in practice, when considered as explanations of de-
cisions (Izza, Ignatiev, and Marques-Silva 2022). In this
paper, we therefore study the notion of abductive expla-
nation (AXp) (Shih, Choi, and Darwiche 2018; Ignatiev,
Narodytska, and Marques-Silva 2019) which can provide a
more succinct explanation of a particular decision than the
(M)DT path corresponding to the decision (Izza, Ignatiev,
and Marques-Silva 2022).
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Figure 1: A decision tree corresponding to the classifier k(x) =
—x1 V (.rz A (—‘J,’:; V 434))

Definition 2. Let x be a classifier and v a feature-vector.
A weak AXp (weak abductive explanation) of the decision
K(V) c is a subset S of the features such that any as-
signment y that agrees with v on the features in S satisfies
k(y) = c¢. An AXp of a decision is a subset-minimal weak
AXp.

Example 1. Consider the classifier k(x) = —x1 V (22 A
(mx3 V x4)) where x1,x2, 23,24 € {0,1} are boolean fea-
tures. K can be represented by the decision tree in Fig-
ure 1. An abductive explanation (AXp) for the decision
k(1,1,1,1) = 1is {xo, x4} since any feature-vector'y with
Y2 = ya = 1 satisfies k(y) = 1 (but neither yo = 1 nor
y4 = 1 alone is sufficient to guarantee k(y) = 1). This AXp
is half the length of the path in the DT of Figure I corre-
sponding to this decision (i.e. the leftmost path).

The need to apply formal reasoning to explainable ar-
tificial intelligence (XAI), and in particular to decisions
taken by ML models, has been pointed out by many re-
searchers (Guidotti et al. 2019; Miller 2019; Marques-Silva
and Ignatiev 2022; Amgoud and Ben-Naim 2022). The com-
putational complexity of finding abductive explanations is
an active field of research in the application of formal rea-
soning to explaining decisions taken by classifiers (Aude-
mard et al. 2022; Barceld et al. 2020; Cooper and Marques-
Silva 2023; Huang et al. 2022; Ignatiev, Narodytska, and
Marques-Silva 2019; Wéldchen et al. 2021). 1zza et al (Izza,
Ignatiev, and Marques-Silva 2022) showed that finding an
AXp of a decision taken by a DT is in P. (This corresponds
to the case in which all constraints are unary , i.e. of the form
x; € S for some subset S of the domain of z;). In this paper
we explore the tractability of this problem for MDT's param-
eterised by the constraint language £. We show that, in gen-
eral, this problem is NP-hard, but that there are nonetheless
many interesting tractable cases.

Let WAXPDT(L) denote the problem of deciding
whether a set of features is a weak AXp for a given decision
taken by a £-DT, where L is a language of constraint rela-
tions. As we show in Section 2, whenever WAXPDT(L) €
P, there is a polynomial-time algorithm to find an AXp: start-
ing with the set of all features, for each feature test whether
deleting the feature still leaves a weak AXp (Chen and Toda
1995; Cooper and Marques-Silva 2023).

When L is the set of unary constraints, then an £-DT
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can be viewed as a classical DT. In this case, WAXPDT(L)
is known to be tractable (Izza, Ignatiev, and Marques-Silva
2022). After identifying, in Section 2, several languages £
for which WAXPDT (L) is tractable, in Sections 3 and 4, we
describe a dichotomy theorem in the case of boolean lan-
guages. In Section 5 we consider a different type of abduc-
tive explanation and show that the dichotomy theorem for
boolean languages also holds for this type of explanation.

2 Tractable Explaining of Decision Tree
Decisions

We begin by recalling a simple algorithm to find mini-
mal subsets satisfying a monotone property (Chen and Toda
1995). We say that a property H is monotone if for all sets
S CT,H(S)=H(T).

Lemma 1. Given an initial finite set So and a monotone
property H that can be tested in polynomial time, a minimal
subset S of Sy satisfying H can be found in polynomial time.

Proof. The following so-called ‘deletion’ algorithm finds a
minimal S C Sy by testing |Sp| times the property H.

for each element ¢ € S :

if H(S\ {e}) then S <+ S\ {e}
O

The following corollary follows from the fact that being
a weak AXp is a monotone property and that the set of all
features is trivially a weak AXp (and hence can be used as
the initial set Sy in the deletion algorithm).

Corollary 1. For any family of classifiers, finding a single
AXp is polytime if testing whether a subset of features is a
weak AXp is in P,

We assume that an MDT in £-DT is represented as a bi-
nary tree in which each leaf node is labelled by a class and
each internal node is linked to its two child-nodes by edges
labelled respectively by a relation R € £ and its comple-
ment =R € L. The assumption of an explicit representation
of - R avoids technical issues related to the possible large
disparity between the sizes of the explicit representation of
—R and its implicit representation as the complement of R.
In the following proposition, we do not impose a fixed rep-
resentation of relations (as a table of tuples or as a formula)
but we do assume the same representation of relations in
CSP(£) and in MDTs in £-DT.

Given an MDT, we use the notation path(«) to represent
the set of conditions satisfied on the path from the root to a
leaf a. Let Asst represent all unary constraints consisting
of assignments, i.e. x; = u for some feature x; and some
constant u. We can view a feature-vector v as a set of literals
(i.e. variable-value assignments). For a fixed feature-vector
v, it will be convenient to interpret a set X of features as a
partial assignment, i.e. the set of literals corresponding to
the subset of v on these variables.

Proposition 1. Let L be a language such that L is closed un-
der complement. Suppose that LU Asst C C where CSP(C)
€ P. Then WAXPDT(L) € P and an AXp of any decision
taken by an L-DT can be found in polynomial time.



Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Proof. Let k be the classifier defined by an £-DT and con-
sider a decision k(v) = c¢ to be explained. By Corollary 1,
we only need to show that we can test that a set X is a Weak
AXp in polynomial time. Testing whether X is a Weak
AXp can be achieved by testing whether for all leaves o
corresponding to a decision different to ¢, X (considered as
a partial assignment) is incompatible with the set of con-
straints path(«). The constraints of path(«) are in £. Fur-
thermore, the partial assignment X can be viewed as a set of
constraints in Asst, so this test of incompatibility is a CSP
with constraints in £ U Asst, and hence, by the hypotheses
L U Asst C C and CSP(C) € P, is solvable in polynomial
time. O

In all the following examples, £ is closed under comple-
ment, £ U Asst C C and CSP(C) € P, and so Proposition 1
applies.

Boolean domains We begin with examples in which fea-
tures are boolean. Two well-known boolean languages C for
which CSP(C) is tractable are conjunctions of Horn clauses
and conjunctions of 2-clauses.

Example 2. Let L be the class of Horn clauses and their
negations. The complement (negation) of a Horn clause is a
conjunction of unary clauses and unary clauses are trivially
Horn. C is the class of conjunctions of Horn clauses, and
hence CSP(C) € P since it corresponds to HORNSAT.

Note that, in general, the complement of a conjunction of
Horn clauses is not the conjunction of Horn clauses. In Sec-
tion 4.1 we identify the maximal generalisation of the class
in Example 2. It consists of a specific form of conjunctions
of Horn clauses.

Example 3. Let L be the class of 2-conjunctions of 2-
clauses (i.e. the conjunction of at most two clauses each
of which contains at most two literals) together with the
complements of such constraints. The complement of a 2-
conjunction of 2-clauses is also the conjunction of 2-clauses,
since ~((aVb)A(cVd)) = (maV-e)A(=aV—d) A(—=bV—c) A
(=bV —d). LU Asst C C where C is the set of conjunctions
of 2-clauses. CSP(C) € P by tractability of 2SAT.

In general, the complement of an arbitrary conjunction of
2-clauses is not the conjunction of 2-clauses. We identify
the maximal generalisation of this example in Section 4.3.

Finite domains We now consider finite feature-domains
of arbitrary size. Define a two-fan constraint to be a con-
straint of the form x; = aVx; = b, where a, b are constants.

Example 4. Let L be the class of two-fan constraints and
their complements, together with all unary constraints x; €
S where S is any subset of the domain of x;. The com-
plement of the two-fan x; = a NV x; = b is the constraint
x; # a AN x; # b which is the conjunction of two unary
constraints. Let maj : D? — D be the function defined
by maj(a,b,c) = b if b = c and maj(a,b,c) = a if
b # c. It returns the majority value among its arguments,
if it exists, and its first argument otherwise. A binary re-
lation R is maj-closed if (a1, az), (b1,b2), (c1,¢c2) € R =
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(maj(ai1, b1, c1),maj(az, b, c2)) € R, and all unary con-
straints are maj-closed. All two-fan constraints and con-
Jjunctions of unary constraints are maj-closed. It is well
known that CSP(C) € P where C is the set of maj-closed re-
lations (Cooper, Cohen, and Jeavons 1994; Jeavons, Cohen,
and Gyssens 1995).

Now suppose that all domains are finite and totally or-
dered. Define a generalised interval constraint (GIC) to be
a constraint of the form x; < a V x; > b, where a,b are
constants.

Example 5. Let L be the set of GIC’s and their comple-
ments, together with all unary constraints x; € S where S
is any subset of the domain of x. The complement of the
GICx; < a V x; > bis the constraint x; > a N x; <D,
which is the conjunction of unary constraints. A binary re-
lation R is said to be max-closed if (a1, as), (b1,b2) € R =
(max(a1,b1), max(ag, b)) € R, and all unary constraints
are max-closed (Jeavons and Cooper 1995). It is easy to
check that GIC’s and their complements are max-closed. Let
C be the class of conjunctions of max-closed constraints of
arity at most two. Then LU Asst C C and CSP(C) € P since
instances in this class are solved by arc consistency (Jeavons
and Cooper 1995).

Infinite domains We now consider infinite domains,
firstly integer domains and then real domains.

Example 6. A unit two variable per inequality (UTVPI)
constraint is of the form ax; + bx; < d where x; and x;
are integer variables, the coefficients a,b € {—1,0,1} and
the bound d is an integer constant. The negation of such a
constraint is —ax; — bx; < —(d + 1) and is hence also
an UTVPI constraint. A unary assignment x; = d is equiv-
alentto x; < d N —x; < —d, a conjunction of UTVPI
constraints. Let L be the set of UTVPI constraints and C
the class of constraints consisting of conjunctions of UTVPI
constraints. Then LU Asst C C and it is known that CSP(C)
€ P (Lahiri and Musuvathi 2005).

Example 7. Let L be the class of linear inequalities (< or
<) over the reals. The complement of a linear inequality is
again a linear inequality and assignments x; = u can be
viewed as two linear inequalities (v; < u and —x; < —u).
C is the set of systems of linear inequalities over R. Hence
L U Asst C C and it is well known that CSP(C) € P.

Since an oblique decision tree is an MDT in which all
conditions are linear inequalities, we can deduce that there
is a polynomial-time algorithm to find an AXp of a decision
taken by an oblique decision tree. The dual of an abductive
explanation is a contrastive explanation, a minimal set of
features that if changed changes the output of the classifier.
It has been observed that an optimal contrastive explanation,
known as a counterfactual explanation or adversarial exam-
ple, can be found for oblique decision trees in polynomial
time for a linear error function, by reduction to Linear Pro-
gramming (Carreira-Perpifidn and Hada 2021).
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Figure 2: A decision tree 77 which has a non-empty AXp if and
only if the constraints C1, . . ., C. are simultaneously satisfiable.

3 Tractable Boolean Languages: The
Algebraic Approach

Recall that we are interested in languages £ closed under
taking complements, i.e. R € L= —-R € L.

We first study the characterisation of tractable languages
L for WAXPDT(L) from an abstract algebraic point of view,
before looking for a detailed characterisation.

Let f : D¥ — D be a function. A relation R has f
as a polymorphism (we say that R is closed under f) if
Vt1,...,tr € R, the tuple f(ty,...,tx) obtained by apply-
ing f componentwise to the k vectors ¢q, ..., tx belongs to
R (Jeavons, Cohen, and Gyssens 1997). We say that a lan-
guage L has the polymorphism f if all relations in £ are
closed under f.

In the following, let max (min) be the binary function
which returns the maximum (minimum) of its two argu-
ments. Let maj : {0,1}® — {0, 1} be the ternary majority
function (already introduced in Example 4) defined by

) B y ify==z
maj(z,y,2) = { x otherwise

Let miny : {0,1}®> — {0,1} be the ternary minority func-
tion defined by

miny(z,y,2z) = z itz=y

WY, %) = -z otherwise
It returns the minority value if the three values x, y, z are not
all equal.

Theorem 1. Let L be a finite boolean language closed
under taking complements. Then, assuming P#NP,
WAXPDT(L) € P iff L has either max, min, maj or miny
as a polymorphism.

Proof. <: Suppose that £ has either max, min, maj or miny
as a polymorphism. It is well known that this implies that
CSP(L) € P (Jeavons, Cohen, and Gyssens 1997). Further-
more, all unary constraints have these four polymorphisms.
Thus, we also have CSP(LU Asst) € P, and hence by Propo-
sition 1, WAXPDT(L) € P.

=: We first give a polynomial reduction from CSP(L)
to WAXPDT(L). Let I be an instance of CSP(L) consist-
ing of constraints Cy,...,C.. We build a DT 77, shown
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in Figure 2, as a sequence of tests corresponding to these
constraints. (' is the test at the root of T}, and each C;
(i = 2,...,e) is the test at the positive child of C;_; (i.e.
the node attained after a positive response to the test C;_1).
The positive child of C. is a leaf node labelled 0. All nega-
tive children of all nodes of T} are leaf nodes labelled 1. Let
 be the function defined by the DT 77. Now consider any
decision k(v) = 1. The empty set is a weak AXp of this de-
cision iff it is impossible to simultaneously satisfy the con-
straints C1, . .., Ce, since the only leaf node labelled O can
only be reached if all these constraints are satisfied. Thus
deciding whether () is a weak AXp amounts to solving I €
CSP(L).

Thus, assuming P#NP, WAXPDT(L) € P only if L is
a sublanguage of one of Schaefer’s tractable boolean con-
straint languages (Schaefer 1978). By Schaefer’s theorem,
assuming P#£NP, CSP(L) € P iff £ has (at least) one of the
six polymorphisms 0, 1, max, min, maj or miny. A relation
R is a-closed, where a € {0, 1}, iff the tuple (a,...,a) (of
length the arity of R) belongs to R. So it is clear that R and
—R cannot both be a-closed. Thus there is no non-empty
language £ closed under complement which is a-closed.
Thus £ has either max, min, maj or miny as a polymor-
phism. The empty language £ = () trivially has all poly-
morphisms. O

Theorem 1 shows that there is a complexity dichotomy. In
the next section we provide a more explicit characterisation
of the tractable boolean languages.

4 Characterisation of Tractable Boolean
Languages
We now study tractable boolean languages closed under
taking complements, in order to gain a better insight into
the tractable classes identified in Theorem 1. Let Ly be
the language of boolean relations having the polymorphism
f. Tt is well known (Jeavons, Cohen, and Gyssens 1995;

Jeavons and Cooper 1995; Jeavons, Cohen, and Gyssens
1997) that

1. L, is the set of conjunctions of Horn clauses.
2. Lumax is the set of conjunctions of anti-Horn clauses.

3. Luminy is the set of conjunctions of affine constraints (i.e.
linear equations).

4. Lynaj is the set of conjunctions of 2-clauses.

In all four cases, L is not closed under complement and
so we require extra work to identify the (unique) maximal
sublanguage closed under complement.

4.1 Horn and Anti-Horn

We start with the language L,;,. By the discussion above
we need to characterise the maximal sublanguage of L,
closed under complement, or equivalently the Horn formulas
whose negation is expressible by a Horn formula. We will
prove that these formulas are exactly those in which the sets
of negative literals appearing in clauses are totally ordered
with respect to set inclusion. We call such formulas star-
nested.
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Definition 3. A Horn formula 1) is star-nested if and only if
there exist sets of literals Land () = Sq C S1 C Se C ... C
Sq such that

* all literals in L are positive, and

* all literals in S, are negative, and

* every clause C' in ) is of the form C = \/SESZ sorC =
IV (V,es, s) withl € L.

To clarify the definition, we point out that each set S; may
occur more than once in the formula (in clauses with differ-
ent positive literals [). In particular, star-nested Horn for-
mulas may contain any number of unit clauses with positive
literals (which correspond to the set So = )). Clearly, since
the sets .S; are nested, a star-nested formula with no redun-
dant clauses contains at most one clause consisting of only
negative literals and at most one clause for each positive lit-
eral] € L.

Proposition 2. Let 1) be a star-nested Horn formula. Then,
—) is equivalent to a star-nested Horn formula.

Proof. We proceed by induction on the number of sets S;.
For ¢ = 0, we have ~) = \/,.; =l and hence —¢ is a
star-nested Horn formula. Now, let ¢ > 0 and v be a star-
nested Horn formula with sets L, S, . .., S,. Suppose that
the claim is true for all formulas with strictly fewer sets. If
we denote by L the subset of literals in L that appear in unit
clauses of 1), then 1) can be rewritten as

“(Ar) (v ove)

where ¢ is Horn and star-nested with sets L\ Lo, S1\ .51, S2\
S1,...,54\S1. In particular, ¢ is star-nested with one fewer
set than . By induction, —¢ can be assumed to be Horn and
star-nested with sets L', Sp, ..., S},. Then, we have

) = (\/ ﬁ) Vv <( N —|s)/\—|¢>
l€Lo s€S51

and hence —) is star-nested with sets Sj = 0,57 = S§ U
{=l |1 € Lo},....8) = S,u{~l |l € Lo}, and
L"=L'U{-s|s€ 5} O

(G

Proposition 3. Let R be a boolean relation such that min is
a polymorphism of both R and —~R. Then R(z1,...,x,) =
U(x1,...,x,.), where 1 is a star-nested Horn formula.

Proof. We proceed by induction on the arity r of R. The
claim is true for » = 1 since R is either empty, complete,
or equivalent to a unit clause; in all cases it is express-
ible by a star-nested Horn formula. Let » > 1 and sup-
pose that the claim is true for all relations whose arity is
strictly smaller than r. Let R be a relation of arity r such
that min is a polymorphism of both R and ~R. We as-
sume without loss of generality that the all-zeroes tuple of
length r belongs to R. (If this is not the case, then =R con-
tains this tuple and we prove the claim on —R instead.) If
R is complete then we are done. Otherwise, its negation
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-R = {t1,...,t,} is not empty. Since =R has the poly-
morphism min (which we can assume to be of any arity),
we have ¢ = min(¢q,...,t,) € —R. Note that each ¢; is a
tuple, so here the operation min is applied componentwise
to the set of tuples t1,...,%,. The tuple (0,...,0) does
not belong to =R, so the set P = {i < r | t[i] = 1}
is not empty. We assume without loss of generality that
P={1,...,c}. Since t;[i] = 1forall j € {1,...,n} and
i1 € P, there exists a relation @ such that =R(z1, ..., z,)
1A NANTe AQ(Xey1, - .., 2,). Both @ and —(Q) have the
polymorphism min (because () is a projection of =R and
() is a projection of a conjunction of R with unit clauses;
the polymorphism min is invariant under these transforma-
tions) and the arity of @ is strictly smaller than r. By in-
duction, there exists a star-nested Horn formula v/ such that
“Q(Tet1y---,2r) = V(Tey1, ..., x,). Then, we have

R(z1,...,zy)

(1A AT AQ(Teg1y - Ty))
21 V.. VoxeVoQ(xeyt, ..., Ty)

=-x V... Voxe VUO(Terr, ..., T)

and hence R is equivalent to a star-nested Horn formula by
distributivity of V over A. O

Theorem 2. Let L be a boolean constraint language. The
following are equivalent:

(i) L has the polymorphism min and is closed under tak-
ing complements

(ii) Each relation in L is equivalent to a star-nested Horn
formula

Proof. Follows from Proposition 2 and Proposition 3. [

We also note that, given in input the list of tuples of a
relation R, star-nested formulas for R and its complement
— R can be constructed in polynomial time if they exist. The
algorithm is given by the recursive constructions used in the
proofs of Proposition 2 and Proposition 3.

An anti-Horn formula is star-nested if replacing each lit-
eral by its negation yields a star-nested Horn formula. The
following directly follows from the arguments above, with
only slight adaptations.

Theorem 3. Let L be a boolean constraint language. The
following are equivalent:

(i) L has the polymorphism max and is closed under tak-
ing complements

(ii) Each relation in L is equivalent to a star-nested anti-
Horn formula

4.2 Affine

We now turn our attention to the case of Lpiny, Which is
straightforward.

Theorem 4. Let L be a boolean constraint language. The
following are equivalent:

(i) L has the polymorphism miny and is closed under tak-
ing complements
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(ii) Each relation in L is equivalent to a linear equation
over GF(2), the finite field of two elements.

Proof. The fact that any language satisfying (ii) is closed
under taking complements is trivial, as the complement of
the equation a;z1 + ...+ a,z, =bisarz1 +... + a2, =
1 — b. In addition, relations equivalent to linear equations
over GF(2) have the minority polymorphism (Jeavons, Co-
hen, and Gyssens 1995). This establishes (ii) = (i).

Now, let R be a relation of arity r such that both R and
— R have the minority polymorphism. If R is either empty
or complete then it is expressible as a linear equation (0 = 1
or 0 = 0, respectively). Otherwise, both R and =R cor-
respond to the solution sets of systems of linear equations
over GF(2) that are not degenerate (i.e. at least one equa-
tion has a nonzero coefficient). Since any nondegenerate
linear equation over GF(2) over r variables has exactly 27!
solutions, we have |R| = |=R| = 2"~! and only one equa-
tion will remain in both systems after discarding all redun-
dant equations. This establishes (i) = (ii) and concludes the
proof. O

4.3 Conjunctions of 2-Clauses

As mentioned above, over boolean domains a relation has
the polymorphism maj if and only if it is a conjunctions
of 2-clauses (clauses containing up to two literals). Thus,
to complete the study of tractable cases identified in Theo-
rem 1, we now characterise those formulas ® such that both
® and —P are expressible as conjunctions of 2-clauses.

A 2-clause is a clause consisting of at most two literals
and a 2-ferm is a term consisting of at most two literals.
The following lemma follows immediately from De Mor-
gans’ theorem.

Lemma 2. A boolean formula ® such that —=® is expressible
as conjunction of 2-clauses is expressible as a disjunction of
2-terms.

Lemma 3. Suppose that a boolean formula ® is such that
® is expressible as conjunctions of 2-clauses and also as
a disjunction of 2-terms. Suppose, furthermore, that ® =
(aVb)ANPyand ® = (c Ad)V Dy. Then there is a non-
empty intersection between the two sets of literals {a,b} and

{c,d}.

Proof. With the assignments a = b =0andc=d =1 we
have a contradiction. This can only be avoided if the sets of
literals {a, b} and {c, d} intersect. O

Lemma 4. Suppose that a boolean formula ® is such that
D is expressible as a conjunction of 2-clauses and also as a
disjunction of 2-terms of the form ® = a V ®1, where a is a
literal. Then ® is of one of the three forms (1) a, (2) a V b,
or(3) (aVb)A(aVc).

Proof. Suppose that ® = (b V ¢) A ®q. Setting ¢ = 1 and
b = ¢ = 0 leads to a contradiction, so to render this im-
possible we must have a = b or a = c. Since this is true
for any conjunct, when & is expressed as a conjunction of
2-clauses, we can deduce that ® = A", (a V ;) for some
literals b1, . . ., b,,. Since @ is also expressible as a disjunc-
tion of 2-terms, we only need to consider the cases in which
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m < 2. When we include the case & = a we have the three
cases (1) a, Q) a Vb, (3) (aVbd)A(aVec). O

We give without proof the analogous lemma obtained by
exchanging conjunction and disjunction.

Lemma S. Suppose that a boolean formula ® is such that
® is expressible as a disjunction of 2-terms and also as a
conjunction of 2-clauses of the form ® = a A\ &1, where a is
a literal. Then ® is of one of the three forms (1) a, (2) a A\ b,
or(3) (anb)V (aAc).

Observe that case (3) in Lemma 5 when written as a con-
junction of 2-clauses is a A (b V ¢).

A binary term is a 2-term that contains exactly two dis-
tinct literals.

Lemma 6. Suppose that a boolean formula ® # | is such
that ® is expressible as a conjunction of 2-clauses and also
as a disjunction of binary terms of the form ® = (a A c¢) V
(b Ad)V Dy, where a, b, c,d are distinct literals. Then ® is
of one of the three forms (1) (a V b) A (¢ V d), (2) (a V b) A
(bVe)A(evd),or(3)(aVb)ADVe)A(aVd)A(cVd)
for distinct literals a, b, ¢, d.

Proof. Applying Lemma 3 twice, we know that all con-
juncts, when ® is expressed as a conjunction of 2-clauses,
must contain one of a,c and one of b,d. Since a,b,c,d
are distinct literals, we can deduce that the only possible 2-
clauses are (a V b), (bV ¢), (a vV d) and (¢ V d). Eliminating
symmetrically equivalent cases, by exhaustive search, we
easily obtain only three distinct cases, namely & is of one of
the three forms (1) (aVb)A(eVd), (2) (aVD)A(bVe)A(cVd),
or(3) (aVbh)A(DVe)A(aVvd)A(cVd). O

Observe that although a, b, c,d are distinct literals, the
variables are not necessarily distinct. For example, if d =
—a then case (1) becomes (a V b) A (—a V ¢).

Lemma 7. Suppose that a boolean formula ®, expressible
as a non-empty conjunction of 2-clauses, is also expressible
as a non-empty disjunction of binary terms in which each
pair of terms share a literal. Then either ® is of the form
O = a A ®y, where a is a literal, or O is of the form (a V
b)A(bVe)A(aVe).

Proof. If ® can be expressed as a disjunction of 2-terms with
only one term or two terms (which share a literal), then ®
is of the form & = a A ®4, for some literal a. If ® can
be expressed as a disjunction of three distinct binary terms
(where each pair of terms shares a literal), then ® is of the
form (aVb)A(bVe)A(aVc). There is no set of four distinct
binary terms which satisfy the property that each pair shares
a literal. O

We now obtain the following characterisation theorem.

Proposition 4. Let ® be a boolean formula such that both
® and —~® are expressible as non-empty conjunctions of 2-
clauses. Then ® has one of the following forms (in which
a, b, ¢, d are distinct literals):

(1) a,
(2) aVb,
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(3) aNnb,

(4) an(bVe),

(5) (aVbd)A(aVe),

(6) (aVb)A(cVd),

(7) (aVb)A (V)N (cVd),

(8) (aVb)A(bVe)A(aVe),

(9) (aVbO)ABVe)A(aVd)A(cVd).

Proof. By Lemma 2, we are interested in ® that can be ex-
pressed as a conjunction of 2-clauses and a disjunction of
2-terms. If ®, when written as a disjunction of 2-terms, has
a unary term (i.e. ¢ can be written in the form a V ®,), then
Lemma 4 applies (cases (1), (2), (5)). If ® can be expressed
as a disjunction of binary terms, two of which share no lit-
erals, then Lemma 6 applies (cases (6), (7), (9)). If ® can
be expressed as a disjunction of binary terms, each pair of
which share a literal, then Lemma 7 applies (case (8)). In the
subcase of Lemma 7 in which ® can be written in the form
a N\ @1, Lemma 5 applies (cases (1), (3), (4)). O

The following corollary is simply a more succinct rewrit-
ing of Proposition 4.

Corollary 2. If ® is a boolean formula such that both ® and
—® are expressible as non-empty conjunctions of 2-clauses,
then ® has one of the three following forms (in which the
four literals are not necessarily distinct):

(i) (aVb)A(cVd),
(i) (aVO)A(bVe)A
(iii) (aVb)A(bVc)A

(cVva),
(aVd)A(cVad).

Proof. We can obtain the nine cases listed in Proposition 4
as follows: (1) seta = b = cin (iii), (2) seta = cand b = d
in (iii), (3) set a = b and ¢ = d in (iii), (4) set a = d in (iii),
(5) set a = cin (iii), (6) is case (i) (7) is case (ii), (8) set
a = din (ii), (9) is case (iii). O

It is straightforward to verify that the converse to Corol-
lary 2 holds, that is, any formula & satisfying at least one
of items (i), (ii) or (iii) is such that both ® and —® are ex-
pressible as conjunctions of 2-clauses. In the following, we
use the name square 2CNF for formulas that are express-
ible as both conjunctions of 2-clauses and disjunctions of 2-
terms (characterised in Proposition 4 and Corollary 2). The
name reflects the fact these formulas are the subformulas of
the square given by item (iii) of Corollary 2 (seeing literals
a,b,c,d as vertices and clauses as edges).

It is worth observing that square 2CNF formulas include
all binary relations. For example, the relation a # b can be
obtained by setting ¢ = —band d = —ain (a Vb) A (bV c) A
(cVvd).

Theorem 5. Let L be a boolean constraint language. The
following are equivalent:

(i) L has the polymorphism maj and is closed under tak-
ing complements
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(ii) Each relation in L is equivalent to a square 2CNE,
i.e. either empty, complete, or expressible in one of
the three following forms (in which the four literals are
not necessarily distinct): (i) (a V b) A (¢ V d), (ii) (a V
b)A(bVe)A(eVd), (iii) (aVD)A(bVe)A(aVd)A(cVd).

4.4 The Dichotomy for Boolean Languages

Bringing together what we have learnt in this section, we
have the following theorem.

Theorem 6. Let L be a finite boolean language closed
under taking complements. Then, assuming P#NP,
WAXPDT(L) € P iff at least one of the conditions holds:

1. Each relation in L is equivalent to a star-nested Horn for-
mula

2. Each relation in L is equivalent to a star-nested anti-Horn
Sformula

3. Each relation in L is equivalent to a linear equation over
GF(2)

4. Each relation in L is equivalent to a square 2CNF for-
mula.

The requirement that £ is finite in Theorem 6 arises from
technicalities related to the representation of infinite lan-
guages. Indeed, certain degenerate representations for the
relations of an infinite language £ may be problematic from
an algorithmic perspective. For example, the promise that
the relations of £ are equivalent to star-nested Horn formulas
might not be sufficient to ensure tractability (or even mem-
bership in NP) if they are encoded in a way that makes even
the most elementary relational operations NP-hard. How-
ever, this theorem is still true for infinite languages if one
makes the mild assumptions that (i) relations equivalent to
linear equations are always represented as such, and (ii) the
representation used for relations equivalent to star-nested
Horn/anti-Horn formulas allows for checking in polynomial
time whether a given assignment extends to a tuple.

Example 8. Consider the language L of Example 3, which
consists of all 2-conjunctions of 2-clauses. Now, extend L
with pseudo-boolean constraints a + b+ ¢ > 2 for any liter-
als a, b, c, where summation is over Z. This larger language
L' is closed under taking complements (the complement of
a+b+4+c>2is —a+ —b+ —¢ > 2), and all constraints
in L' can be expressed as square 2CNF formulas because
a+b+c>2=(aVb) ADVc)A (cVa) Therefore,
by Theorem 6 we have WAXPDT(L') € P. However, no qua-
ternary pseudo-boolean constraint a + b + ¢ + d > k with
1 < k < 4 can be expressed as a square 2CNF formula. In
fact, adding any such constraint to L would cause the cor-
responding WAXPDT problem to become NP-complete by
Theorem 6 as the resulting language would violate each of
the four tractability conditions.

5 Path-Based Explanations

Izza et al. (Izza, Ignatiev, and Marques-Silva 2022) intro-
duced the notion of path-based explanations for decision
trees: a path-based explanation is a subset of the conditions
on a path to a leaf. Since they study DT’s in which condi-
tions are arbitrary unary constraints of the form z; € S, this
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is also the basic building block of path explanations. Such
explanations are potentially more useful to the user than an
AXp which is composed of literals of the form z; = u. We
generalize the notion of path-based explanations to MDT’s,
before showing that the P/NP-hard dichotomy for boolean
languages also holds for this alternative notion of explana-
tion. Recall that we use path(«) to represent the set of con-
ditions satisfied on the path from the root to a leaf « of a
MDT.

Definition 4. Let k be a classifier calculated by an MDT, v
a feature-vector, and « the leaf of the MDT attained when
calculating k(v). A weak APXp (weak abductive path ex-
planation) of the decision k(x) = c is a subset P of the
conditions path(a) such that any assignment y that satisfies
the conditions P also satisfies k(y) = c¢. An APXp (ab-
ductive path explanation) of a decision is a subset-minimal
Weak APXp.

Let wAPXpDT(L) denote the problem of deciding
whether a set of constraints is a weak APXp for a given de-
cision taken by an £-DT. We can deduce from Lemma 1
that finding an APXp of a decision taken by an L£-DT is
polynomial-time if wAPXpDT(L) € P. We omit the proof
of the following theorem since its proof is almost identical
to the proof of Theorem 1.

Theorem 7. Let L be a finite boolean language closed
under taking complements. Then, assuming P#NP,
WAPXPDT(L) € P iff L has either max, min, maj or miny
as a polymorphism.

Corollary 3. Let L be a finite boolean language closed
under taking complements. Then WAPXPDT(L) € P iff
WAXPDT(L) € P

It follows that we have the same tractable-explainability
dichotomy for boolean languages for path-based explana-
tions (APXp’s) as for instance-based explanations (AXp’s)
(Theorem 6).

6 Conclusion

We have shown the close link between classes of multivari-
ate decision trees for which decisions can be explained in
polynomial time and tractable constraint languages closed
under complement. We have shown that tractable explain-
ability applies to existing and well-studied classes of MDTs,
such as oblique DTs, but also to novel classes of MDTs.
Such novel classes provide generalisations of classical DTs
in that branching is possible not only on the value of a sin-
gle variable but also according to specific (non-linear) con-
ditions on two or more variables.

Interesting open questions concern the evaluation of the
practical utility (Cafiete-Sifuentes, Monroy, and Medina-
Pérez 2021; Li, Dong, and Kothari 2005) and the theoreti-
cal computational power of such generalised DTs. There is
a rich history of the study of MDTs with linear conditions
as a computational model, such as bounds on the depth of
such decision trees to test the equality of two sets (Rein-
gold 1972). An avenue of future work is a similar the-
oretical study of the computational power of MDTs with
generalised interval constraints, two-fan constraints, UTVPI
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constraints, star-nested Horn constraints (studied in Sec-
tion 4.1), or square 2CNF formulas (studied in Section 4.3)
to determine whether there is a substantial gain in depth or
size when compared with classical DTs.

Our P/NP-hard dichotomy for boolean languages closed
under complement is an interesting theoretical result which
may find applications in other domains. This dichotomy
for boolean languages can also be seen as a foundation on
which to build a characterisation of tractable finite-domain
languages closed under complement.

An independent question is the so-called recognition
problem: given an arbitrary multivariate DT, determine
whether the set of constraints it uses is a sublanguage of one
of the tractable languages we have identified. It is reason-
able to assume that this problem would be solved off-line, if
at all.
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