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Abstract

We will show that Reiter’s default logic can be viewed as
a particular instantiation of causal reasoning. This will be
demonstrated by establishing back and forth translations be-
tween default theories and causal theories of the causal calcu-
lus, using a particular causal nonmonotonic semantics called
a default semantics. Moreover, it will be shown that Pearl’s
structural equation models can be viewed as default causal
theories in this sense. We will discuss also some global con-
sequences this representation could have for establishing a
general role of causation in nonmonotonic reasoning.

1 Introduction

The field of nonmonotonic reasoning has undergone an ex-
tensive development in its relatively short, less than a half-
century life. However, this impressive development has also
brought about an unbridled proliferation of formalisms and
approaches to nonmonotonic reasoning. Already now, there
are many areas of what is still customarily called nonmono-
tonic reasoning that do not, and even cannot communicate
with each other. In this respect, the present purely theoret-
ical study can be viewed as a contribution to an opposite,
unification development of this field. More precisely, our ul-
timate aim consists in showing that significant parts of non-
monotonic reasoning can be viewed as different instantia-
tions of general causal reasoning. This study will contribute
to this task by demonstrating that one of the key, original for-
malisms of nonmonotonic reasoning, default logic of Ray-
mond Reiter (?), can be viewed as such an instantiation of
causal reasoning. The corresponding causal representation
will also allow us to clarify the meaning of the main notions
associated with default logic and first of all of the concept of
default itself.

Our basic language in this paper will be a classical propo-
sitional language with the usual classical connectives and
constants {∧,∨,¬,→, t, f}. The symbol ⊨ will stand for
the classical entailment while Th will denote the associated
classical provability operator. In this study, p, g, r, . . . will
usually denote propositional atoms while A,B,C, . . . will
denote arbitrary classical propositions.

2 Default Logic
Default logic has been born as just one of a number of al-
ternative formalisms for nonmonotonic reasoning. Still, it
seems safe to argue even today that it is one of the key for-
malisms in this broad area of reasoning, both with respect to
its representation capabilities and in its relations with other
nonmonotonic formalisms (such as logic programming).

Originally, a default theory was defined in (?) as a pair
(W,D), where W is a set of classical propositions (the ax-
ioms) and D a set of default rules having an unusual form
A : b/C, where A and C are propositions and b a finite
set of propositions (called justifications). Very informally, a
rule A : b/C was intended to state something like:

“If A is accepted, and each B ∈ b can be consis-
tently assumed, then C should be accepted.”

The most salient feature of such rules was their defeasi-
bility; a default rule was viewed as an inference rule A ⊢ C
that should always be applied unless it is canceled by refut-
ing one of its justifications in b.

Default rules were intended to act as meta-rules for ex-
tending the initial knowledge base W beyond what is strictly
known. Accordingly, the nonmonotonic semantics of default
logic was defined by determining admissible extensions of
a default theory. An extension was defined by a fixed point
construction: for a set u of propositions, let Γ(u) be the least
deductively closed set that includes W and satisfies the fol-
lowing condition:

If A : b/C ∈ D, A ∈ Γ(u) and ¬B /∈ u, for every
B ∈ b, then C ∈ Γ(u).

Then a set s is an extension of the default theory if and
only if Γ(s) = s.

(?) suggested a more abstract description of default logic
using the notion of a context-dependent proof as a way of
formalizing Reiter’s operator Γ. This representation was de-
veloped in (?) to a general theory of nonmonotonic rule
systems (see also (?)).

Given a set s of propositions (the “context”), let us con-
sider the set D(s) of all propositions that are derivable from
W using classical entailment and the following ordinary in-
ference rules that are allowed by the context:

{A ⊢ C | A : b/C ∈ D & ¬B /∈ s, for every B ∈ b}.
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Then s is an extension of the default theory if and only if
s = D(s).

The above representation has made it vivid that a large
part of reasoning in default logic involves ordinary rule-
based deductive inference, the only distinction from tradi-
tional deductive systems being that the very set of rules al-
lowed in the inference process is determined by the (assump-
tions made in the) context. In particular, an extension of a
default theory can be viewed as a set of propositions that are
logically provable (= justified) on the basis of taking itself
as an assumption context.

In what follows, instead of a pair (W,D) of propositional
axioms and default inference rules, we will represent a de-
fault theory simply as a set of rules of the form A : b/C,
where b may be empty. In the latter case, the default rule
A : /C with an empty justification set represents an ordinary
inference rule A ⊢ C, while the axioms W are representable
via rules of the form :/A, for A ∈ W .

2.1 Default Logic Made Simple
It was shown in (?) that default logic is reducible to a
rather simple formalism that contains only deductive infer-
ence rules and default assumptions.

The reduction. Let us extend the source classical proposi-
tional language L with new propositional atoms A◦ for every
proposition A in L. For a set u of propositions from L, u◦

will denote the set of new atoms {A◦ | A ∈ u}.
Next, if D is a default theory in L, then D◦ will denote

a default theory in the extended language that includes the
following set of plain inference rules:

{A, b◦ ⊢ C | A : b/C ∈ D},
plus the following two rules for every formula A from L that
appears as a justification in the rules from D:

¬A ⊢ ¬A◦ and : A◦/A◦.

The following theorem (proved in (?)) shows, in effect,
that the above translation is a polynomial, faithful, and mod-
ular translation (PFM) in the sense of (?).
Proposition 1. A set u is an extension of a default theory D
if and only if there is a unique extension u0 of D◦ such that
u = u0 ∩ L.

The above translation reduces an arbitrary default theory
to a default theory containing only plain deductive inference
rules and supernormal default rules of the form :A/A. We
will call such default theories simple in what follows. The
corresponding reduction allows us to provide an alternative
description of default reasoning as deductive reasoning in
the presence of default assumptions.

Simple default theories. Supernormal default rule :A/A
asserts, in effect, that proposition A should be accepted
whenever it is consistent with the rest of the facts and rules
of a default theory. Such a proposition can be viewed as a
default assumption of the theory, which allows us to refor-
mulate any simple default theory as a formalism that contain
only plain inference rules and defaults.

Definition 1. A simple default theory is a pair (∆,D),
where ∆ is a set of inference rules, and D a distinguished
set of propositions called default assumptions (or simply de-
faults).

Default reasoning in this setting amounts to deriving justi-
fied conclusions from a default theory by using its rules and
default assumptions. However, in the case when the set of all
defaults D is jointly incompatible with the background the-
ory ∆, we must make a reasoned choice among the default
assumptions. At this point, default reasoning requires that
a reasonable set of assumptions that can be actually used in
this context not only should be consistent and maximal but
also should explain why the rest of the default assumptions
should be rejected. An important prerequisite of such expla-
nations is that the underlying inference system ∆ contains
cancellation rules by which some sets of assumptions refute
others (given the known facts). The appropriate choices of
assumptions will determine then the nonmonotonic seman-
tics of a default theory.

For an arbitrary set ∆ of deductive, Tarski inference rules,
let Cn∆ denote the provability operator associated with the
least supraclassical consequence relation containing ∆. In
other words, for any set u of propositions, Cn∆(u) is the
set of propositions that are derivable from u using the rules
from ∆ and classical entailment.

Definition 2. Given a simple default theory (∆,D),

• A set D0 of defaults will be called stable in (∆,D) if it is
consistent and refutes any default outside the set:

¬A ∈ Cn∆(D0), for any A ∈ D \ D0.

• A set s of propositions is an extension of a simple default
theory if s = Cn∆(D0) for some stable set of defaults
D0. The set of extensions determines the nonmonotonic
semantics of the default theory.

Combining the above definitions of a stable set and that
of extension, we obtain the following description of the non-
monotonic semantics.

Proposition 2. A set s of propositions is an extension of a
simple default theory (∆,D) if and only if it satisfies the
following two conditions:

• s is the deductive closure of the set of its defaults:

s = Cn∆(D ∩ s);

• s decides the default set: for any A ∈ D, either A ∈ s, or
¬A ∈ s.

Simple default theories and their nonmonotonic semantics
provide presumably the simplest and most transparent de-
scription of a full-fledged nonmonotonic reasoning (that is,
of nonmonotonic reasoning that includes classical deductive
logic as its essential logical basis). In a broader perspective,
however, the above description also displays default logic as
a particular instantiation of two more general approaches to
our reasoning.

To begin with, simple default theories display default
logic as a particular instance of an abductive reasoning in
which default assumptions play the role of abducibles. This

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

118



understanding of default logic was envisaged to some ex-
tent already in the Theorist system of (?). Still, the abduc-
tive formalism of Theorist has not fully captured the repre-
sentation capabilities of default logic due to the fact that it
was fully classical, while default reasoning is only supra-
classical; though it subsumes classical logic, it also requires
essential use of inference rules that are not reducible to cor-
responding classical implications.

As a second correspondence, the above formalism makes
it especially vivid that default logic can be viewed as a prin-
cipal instantiation of a formal assumption-based argumen-
tation (see (?)) where default assumptions play the role of
arguments. We will return to these connections with general
reasoning formalisms repeatedly in what follows.

3 The Causal Calculus
Based on ideas from (?), the causal calculus was introduced
in (?) as a nonmonotonic formalism purported to serve as a
logical basis for reasoning about action and change in AI. A
generalization of the causal calculus to the first-order classi-
cal language was described in (?). This line of research has
led to the action description language C+, which is based
on this calculus and serves for describing dynamic domains
(?). A logical basis of the causal calculus was described
in (?) while (?; ?) studied its possible uses as a general-
purpose nonmonotonic formalism. Later it was shown in (?)
that structural equation models of (?) are representable in
the causal calculus, so the latter can actually be seen as a
formalism that provides a unified logical approach to cau-
sation. A more systematic description of this approach, its
historical roots, and the range of its possible applications in
nonmonotonic reasoning and beyond can be found in (?).

The causal calculus can be seen as a natural extension
of classical logic that allows for causal reasoning. From a
purely logical point of view, this generalization amounts to
dropping the reflexivity postulate of classical deductive in-
ference. However, the associated inference systems are as-
signed both an ‘ordinary’ logical semantics (that gives a se-
mantic interpretation to causal rules) and a natural nonmono-
tonic semantics which provides a representation framework
for causal reasoning.

3.1 Production Inference
The basic informational units of the causal calculus are
rules, or conditionals, of the form A⇒B that hold among
classical propositions. A rule A⇒B says that A causes
B. Such rules determine our causal language, which is built
on top of the underlying language of classical logic. More-
over, the main role of the postulates in the definition below
amounts to securing that the corresponding causal reasoning
respects this underlying classical logic of propositions.
Definition 3. A production inference relation is a binary re-
lation ⇒ on the set of classical propositions satisfying the
following postulates:
(Strengthening) If A ⊨ B and B⇒C, then A⇒C;
(Weakening) If A⇒B and B ⊨ C, then A⇒C;
(And) If A⇒B and A⇒C, then A⇒B ∧ C;

(Truth) t⇒ t;
(Falsity) f ⇒ f .

The most significant “omission” of the above set of pos-
tulates is the absence of the reflexivity postulate A⇒A. It
is precisely this feature of causal rules that creates the pos-
sibility of nonmonotonic reasoning in this framework.

We extend causal rules to rules having arbitrary sets of
propositions as premises using the compactness recipe: for
any set u of propositions, we define u⇒A as follows:

u⇒A ≡
∧

a⇒A, for some finite a ⊆ u.

For a set u of propositions, C(u) denotes the set of propo-
sitions caused by u, that is,

C(u) = {A | u⇒A}.

The causal operator C plays much the same role as the
usual derivability operator for consequence relations. Note,
in particular, that it is monotonic.

(Monotonicity) If u ⊆ v, then C(u) ⊆ C(v).
Note also that C(u) is always a deductively closed set: for

any set u,
C(u) = Th(C(u)).

Still, C is not inclusive: that is, u ⊆ C(u) does not always
hold. Also, it is not idempotent: that is, C(C(u)) can be
distinct from C(u).

Causal theories. By a causal theory we will mean an ar-
bitrary set of causal rules.

For any set u of propositions and a causal theory ∆, we
will denote by ∆(u) the set of all propositions that are di-
rectly caused by u in ∆, that is,

∆(u) = {A | B⇒A ∈ ∆, for some B ∈ u}.

For any causal theory ∆, there exists a least production
relation that includes ∆. We will denote it by ⇒∆ while C∆

will denote the corresponding causal derivability operator.
Clearly, ⇒∆ is the set of all causal rules that can be derived
from ∆ using the postulates for a production inference rela-
tion.

Logical Semantics of Causal Rules. The semantic frame-
work for production relations can be built from pairs of de-
ductively closed theories called bimodels.

Definition 4. A pair of consistent deductively closed sets
will be called a classical bimodel. A set of classical bimod-
els will be called a classical binary semantics.

A classical binary semantics can also be viewed as a bi-
nary relation on the set of deductive theories. Accordingly,
given a set of bimodels (semantics) B, we will write uBv to
denote the fact that the a bimodel (u, v) belongs to B. These
descriptions will be used interchangeably in what follows.

Now we will define the notion of validity of causal rules
with respect to a classical binary semantics.
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Definition 5. A rule A⇒B will be said to be valid in a
classical binary semantics B if, for any bimodel (u, v) from
B, A ∈ v only if B ∈ u.

It can be shown that a binary relation ⇒ on the set of
propositions is a production inference relation if and only if
it is determined by a classical binary semantics.

3.2 Regular Inference
A production inference relation will be called regular if it
satisfies:

(Cut) If A⇒B and A ∧B⇒C, then A⇒C.

Cut is one of the basic rules for ordinary consequence re-
lations. It corresponds to the following characteristic prop-
erty of the causal operator:

C(u ∪ C(u)) ⊆ C(u).

The semantic characterization of regular inference rela-
tions can be obtained by considering only classical bimodels
(u, v) such that u ⊆ v. Such bimodels (and the correspond-
ing semantics) have been called consistent ones.

Regular production relations have a number of additional
properties. Thus, any such relation will already be transitive.

A causal rule of the form A⇒ f is called a constraint.
Such rules can be used for incorporating a purely factual in-
formation into causal theories: a rule A⇒ f says, in a sense,
that A should not hold in any intended model.

Now, an important property of regular production rela-
tions is that any causal rule implies the corresponding con-
straint:
(Constraint) If A⇒B, then A ∧ ¬B⇒ f .

Regular inference relations can already be described in
terms of a usual notion of a propositional theory.
Definition 6. A set u of propositions will be called a the-
ory of a production relation if it is deductively closed and
C(u) ⊆ u. A set u will be called a (propositional) theory of
a causal theory ∆ if it is a theory of ⇒∆.

A theory of a production relation is a set of propositions
that is closed both deductively and with respect to its causal
rules: namely, if A ∈ u and A⇒B, then B ∈ u. Ac-
cordingly, such theories have much the same properties as
ordinary theories of consequence relations. Note, in particu-
lar, that the set of theories of a production inference relation
is closed with respect to arbitrary intersections, and conse-
quently any set of propositions is included in the least such
theory.

As could be expected, propositional theories of a causal
theory ∆ are sets of propositions that are closed with respect
to the rules of ∆.

3.3 Causation versus Consequence
A further insight into the properties of regular causal infer-
ence can be obtained by comparing it with associated con-
sequence relations.

Note that any causal theory, and hence any production in-
ference relation, can also be considered as an ordinary con-
ditional theory (a set of inference rules), so it determines the

corresponding supraclassical consequence relation. In or-
der to construct such a consequence relation, we need only
to “restore” reflexivity of the corresponding inference. The
following construction gives a direct description of this con-
sequence relation in terms of the source production relation.
Namely, for a (regular) production relation ⇒, we can define
the following consequence relation:

A ⊢⇒ B ≡ A⇒(A→B).

Proposition 3. If ⇒ is a regular production relation, then
⊢⇒ is the least supraclassical consequence relation contain-
ing ⇒.

Let Cn⇒ denote the provability operator corresponding
to ⊢⇒. Then the above description can be extended to the
following equality, for any set u of propositions:

Cn⇒(u) = Th(u ∪ C(u)).
Incidentally, the above equality shows that regular causal

inference and its associated deductive consequence are in-
deed close relatives since it shows that C(u) captures all non-
trivial consequences included in Cn⇒(u), save for u itself.
This fact will turn out to be useful in what follows.

As a first consequence of the above correspondence, we
obtain:
Corollary 4. Theories of ⇒ coincide with the theories of
⊢⇒.

Since theories of ⊢⇒ are exactly sets of propositions of
the form Cn⇒(u), the above result implies that such sets are
precisely theories of ⇒.

The above description of associated consequence rela-
tions can be immediately generalized to arbitrary causal (=
conditional) theories. Thus, if Cn∆ denotes the least supr-
aclassical consequence relation containing a causal theory
∆ while C∆ is the production operator of the least regular
production relation containing ∆, then we have:

Cn∆(u) = Th(u ∪ C∆(u)).

3.4 Nonmonotonic Semantics of Causal Theories
As one of its primary objectives, a causal theory should de-
termine the set of situations (or worlds) that satisfy the rules
of the theory. However, this principal semantic function is
realized in the causal calculus by assigning a causal theory
a particular nonmonotonic semantics. By the intended inter-
pretation, situations that satisfy a causal theory should not
only be closed with respect to the causal rules of the theory,
but they should also satisfy the law of causality, according
to which any proposition that holds in a model should have
a cause in this model.

Formally, the fact that the causal operator C is not reflex-
ive creates an important distinction among theories of a pro-
duction relation.
Definition 7. For a production inference relation ⇒,
• A set u of propositions will be called explanatory closed,

if u ⊆ C(u).
• A theory u of ⇒ will be called exact, if it is consistent and

explanatory closed, that is,

u = C(u).
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• A set u is an exact theory of a causal theory ∆, if it is an
exact theory of ⇒∆.

In what follows, an exact theory will also be called an
exact model of the corresponding causal theory or a produc-
tion relation. An exact model describes a situation that not
only satisfies the relevant causal rules, but also is such that
every proposition that holds in it is caused by other proposi-
tions in accordance with these rules. In this sense, it directly
implements the law of causation, or Leibniz’s principle of
sufficient reason, as part of its definition. This leads us to
the following notion of a nonmonotonic semantics:

Definition 8. A nonmonotonic semantics of a production
inference relation or a causal theory is the set of all its exact
models.

All the information that can be discerned from the non-
monotonic semantics of a causal theory can be seen as non-
monotonically implied by the latter. This includes, for in-
stance, so-called skeptical conclusions (what holds for all
exact models) or credulous conclusions (what holds in at
least one exact model).

Exact theories are precisely fixed points of the causal op-
erator C. Since the latter operator is monotonic and contin-
uous, exact theories (and hence the nonmonotonic seman-
tics) always exist. Thus, the general properties of monotonic
operators imply that any causal theory has the least exact
model, which coincides with the set of propositions that are
caused by truth t. Also, any exact model is included in a
maximal exact model.

However, exact theories are not closed with respect to ar-
bitrary intersections. Consequently, the least exact theory
containing a given set of propositions does not always exist.

It has been shown in (?) that regular inference provides
an adequate and maximal logical framework for reasoning
with exact models.

The following technical result (see Lemma 8.21 in (?))
will play a key role in establishing the target correspondence
between extensions of a default theory and a particular kind
of exact models for associated causal theories.

To simplify the notation, C below will denote the causal
operator of a regular production relation, while Cn—the as-
sociated supraclassical consequence relation (see Proposi-
tion 3 above).

Proposition 5. For a regular production relation, the fol-
lowing conditions are equivalent:

• u is an explanatory closed set (that is, u ⊆ C(u));
• C(u) = Cn(u);
• Cn(u) is an exact theory.

The above lemma says in particular that causal conse-
quences of an explanatory closed set of propositions can be
captured using the associated consequence relation Cn, and
vice versa.

As a consequence of the above lemma, we obtain also

Corollary 6. If u is an explanatory closed set of a regular
production relation, then C(u) (= Cn(u)) is an exact model.

3.5 Axioms, Assumptions, and Abducibles
The nonmonotonic semantics of causal theories is based on
the law of causality, or Leibniz’s principle of sufficient rea-
son, which requires that any proposition that belongs to an
exact model should have a cause that also belongs to the
model. Accordingly, justification of accepted propositions
constitutes an essential part of this semantic framework (see,
e.g., (?) for an abstract theory of justifications).

The law of causality inevitably leads to a fundamen-
tal problem known already in antiquity as the Agrippan
trilemma: if you do not want to accept infinite regress of cau-
sation (or justification), you should accept either uncaused
or self-caused propositions. Now, in the framework of the
causal calculus, there are two kinds of propositions that can
play, respectively, these two roles:

Definition 9. • A proposition A will be called an axiom of
a causal theory ∆ if the rule t⇒A belongs to ∆;

• A proposition A will be called an assumption of a causal
theory if the rule A⇒A belongs to it.

In clear contrast with purely deductive reasoning, both
axioms and assumptions provide reasonable end-points of
the justification process in causal reasoning: axioms are
grounded in the Truth (t), while assumptions naturally cor-
respond in this sense to self-evident propositions. It is easy
to show that, even for general production relations, any ax-
iom will also be an assumption, though not vice versa. The
difference between the two can be described as follows. Ev-
ery axiom must be accepted in any reasonable model, and
hence it should belong to any exact model. In contrast, any
assumption can be included into an exact theory when it is
consistent with the latter, but it does not have to be included
into it. As a result, causal theories admit in general multi-
ple exact models, depending on the assumptions we actually
accept. This functionality makes assumptions much sim-
ilar to abducibles in an abductive system. In fact, it was
shown in (?) that the causal calculus provides in this sense
a uniform and syntax-independent description of abductive
reasoning. Moreover, it has been shown that in many regu-
lar cases (notably, in the finite case) the correspondence be-
tween causal and abductive theories is even bidirectional in
the sense that the nonmonotonic semantics of a causal the-
ory coincides with the semantics of an associated abductive
system.

4 Defaults versus Facts
It turns out, however, that even the above notion of an as-
sumption still does not provide an adequate formal repre-
sentation for the concept of default as it is (implicitly) under-
stood in default logic. Moreover, default logic implements
also a more stringent, ‘puritan’ notion of acceptance for the
rest of propositions. Accordingly, our proclaimed aim of
representing default logic as a species of causal reasoning
cannot be achieved without a proper formalization of these
notions in causal terms.
Remark. Some distant origins of the distinction between de-
faults and assumptions in general can be found in the differ-
ence between two models of diagnosis, consistency-based
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and abductive one (see (?)). The importance of causal rea-
soning for a general theory of diagnosis and, in particular,
for clarifying these distinctions has been shown first in (?).

In what follows, we will consider defaults to be a special
kind of assumptions. With this understanding, the differ-
ence between defaults and assumptions in general can be in-
formally described as follows: defaults are assumptions that
we must accept unless there are reasons to the contrary.

In order to formulate the above requirement in causal
terms, let as say that a proposition A is refuted in a causal
model if the model contains a cause for the contrary propo-
sition ¬A. Then we can formulate the following (still infor-
mal) principle of Default Acceptance:

Default Acceptance A default is an assumption that is ac-
cepted whenever it is not refuted.

The principle of Default Acceptance might be viewed as
an ‘anti-Leibniz’ principle since it says, in effect, that a de-
fault assumption is not accepted only if we have reasons for
its rejection. Note, however, that the original Leibniz prin-
ciple of sufficient reason should still remain to hold in ex-
act models. In particular, a proposition ¬A holds in such a
model only if ¬A has a cause in this model (that is, when
A is refuted). Accordingly, the principle of Default Accep-
tance in such models boils down to the principle of Default
Bivalence:

Default Bivalence For any exact model u and any default
assumption A, either A ∈ u or ¬A ∈ u.

The above principle of default bivalence can be consid-
ered as a characteristic property of defaults. Again, this is
in clear contrast with classical logical reasoning where all
propositions are required to satisfy bivalence. Note also that
any axiom of a causal theory will also be a default on this
understanding (namely a default that cannot be refuted). In
this sense, defaults can be viewed as an intermediary con-
cept between axioms and assumptions in general.

Bipolarity. Turing now to the justification status of the rest
of propositions in default logic, the notion of an extension of
a default theory presupposes, in effect, that any such propo-
sition should be accepted only if it is grounded, ultimately, in
the set of accepted defaults. In other words, once we choose
an acceptable (“stable”) set of default assumptions, the rest
of acceptable propositions should be derived from this set.
This pertains, in particular, even to other assumptions that
could belong to a (causal) theory; any such assumption be-
comes unacceptable unless it is derived from accepted de-
fault assumptions.

The above stringent understanding of acceptance for de-
faults and the rest of propositions creates, in effect, a bipolar
system of reasoning that divides all propositions into two
classes with opposite principles of acceptance. The first
class contains factual propositions that are viewed as un-
acceptable unless they are derived from (or caused by) other
propositions (and ultimately by accepted defaults), while the
second class contains defaults that are viewed as acceptable
unless they are refuted by other propositions (and, again, ul-
timately by other accepted defaults). It is this understand-

ing that also makes default logic a principal instantiation of
(assumption-based) argumentation (?) where defaults play
the role of arguments (see (?) for a more detailed descrip-
tion of this connection).
Remark. The above description allows us to moderate, how-
ever, the main complaint against the stable semantics of de-
fault logic and logic programming raised in (?) (and ex-
ploited as a justification for the desirability of other, more
relaxed nonmonotonic semantics), namely that such a se-
mantics is overly ’opinionated’ in that it requires any argu-
ment outside a stable set of arguments to be refuted (i.e.,
attacked) by this stable set. On our description, this require-
ment (formulated as the principle of default acceptance or
default bivalence) is restricted to defaults only. In a sense, it
is a requirement that reflects the meaning of defaults as op-
posed to other propositions and even assumptions in general.
On our account, a default could be defined as a proposition
that should be accepted in the absence of reasons to the con-
trary.

The above principles of acceptance that are sanctioned by
default logic can be formulated as additional constraints that
should be imposed on acceptable exact models of causal the-
ories, and we will provide a formal description of the corre-
sponding models in the next section. These constraints could
also be viewed, however, as a certain limitation of default
logic as compared with general causal reasoning (as formal-
ized in the causal calculus). In particular, it makes default
logic less suitable for other applications of nonmonotonic
reasoning in AI, such as abductive reasoning (and diagno-
sis), or reasoning about actions (see, e.g., (?)) that seem to
require the use of assumptions that are not defaults in the
sense of default logic. Still, in many regular cases these two
views of causal reasoning can be reconciled for a mutual
benefit of both sides. It will be shown, in particular, that even
Pearl’s original approach to causal reasoning in the frame-
work of structural equation models (see (?)) can be viewed
as an instantiation of a default theory.

5 Default Causal Theories
In this section we are going to formulate a ‘causal counter-
part’ of default logic in the causal calculus.

We will begin with the following definition.
Definition 10. A default causal theory is a pair (∆,D),
where ∆ is a causal theory, and D a distinguished subset
of its assumptions, called defaults.

As follows from the above definition, any default A from
D is already an assumption of the relevant causal theory, that
is, a rule A⇒A belongs to ∆.

Our next definition describes the intended nonmonotonic
semantics of a default causal theory.
Definition 11. A default model of a default causal theory
(∆,D) is an exact model m of ∆ that satisfies the following
two conditions:
(Default Grounding) m is caused by the set of its defaults:

m = C∆(m ∩ D).

(Default Bivalence) For any default D ∈ D,
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either D ∈ m or ¬D ∈ m.

By a default semantics of a default causal theory we will
mean the set of all its default models.

It can be verified that if an arbitrary set m of propositions
satisfies the condition of Default Grounding, it will already
be an exact model of the corresponding causal theory ∆,
that is, m = C∆(m) will hold. Consequently, the default se-
mantics can be viewed as a special case of the general non-
monotonic semantics of causal theories. Still, there are two
reasons why the reverse inclusion does not hold in general.
First, an exact model may be generated not only by defaults,
but also by other assumptions (on our causal understanding
of the latter). Second, even when an exact model is caused
(generated) by some set of defaults, it may still not satisfy
the second condition of the above definition (the principle
of default bivalence). This might happen, in particular, even
when the relevant set of generating defaults is maximal in
the sense that it is incompatible with every other default out-
side this set, but the background causal theory lacks appro-
priate cancellation rules that would allow us to refute these
other defaults. As an extreme case, a default causal theory
may even lack default models at all (though it always has
exact models).

5.1 Correspondence with Default Logic
We will establish now a bidirectional correspondence be-
tween the above notion of a default causal theory and its
default semantics and ’ordinary’ default theories of Reiter’s
default logic with their associated semantics of extensions.
In establishing this correspondence, we will make an essen-
tial use of simple default theories as an intermediate concept
(see Proposition 1 above).

The first direction of the correspondence is straightfor-
ward. Given a default causal theory D = (∆,D), we will
denote by S(D) a simple default theory (∆c,D), where ∆c

is the set of plain deductive inference rules corresponding to
the causal rules of ∆. Then we have

Theorem 7. The default semantics of a default causal the-
ory D coincides with the set of extensions of S(D).

The proof of the above theorem is also straightforward,
given the fact that the causal inference operator C∆ used in
the above definition of default causal models (see Definition
11) can be safely replaced in this particular context with the
corresponding operator Cn of supraclassical deductive in-
ference (see Proposition 5).

For the reverse direction of correspondence, from default
logic to causal theories, note first that the above theorem can
be reversed in the sense that any simple default theory can be
directly transformed into a default causal theory by simply
viewing its inference rules as causal rules. This allows us to
provide a representation of default logic in the causal calcu-
lus by combining the above direct correspondence between
simple default theories and causal theories with our previous
reduction of arbitrary default theories to simple ones (see
Proposition 1 above).

Such a representation can be described directly as follows.
Given an arbitrary default theory D in some propositional

language L, we will transform it first into the corresponding
simple default theory (∆D,D) in an extended language L◦,
where

∆D = {A, b◦ ⊢ C | A : b/C ∈ D} ∪ {¬A ⊢ ¬A◦},

whereas D is the set of new atoms A◦ for every formula
A that appears as a justification in the rules from D. As
a second step, we will just reformulate this simple default
theory as a default causal theory C(D) by considering every
rule of ∆D as a causal rule. Then we obtain the following
correspondence.
Theorem 8. A set u is an extension of a default theory D if
and only if there is a unique default model u0 of C(D) such
that u = u0 ∩ L.

5.2 Pearl’s Causal Models as Default Theories
A representation of Pearl’s causal models in the causal cal-
culus was provided in (?). It was based, however, on a cer-
tain generalization of Pearl’s notion of a causal model, a
generalization that has relieved it, in effect, from some of its
more specific features such as acyclicity (recursiveness) and
uniqueness of solutions. As an amendment to this general
representation, we are going to show now that the original
Pearl’s causal model can actually be viewed as an instance
of a default causal theory as described in this paper.

According to (?, Definition 7.1.1), a causal model is a
triple M = ⟨U, V, F ⟩, where
• U is a set of exogenous variables,
• V is a finite set {V1, V2, . . . , Vn} of endogenous variables

that are determined by other variables in U ∪ V , and
• F is a set of functions {f1, f2, . . . , fn} such that each fi

is a mapping from U ∪ (V \Vi) to Vi, and the entire set,
F , forms a mapping from U to V .

F can be represented as a set of structural equations

Vi = fi(PAi, Ui) i = 1, . . . , n,

where PAi is the unique minimal set of variables in V \{Vi}
(parents of Vi) sufficient for representing fi, and similarly
for the relevant set of exogenous variables Ui ⊆ U . Each
such equation stands for a set of “structural” equalities

vi = fi(pai, ui) i = 1, . . . , n,

where vi, pai and ui are, respectively, particular realizations
of Vi, PAi and Ui. Such an equality assigns a specific value
vi to a variable Vi depending on the values of its parents and
relevant exogenous variables.

In Pearl’s account, every instantiation U = u of the ex-
ogenous variables determines a particular “causal world” of
the causal model. Such worlds stand in one-to-one corre-
spondence with the solutions to the above equations in the
ordinary mathematical sense. However, structural equations
also encode causal information in their very syntax by treat-
ing the variable on the left-hand side of the = as the effect
and treating those on the right as causes. Accordingly, the
equality signs in structural equations convey the asymmetri-
cal relation of “is determined by.”
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Since Pearl’s causal models have been formulated in the
language of structural equations, their comprehensive logi-
cal description could be achieved only in the first-order lan-
guage. The corresponding generalization of the causal cal-
culus to a first-order language was actually described in (?).
Still, for our current purposes we can obviate this limita-
tion of our (propositional) causal calculus by considering
the Herbrand base of this first-order language as our propo-
sitional language in this section. This Herbrand base con-
sists of all propositions of the form X = x, where X is
some (exogenous or endogenous) variable while x is its par-
ticular admissible value. In other words, admissible value
assignments to exogenous and endogenous variables of the
structural equations will be viewed as propositional atoms
of the corresponding propositional language. In particular,
instantiations of exogenous and endogenous variables will
be called, respectively, exogenous and endogenous atoms.

Using the above reformulation, the representation of
Pearl’s causal models in the causal calculus, suggested in
(?), amounted in effect to viewing each structural equality
vi = fi(pai, ui) for a particular instantiation of the relevant
variables as a causal rule saying that the instantiation pai
of the parent endogenous variables PAi and the instantia-
tion ui of exogenous variables Ui causes the instantiation
fi(pai, ui) of Vi:

PAi = pai, Ui = ui ⇒ Vi = fi(pai, ui).

In the special case when all the relevant variables are
Boolean, a Boolean structural equation p = F produces in
this sense two causal rules

F ⇒ p and ¬F ⇒¬p.
We refer the reader to (?) for a more detailed (and precise)

description.

A complete representation of Pearl’s causal models in the
causal calculus required also a determination of the causal
status of the exogenous variables. In the framework of (?),
the corresponding exogenous atoms were taken to be the as-
sumptions of the resulting causal theory. In particular, in the
Boolean case these exogenous atoms were required to sat-
isfy the rules

p⇒ p and ¬p⇒¬p.
As we discussed earlier, assumptions are ‘self-justified’

propositions in a causal theory that can be accepted when-
ever they are consistent with the rest, though they need not
be accepted. On the face of it, this stands in a clear contrast
with an understanding of the role of exogenous variables in
Pearl’s causal models, since instantiation of the latter pro-
vides an ultimate basis of the “causal worlds” determined by
such models, so maximal coherent instantiations of all such
variables should be accepted. Still, the way out of this dis-
crepancy, suggested in (?), amounted to restricting the corre-
sponding exact models to worlds in the usual logical sense.
In the terminology of the present paper, however, the solu-
tion amounted to requiring Bivalence for all propositions of
the corresponding language. In particular, it required all as-
sumptions of the relevant causal theory to become default
assumptions in the sense of the present paper.

The representation of default logic in the causal calculus,
described in this paper, suggests a natural and more adequate
representation of Pearl’s causal models, a representation that
is not based on the universal principle of bivalence. Namely,
we can consider a causal model in the sense of Pearl as a de-
fault causal theory in which exogenous atoms play the role
of defaults, while endogenous atoms correspond to factual
propositions. Then the principle of default acceptance will
require that any default model should decide (accept or re-
fute) all exogenous atoms, while the first condition of the
definition of a default model (namely, the condition of de-
fault grounding) will provide precise formulation for Pearl’s
requirement that the entire set of functions F determined by
structural equations forms a mapping from U to V , which
means that, once a particular instantiation of the exogenous
variables U = u is settled, the entire set of structural equa-
tions will have a unique solution V (u). Accordingly, we can
formulate the following representation result.

Theorem 9. If DP is a default causal theory corresponding
to a Pearl’s causal model P by the above representation,
then default causal models of DP correspond precisely to
causal worlds of P .

It is important to observe that, insofar as the structural
equations determine a unique solution V (u) for all endoge-
nous variables and for every instantiation u of the exoge-
nous variables U (which holds, for instance, in recursive
(acyclic) models), the corresponding default causal models
will still be worlds in the usual logical meaning of the term.
This will happen, however, not because of the imposed bi-
valence for all propositions, but simply due to the fact that
causal rules of the default causal theory DP corresponding
to Pearl’s causal model P will have a special form: they will
be determinate rules which have only literals in their heads.
As has been shown in (?), the nonmonotonic semantics of
a determinate causal theory contains only exact models that
are generated by literals.

As has been mentioned by Pearl himself (in a footnote),
the above representation ceases to be adequate for nonrecur-
sive systems of structural equations that could have multiple
solutions for the same value assignment of the exogenous
variables. Such non-recursive systems has been studied in
(?) and some other studies in structural equation models
(especially those that deal with reversible causation). For
the majority of such causal systems, the general nonmono-
tonic semantics of exact models, as well as the representa-
tion of (?), will still be appropriate. Moreover, such causal
systems could still be viewed as default causal theories in
which exogenous atoms play the role of defaults. However,
the corresponding causal theories will include also plain as-
sumptions (that are not defaults) that would be ‘responsible’
for creating additional exact models that are not generated
by defaults only, and thereby would violate the condition
of default grounding for default models from Definition 11
above.

An even more general approach to a causal representation
of physical models described by usual mathematical equa-
tions was sketched in (?, Chapter 4), which was based on
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the use of non-determinate axioms of the form

t⇒A,

where A provides a formal description of a mathematical
equation in an appropriate (presumably first-order) logical
language. The approach was illustrated on the use of the
ideal gas law in causal discourse. It should be clear that
such a law does not describe directly causal relations among
the variables involved; the ideal gas law is only a “non-
directional” mathematical equation

PV = kT

that determines functional relationships among the vari-
ables of pressure (P), volume (V), and temperature (T)
of a fixed amount of gas. Still, such functional depen-
dencies are not completely noncausal since they can be
used to determine such causal relations in every actual in-
stantiation of the model that could include also causal ac-
tions of heating (the gas chamber) and pushing (the piston
of the chamber). Moreover, the whole procedure of us-
ing such axioms in causal reasoning turns out to be much
similar to the methods of generating a causal order in a
system described by a set of mathematical equations (?;
?).

These are only some of the prospects for representing sig-
nificant parts of physical discourse in causal reasoning (and
thereby in knowledge representation and reasoning in AI),
and they definitely seem worth further investigation.

6 Some Conclusions and Prospects
Initial versions of the causal calculus as described, e.g., in
(?) and (?; ?), were primarily focused on models that are
worlds. This world-based semantics was even called the
causal semantics in (?). Presumably, this primary focus was
guided by the intended initial applications of the causal cal-
culus in reasoning about action and change in AI. Anyway, it
has been discovered already in an early (unpublished) paper
of McCain and Turner On relating causal theories to other
formalisms (1997) that causal rules A⇒B under this world-
based semantics can be interpreted as default rules of the
form :A/B, namely premise-free default rules with a single
justification. Moreover, this ‘reverse’ correspondence be-
tween causal calculus and default logic has been taken up
and developed in (?) to a general correspondence between
the world-based causal calculus and a particular kind of bi-
consequence relations.

Still, already in (?), it was shown that a more general
nonmonotonic semantics for the causal calculus (that has
been used as the main semantics in this paper) provides a
natural representation of abductive reasoning. The present
study complements this line of inquiry by showing that de-
fault logic can also be seen as a particular instantiation of
the causal calculus under this more general semantics.

The distinction between a general semantics of the causal
calculus and its world-based restriction has also an impor-
tant logical aspect. Namely, the world-based nonmonotonic
semantics admits a further rule for causal reasoning, Dis-
junction in the Antecedent, or reasoning by cases:

(Or) If A⇒C and B⇒C, then A ∨B⇒C.

In fact, it was shown in (?) that the above inference rule
and the corresponding system of basic causal inference con-
stitutes, in effect, the ‘internal logic’ of causal reasoning in
Pearl’s causal models. Still, it was shown in the same pa-
per that the rule Or becomes problematic in reasoning about
actual causality, even though such a reasoning is restricted
to (causal) worlds. Accordingly, a theory of actual causa-
tion presented in (?) was based, as the present paper, on
regular inference. Moreover, the whole approach to causal
reasoning in (?) was essentially based on viewing causal
rules themselves as default assumptions in the sense of this
study.

On a practical side, the suggested causal representation
of default logic determines precise conditions under which
causal reasoning can be ‘simulated’ by using corresponding
deductive tools of default logic, and vice versa. In partic-
ular, it appears to provide a route by which the algorithms
for computing extensions of default theories could be trans-
ferred to causal reasoning for computing both default and
general exact models of causal theories.

In a more general perspective, however, the established
correspondence between default logic and causal calculus
can be seen as one more piece in a bigger picture that dis-
plays (significant parts of) nonmonotonic reasoning itself
not just as a modern technical or practical invention of AI,
but rather as an important contribution to a general theory
of reasoning, a kind of reasoning that has its roots in antiq-
uity. In this sense, a theory of causal reasoning both concurs
and complements the modern theory of argumentation in AI.
They both share a common assumption, or rather presump-
tion, that nonmonotonic reasoning systems and formalisms
should be viewed as instantiations of some general theory
of reasoning, a theory that goes far beyond plain deductive
reasoning. Much effort should still be invested, however,
in establishing firm foundations for such a general theory,
but the expected benefits make such an investment worth
the effort, especially in our troubled times when nonmono-
tonic reasoning meets successful reasoning-free competitors
in AI. It seems natural to argue that a unified, comprehen-
sive and firmly grounded general theory of nonmonotonic
reasoning could secure the role of knowledge representation
and reasoning as an essential part of AI for a foreseeable
future.
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