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Abstract

Conditional logics are usually interpreted in terms of closest
world and minimal change. It relies on a measure of distance
between worlds which is defined abstractly, i.e. as an element
of the model. The typical example of a concrete measure
in literature is the Hamming distance. We show that given
countably infinite atomic propositions in the language, Ham-
ming distance is not merely an example, but grounded for
two arguably most important conditional logics, Lewis’ VC
and VCU. That means, a formula is satisfied in a VC (resp.
VCU) model, if and only if it is satisfied in a VC (resp. VCU)
model whose distance between worlds is Hammingian.

1 Introduction
Logic of counterfactual conditionals is widely studied and
used in different areas including philosophy, linguistics and
artificial intelligence. Among many logics of counterfac-
tuals Lewis’ VC, VCU and their relatives are arguably the
most influential ones.1 They correspond to, not only other
logics of counterfactuals, but also many popular theories in
fields e.g. AGM (belief revision) (Grove 1988), KM (belief
update) (Grahne 1998), and KLM (preferential reasoning)
(Kraus, Lehmann, and Magidor 1990).

One reason for the correspondences is that they can all be
subject to some semantics of minimal change, the term first
used in (Gärdenfors 1984) and later becomes a standard um-
brella term for the relative fields, e.g. (Katsuno and Mendel-
zon 1991; Aiguier et al. 2018). That is to say, for instance,
given a counterfactual conditional φ� ψ, if φ is not true at
the actual world w, then one should check whether ψ holds
at the worlds “closest” to w regarding φ. Closeness in the
sense that the change from the actual one must be minimal.

But how is the distance for closeness defined? Most for-
mer systems in literature equip with some abstract relation
such as epistemic entrenchment, system of spheres, subfor-
mulas relations, faithful ordering etc, in order to obtain the
additional information to construct the distance measure.

On the other hand, Hamming distance is defined as the
minimum number of substitutions required to change one
string into another. In the context of possible world, it needs

1Through this paper, we use VC to denote both the logic and its
axiomatics, VC is the name of the model of VC and VC its model
class. We do the same for other Lewis’ logics mentioned here.

no more information than the number of atomic propositions
that two worlds disagree with.

Now if we ask for some concrete definition of distance
instead of those mysterious ones, Hamming distance is a
natural example, e.g. “one candidate of explication . . . is the
Hamming distance” (Dizadji-Bahmani and Bradley 2014),
“the most commonly used is the Hamming distance” (Aigu-
ier et al. 2018). To our knowledge, this is the much preferred
of the only two concrete definitions of distance.2

Hence it is not a surprise that a few systems directly de-
fine distance as Hammingian. The most famous one is the
Dalal operator for belief revision (Dalal 1988), and follow
up works are e.g. (Pozos-Parra, Liu, and Perrussel 2013;
Delgrande and Peppas 2015). However, a shortcoming is
that they all only consider a finite set of atoms/variables.
To our limited knowledge, no much literature in AI stud-
ies/justifies using Hamming distance given (countably) in-
finite atoms, though there are some (Williamson 1988;
Floridi 2010) in philosophy.

In explainable AI (XAI), the Hamming distance is the
“right” distance measure for binary classifier explanation,
because the input variables are mutually independent, and
counterfactual reasoning is performed by perturbing some
variables and observing the output, for studies see e.g. (Dar-
wiche and Hirth 2020; Huang et al. 2022). Recently (Liu
and Lorini 2021; Liu and Lorini 2023) present a binary-input
classifier logic (BCL) with a conditional operator that essen-
tially corresponds to a version of Lewis’ VCU based on the
Hamming distance. They show when the language has finite
atoms, the conditional operator “is axiomatizable” by reduc-
ing to the S5 modal operator. But the case of infinite atoms
lacks such property.

Inspired by that undone work, we conjecture distance be-
ing Hamming as a semantic constraint is unaxiomatizable if
the language has (countably) infinite atoms. That indicates
that Hamming distance grounds VC and VCU, in the sense
that their classes of models satisfy the same set of formulas
as their subclasses with Hamming distance.

Section 2 introduces Lewis’ V models. In Section 3 we
define Hammingian models and have some findings in their
own right. The main result is in Section 4, where we show

2The other one not requiring additional information uses the
subset relation: v ⪯w u iff V(w)△V(v) ⊆ V(w)△V(u), △ denoting
symmetric difference.
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Hamming distance grounds VC and VCU. Section 5 applies
the result to BCL for classifier explanation in XAI. Section
6 concludes and discusses.

2 Lewis’ V Models
Definition 1. The language for logics of counterfactual
L(Atm) is defined as follows3

φ ::= p | ¬φ | φ ∧ φ | φ� φ,

where p ranges over Atm, a set of countable atomic propo-
sitions. Let atm(φ) denote the atoms occurring in φ.

Operators ∨,→,↔ are defined as usual, and ⊥ defined as
p ∧ ¬p, ⊤ as ¬⊥, □φ as ¬φ� ⊥ and ^φ as ¬(φ� ⊥).

We then introduce the comparative similarity model of
Lewis’ V-logics (V model in short).
Definition 2 (V model). A tuple M = (W, (Ww)w∈W , (⪯w
)w∈W ,V) is called a V model if W is a non-empty set of
worlds, V : W −→ 2Atm a valuation, and for all w ∈ W,
Ww ⊆ W and ⪯w is a partial order on Ww for comparative
similarity with the following constraint:

• Connectedness: ∀v, u ∈ Ww either v ⪯w u or u ⪯w v.

We have v ≺w u if v ⪯w u and u ⪯̸w v; v ≈w u if v ⪯w u and
u ⪯w v. We call M finite if W is finite. The class of V models
is noted V.4

We note that standard presentations of V models usually
do not contain the family of world-indexed sets of accessi-
ble worlds Ww but define it from ⪯w by Ww =def {u : ∃v ∈
W, u ⪯w v}. We prefer to make this component explicit be-
cause it will be useful in the rest of the paper.
Definition 3 (Satisfaction relation). Let M =
(W, (Ww)w∈W , (⪯w)w∈W ,V) be a V model and w ∈ W:

(M,w) |= p ⇐⇒ p ∈ V(w);
(M,w) |= ¬φ ⇐⇒ it is not (M,w) |= φ;

(M,w) |= φ ∧ ψ ⇐⇒ (M,w) |= φ and (M,w) |= ψ;
(M,w) |= φ� ψ ⇐⇒ ∀v ∈ Ww, if (M, v) |= φ then

∃u ∈ Ww s.t. 1) u ⪯w v,
2) (M, u) |= φ ∧ ψ, 3) ∄u′ ∈ Ww,

u′ ⪯w u and (M, u′) |= φ ∧ ¬ψ.

Satisfiability and validity are defined in the usual way. We
write |=V φ if φ is valid relative to V, that is, if (M,w) |= φ
for every M ∈ V and every w of M.

The satisfaction relation for φ� ψ, complex as it seems,
captures the idea of minimal change by means of ⪯w. Intu-
itively, v ⪯w u means that v is closer to w than u; in other
words, the distance between v and w is smaller than the dis-
tance between u and w. Actually, if the model satisfies the

3The reason of the subscript 0 is that we will add a new sort of
variables in Section 5.

4Unfortunately the V for V model coincides with the V for val-
uation. While the reader can tell them from context, we mainly
discuss about V models with extra properties like VC and VCU,
hence mostly no worry of confusion. We do not simply say ⪯w is
a total order to hint that there are weaker models than V models as
investigated e.g. in (Burgess 1981).

limit assumption (defined below), we have a simpler, equiva-
lent satisfaction relation in the light of Lewis’ famous equiv-
alence result.5

Definition 4 (Selection function). Let M =
(W, (Ww)w∈W , (⪯w)w∈W ,V) be a V model, w ∈ W and
φ ∈ L(Atm). We define σw(φ), the selection function of w
regarding φ, as

σw(φ) =def {v ∈ Ww : (M, v) |= φ & ∀u ∈ Ww, if u , v
and (M, u) |= φ, then u ⊀w v}.

Definition 5 (Limit assumption). Let M = (W, (Ww)w∈W , (⪯w
)w∈W ,V) be a V model. It satisfies the limit assumption, if for
all w and φ, if ∃v ∈ Ww s.t. (M, v) |= φ then ∃u ∈ Ww s.t.
(M, u) |= φ, and ∀u′ ∈ Ww either u′ ⊀w u or (M, u′) |= ¬φ.
Fact 1. Let M = (W, (Ww)w∈W , (⪯w)w∈W ,V) be a V model
sharing limit assumption and w ∈ W. Then (M,w) |= φ�
ψ if and only if ∀v ∈ σw(φ), (M, v) |= ψ.

Since the limit assumption cannot be axiomatized, accept-
ing it or not (Lewis rejected it, unlike most people) actually
does not make a substantial difference. However, it echoes
in the next section as an interlude.

The V models are too weak to capture most intuitions
about counterfactual reasoning. Hence many additional con-
straints were considered in the literature. The following are
welcome, for every w of the given model,

• Normality (N): Ww , ∅;
• Total reflexivity (T): w ∈ Ww;
• Weak centering (W): w ∈ Ww and ∀v ∈ Ww, w ⪯w v;
• Centering (C): w ∈ Ww and ∀v ∈ W, if v ⪯w w then

v = w;
• Uniformity (U): Ww = W.

Most constraints are self-explained. Weak centering says
that no other world is closer to the current world than itself
(but can be equally close); while Centering says that the
current world is closer to itself than any other world. The
hierarchy of the first four is not hard to see, that each one is
stronger than the one above it.

From the metaphysical viewpoint, Centering is an al-
most self-evident assumption. Therefore Lewis takes VC,
the logic V in adddition with Centering, as his “official logic
for counterfactuals”.6 Uniformity is a desirable additional
constraint for VC “in order to forget the bothersome accessi-
bility restrictions and identify the outer modalities with the
logical modalities” (Lewis 1995, p. 130). That means, □φ
expresses the universal S5 modality. Lewis names the re-
sulting logic VCU.

By contrast, the following constraints are less desirable:
• Stalnakerian (S) (Conditional excluded middle): for

each w and φ, either σφ(w) = ∅ or |σφ(w)| = 1;

5We ignore the technical issue that σw shall take as input the
semantic proposition ||φ||M =def {v : (M, v) |= φ} instead of the
formula φ.

6Rigorously speaking, it is V plus the characteristic axiom of
Centering, similar for other cases. We will see that the model and
axiomatic characterizations not always coincide in the next section.
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• Absoluteness (A): ∀w, v ∈ W, ⪯w =⪯v.

Lewis calls the first one “Stalnaker’s assumption”, for [Stal-
naker 68] assumes the selection function associates to every
world at most one world (and not a set of worlds as the above
functions σw). It is a bit arbitrary to rule out the possibility
that two worlds are equally close to the current one, as illus-
trated by the famous “if Bizet and Verdi had been compatri-
ots, they would be French” example of (Quine 1950).

As for the second one, it is assumed in some papers
in the literature e.g. (Kraus, Lehmann, and Magidor 1990;
Goldszmidt and Pearl 1992; Friedman and Halpern 1994)
prove that for the complexity of conditional logics “abso-
luteness makes the problem easier”. However, it is such a
strong constraint that it becomes unimportant which the in-
dexical/actual world is. Hence (Lewis 1973, p. 131) already
says that (to design a logic for counterfactuals) “we surely
must reject absoluteness”.

Definition 6 (Semantics of subclasses of V). A VX
model is a V model satisfying property(ies) X with X ⊆
{N, T, W, C, U, S, A}. The class of VX models is noted VX.
Satisfaction relation, satisfiability and validity in each VX
are defined in the same way as in V.

All the model classes above can be axiomatized in a com-
binatorial way as the axiomatic of V plus characteristic ax-
ioms. But for our main interests we only introduce the ax-
iomatics of VC and VCU.

Definition 7 (Axiomatics of VC and VCU ). The axiomatics
of VCU is the extension of propositional logic with the fol-
lowing axioms and inference rule. A4 characterizes Weak
centering, A5 Centering and A6-7 Uniformity. Hence the
axiomatics of VC is VCU minus A6-7.

φ� φ (A1)
(φ� ¬φ)→ (ψ� ¬φ) (A2)(
(φ� ¬ψ) ∨ ((φ ∧ ψ)� χ)

)
↔ (φ� (ψ→ χ)) (A3)

(φ� ψ)→ (φ→ ψ) (A4)
(φ ∧ ψ)→ (φ� ψ) (A5)
(φ� ⊥)→ (¬(φ� ⊥)� ⊥) (A6)
¬(φ� ⊥)→ ((φ� ⊥)� ⊥) (A7)

(ψ1 ∧ · · · ∧ ψn)→ χ(
(φ� ψ1) ∧ . . . (φ� ψn)

)
→ (φ� χ)

(RCK)

Table 1. Axioms and rule of inference

The last notion to mention is semantic strength. Besides
comparing two model classes by subset relation, we can say
one class is no weaker than the other regarding their sets of
satisfiable formulas.

Definition 8 (Semantic strength). Let A,B be two model
classes on the same language. By A ⊑ B we denote for
every φ, if φ is satisfiable in A, then φ is satisfiable in B; by
A ⊏ B we denote A ⊑ B but not B ⊑ A; by A ≡ B we denote
both A ⊑ B and B ⊑ A and call them equivalence.

Notice that if A ⊆ B then B ⊑ A, but the inverse does not
necessarily hold. In particular, possibly A , B and A ≡ B.

3 Hammingian Models for Counterfactuals
3.1 Hammingian Lewis Models
In a certain sense, Lewis’ models are Kripke models plus
relations of comparative similarity. A natural question is:
closeness (similarity) according to what measure? As men-
tioned in literature, the most concrete and almost standard
example in the literature is closeness in sense of the Ham-
ming distance between possible worlds.

Definition 9 (Hamming distance between worlds). Let W
be a non-empty set of worlds and V : W −→ 2Atm. For any
w, v ∈ W, their Hamming distance under V is defined as
ℏV (w, v) = |V(w)△V(v)|, where △ denotes symmetric differ-
ence.

Definition 10 (Hammingian V model). A V model M =
(W, (Ww)w∈W , (⪯w)w∈W ,V) is Hammingian if ∀v, u ∈ Ww,
v ⪯w u iff ℏV (w, v) ≤ ℏV (w, u). The class of HV models is
noted HV. The subclasses of HV models are defined and
noted in the similar way as V models.

Interestingly, the disputation of accepting limit assuption
or not does not bother us in HV.

Fact 2. Every HV model satisfies the limit assumption.

Although the limit assumption is closely related to well-
foundedness, it is not the case that ⪯w is well-founded. In-
deed, let p1, p2, . . . be some enumeration of the atoms of Atm
and let M = (W, (Ww)w∈W , (⪯w)w∈W ,V) be the HVU model
where W = Atm ∪ {p1, . . . , pn : n ∈ N} and V is identity.
Then {p1} ≻Atm {p1, p2} ≻Atm {p1, p2, p3} ≻Atm . . . is an infi-
nite descending chain.

A special case are HV models containing all logically pos-
sible worlds, i.e., all elements of 2Atm. This corresponds
to the semantics of (Dalal 1988) for database updates. For
that semantics, Πp

2 completeness of deciding whether φ →
(ψ� χ) was proved in (Eiter and Gottlob 1992), and the
validities were axiomatized in (Herzig 1998).

3.2 Model (Sub)classes: a Comparison
Subset relations between V model subclasses are shown in
(Lewis 1973, Figure 5, p. 131), where semantic strength re-
lations are just inverses of the former. We will see that in
HV, Hamming distance not only determines the compara-
tive similarity, but also “perturbs” the constraints of V mod-
els. Consequently, more relations between subclasses of HV
can be found. Particularly, subset and semantic strength re-
lations no more just inverse. A summary is in Figure 1.

Proposition 1. HVT = HVW.

Proof. Inherited from the V models, HVT ⊇ HVW. For
the other direction, let M = (W, (Ww)w∈W , (⪯w)w∈W ,V) be
an HVT model. Then by the Hamming distance obviously
∀w ∈ W,∀v ∈ Ww,w ⪯w v, i.e. M is weakly centered. □

Similarly, the fact below is easy to see.

Fact 3. HVU ⊂ HVW.
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•
HV

•
HVN

•
HVT

•
HVW

•
HVC

•
HVCU

•
HVU

=

⊂ ⊏ ≡

Figure 1. Model class relations. Black parts are results of Lewis
where arrow means subset relation between model classes; blue
parts are new findings of their Hammingian subclasses, where each
dash line means the relation by its indicator in {=,≡,⊂,⊏}.

Fact 4 (Indiscernibility). Let M = (W, (Ww)w∈W , (⪯w
)w∈W ,V) be an HVU model. Then ∀w, v ∈ W, V(w) = V(v),
if and only if v ⪯w w if and only if ⪯w = ⪯v.

Proposition 2. HVC ⊐ HVU.

Proof. Suppose M ∈ HVU. First, observe that for every w ∈
W, the closest worlds around w is all those worlds v such that
v ⪯w w. Second, by Fact 4 v ⪯w w implies that V(v) = V(w)
and ⪯v=⪯w. Third, we define a relation Z ⊆ W × W by:
wZv iff V(w) = V(v). Thanks to the second observation, it
is not hard to see that Z is a bisimulation. It follows that all
closest worlds around w satisfy the same formulas. Hence
the centering axiom is valid in HVU models. □

Noticing that HVCU ⊂ HVU, the following result be-
comes obvious.

Fact 5. HVU ≡ HVCU.

3.3 Hamming State Models
One can argue conceptually that Hamming distance commits
us to identify a world with its valuation, or even stronger,
that the real model shall be defined by valuations of variables
rather than more abstract entities, namely worlds. Formally
we can define the following.

Definition 11 (Hamming state model). We call a model S =
(S , (S s)s∈S ) a Hamming state model with parameter7 if S ⊆
2Atm and ∀s ∈ S , S s ⊆ S . If S s = S for each s ∈ S , we just
call it a Hamming state model.

The use of the Hamming distance is justified by Leibniz’s
law in (Floridi 2010). For any w, v in a model, they are iden-
tical if w = v; equivalent if V(w) = V(v); indiscernible if
w ≈u v for every u in the model. Fact 4 states the indiscerni-
bility of equivalences in HVU. Centering states a stronger
property: the identity of equivalences in HVU (but with a
restriction to accessible worlds). Thus we can examine the
philosophy from a more logical viewpoint in terms of bisim-
ilarity and isomorphism.

Fact 6. Let M = (W, (Ww)w∈W , (⪯w)w∈W ,V) be an HVC
model. Then ∀v ∈ Ww, V(w) = V(v) if and only if w = v.
Particularly, if M is an HVCU model then ∀w, v ∈ W,V(w) =
V(v) if and only if w = v.

7We call this one “Hamming”, while the adjective “Hammin-
gian” qualifies HV models.

Proposition 3. Every HVU model is bisimilar to a Hamming
state model with parameter; every HVCU model is isomor-
phic to a Hamming state model.

Proof. Let M = (W, (Ww)w∈W , (⪯w)w∈W ,V) be an HVU
model. For each w ∈ W, let sw denote V(w). Consider
S = (S , (S s)s∈S ) s.t. S = {sw : w ∈ W} and ∀sw ∈ S , sv ∈ S sw

iff v ∈ Ww. The bisimulation between the two models is
obvious. The same construction applies to HVCU but the
result is stronger because of Fact 6. □

The above result for HVCU does not hold for weaker log-
ics: for every X ∈ {N,T,W,C} there is a model in HVX that
is not bisimular to any Hamming state model with parame-
ter. To see that, simply consider an HVX model with two
worlds w, v, s.t. V(w) = V(v), Ww = {w} and Wv = {v}.

Despite the isomorphism between HVCU and state mod-
els, we keep using possible worlds semantics in line with
other HV models until Section 6 when state models debut.

4 Equivalence Results Given Infinite Atoms
Now that the stage is set, let us raise the bold question: is
the Hamming distance not just an example, but the grounded
measure of distance for VC and VCU? Grounded in the in-
tuitive sense that, given an infinite supply of atoms, we can
transform any non-Hammingian model to a Hammingian
one while preserving the truth of some formula. Formally
the question is put as the following theses of equivalences.

Thesis 1. VC ≡ HVC.

Thesis 2. VCU ≡ HVCU.

We describe below the strategy of our proof, so that the
basic line of thought is transparent from the beginning.

Proof strategy Not all VC models can be Hammingized
by simply manipulating their valuations (no need to say pre-
serve the truth of some φ), but any VC model which has
some tree structure can. Moreover, (Friedman and Halpern
1994) offered a tree construction from some VC model while
preserving the truth of some formula φ. Hence, we aim to
Hammingize the Friedman-Halpern tree VC model while
not affecting the truth of φ. To divide the proof into steps
and conquer them separately, we will show that if φ is sat-
isfiable in VC then it is satisfied in a pointed HVC model
(M,w0) which fulfills the following missions:

1. Hammingianization: M induces an HVC model M′;

2. Truth-preservation: (M′,w0) |= φ.

The strategy for VCU is the same but need one further treat-
ment.

4.1 A Failed Attempt
Let us start with an easy but failed attempt.

A simple thought for Mission 1, Hammingianization, is to
keep the worlds and their similarity relations, and only ma-
nipulate the valuation on Atm \ atm(φ), resulting in a new
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•
u

• v
•w

p1

p2

p3

Figure 2. The vicious circle in Example 1. Arrows denote the rel-
evant selection functions. E.g., σw(p1) = {v} due to the fact that
v ≺w u, though p3 is in both V(v) and V(u).

valuation V ′ so that the Hamming distance by V ′ is in accor-
dance with the similarity relations in the original model. We
may call such a VC model “substantially Hammingian”.8

Definition 12 (Substantial Hammingianness). Let M =
(W, (Ww)w∈W , (⪯w)w∈W ,V) be a VC model. We call M sub-
stantially Hammingian if there is a valuation V ′, s.t. M′ =
(W, (Ww)w∈W , (⪯w)w∈W ,V ′) is a Hammingian model.

Naturally we ask the following question: Are all VC mod-
els substantially Hammingian? The answer is, however,
negative, whenever a VC model has a vicuous circle.
Definition 13 (Vicious circle). Let M = (W, (Ww)w∈W , (⪯w
)w∈W ,V) be a VC model. We say that M has a vicious coun-
terfactual circle, if ∃w0,w1, . . . ,wn ∈ W s.t. w0 ⪯w1 w2 . . . ,
and wn−2 ⪯wn−1 wn, and wn−1 ⪯wn w0, but wn ≺w0 w1.

Then we have the following impossibility result.
Proposition 4. Any VC model that has a vicious circle is not
substantially Hammingian.

Proof. We show the case when the circle consists of
3 worlds; the other cases are similar. Let M =
(W, (Ww)w∈W , (⪯w)w∈W ,V) be a VC model and w, v, u ∈ W
form a vicious circle. For whatever V ′, we should have
ℏV ′ (w, v) ≤ ℏV ′ (v, u) ≤ ℏV ′ (u,w) < ℏV ′ (w, v), by the defi-
nition of Hammingian model and using the condition of the
circle. But ℏV ′ (w, v) = ℏV ′ (v,w), a contradiction. □

The same definitions and same result, as its proof indi-
cates, apply to VCU models as well.
Example 1. Let φ† be the formula ¬p1 ∧ (p1 � (¬p2 ∧

(p2 � (¬p3 ∧ (p3 � p1)))). Let a VCU model M =
(W, (Ww)w∈W , (⪯w)w∈W ,V) be s.t. W = {w, v, u}, V(w) =
{p2, p3},V(v) = {p1, p3},V(u) = {p1, p2}, and v ≺w u, u ≺v
w,w ≺u v. This is depicted in Figure 2. Then (M,w) |= φ†,
but M is not substantially Hammingian.

Actually this is a difficulty not only to Hamming distance,
but any total order on pairs of worlds which intends to extend
the sets of triple relations on worlds. We can take advantage
of the study in (Williamson 1988), which helps us prove the
following proposition.
Proposition 5. Let M = (W, (Ww)w∈W , (⪯w)w∈W ,V) be a
VCU model. It has no vicious circle, if and only if there ex-
ists a total order ≤ on W2 s.t. if v ⪯w u then (v,w) ≤ (w, u).

8Let us distinguish “substantially” and “potentially” Hammin-
gian. The former only needs to manipulate V to become Hammin-
gian; while the later may copy worlds to unravel the vicious circle,
as we will do. Actually all VC models are potentially Hammin-
gianizable by first transforming to substantially Hammingian ones.

•w0

•
w1

• w2

• w3

• w4

2

3

2

1

Figure 3. Given such a weighted tree, one can build an HV model
as follows: let W consist of the five vertices, and take a V s.t.
∀wi,w j, ℏV (wi,w j) = n if π(wi,w j) is weighted n. Restricting
Wwi = W for all wi the model is HVCU, otherwise HVC. But of
course, we cannot guarantee any truth-preservation at this stage.

Proof sketch. Necessity is shown by Example 1. For suffi-
ciency, we need constitute a total ordering ≤ on W2. First,
notice that every ⪯w can be seen as a partial ordering on W2

by stipulating ∀v ∈ Ww, u < Ww, v ≺w u. Hence we union
all of them to obtain a partial ordering on W2, noted ⪯. No
vicious circle ensures the union. The second step is taking
transitive closure of it, noted ⪯′. The next step is taking the
quotient w.r.t. equivalence relation of ⪯′, i.e. the relation on
the equivalent classes of W2 with respect to ⪯′, noted ⪯′′.
Last, we can use the famous theorem in order theory that
every partial order can be extended to a total order. □

4.2 Weighted Tree is Hammingian
What can we learn from the former failure? The lesson is
that without further constraint on the original VC or VCU
model, the ternary relations may conflict with each other.

The last proposition indicates that the necessary condition
of being a Hammingian model is no vicious circle. So the
tree structure appears as a natural choice.

The intuition illustrated in Figure 3 is that if the model
associates with a tree structure, and moreoever the tree
is weighted, then it can be Hammingized by adding the
weights of edges of the path between any two vertices
(worlds). But before formalizing the intuition, let us make
two remarks.

1) We beg patience at this stage about where the mysteri-
ous tree structure of a model comes from. It will be clear in
the next steps.

2) We recall the basic notions of graph theory. For any
two points (vertices) w, v, (w, v) denotes the undirected edge
between w and v. A path between w and v is a sequence of
vertices (w1, . . . ,wn) s.t. w = w1, v = wn and (wi,wi+1) is an
edge for 1 ≤ i < n. A tree is an undirected graph where
each two vertices w and u have exactly one path, denoted by
π(w, v). We write (wi,w j) ∈ π(w, v) if (wi,w j) is a member
of the sequence.

A weighted tree is a triple G# = (W, E, #) where G =
(W, E) is a tree (with E ⊆ W × W) and # : E −→

N. The weight of a path π(w, v) in G# is #π(w, v) =def∑
(wi,w j)∈π(w,v) #(wi,w j).

Definition 14 (Weighted tree VC model). Let M =
(W, (Ww)w∈W , (⪯w)w∈W ,V) be a VC model, for which there ex-
ists an associated weighted tree G# = (W, E, #), s.t. ∀w ∈ W,
∀v, u ∈ Ww, v ⪯w u ⇐⇒ #π(v,w) ≤ #π(w, u).
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Lemma 1. Let M = (W, (⪯w)w∈W ,V) be a finite VC model
associated with a weighted tree G#. Then, there is an HVC
model M′ = (W, (Ww)w∈W , (⪯w)w∈W ,V ′), s.t. ∀w, v ∈ W,
ℏV ′ (w, v) = 2 × #π(w, v), and ∀w ∈ W, |V(w)| is finite.

Proof. Since no formula need be truth-preserved here, we
construct V ′ ignoring V . We take a series of disjoint unions
X1 ∪ Y1 ∪ X2 ∪ Y2 ∪ . . . X|E| ∪ Y|E| ⊂ Atm and enumerate E as
e1, e2, . . . , e|E|, s.t. |Xi| = |Yi| = #(ei) for all 1 ≤ i ≤ |E|. For
every p that is not in those disjoint unions, let p < V ′(w) for
all w. The construction of V ′ says for all ei = (w j,wk) ∈ E,
if π(w0,w j) ⊂ π(w0,wk), viz. w j is nearer to w0 than wk, then
let V ′(w j) ∩ (Xi ∪ Yi) = Xi and V ′(wk) ∩ (Xi ∪ Yi) = Yi;
for all el not linking w j, simply let V(w j) ∩ (Xl ∪ Yl) = ∅.
Thus, for any V ′(w),V ′(v) they differ on 2 × #π(w, v) many
variables, which makes the desired ℏV ′ (w, v) = 2 × #π(w, v).
|V(w)| is finite because G# has finitely many edges with finite
weights. □

The proposition below directly follows from the lemma.

Proposition 6. All weighted tree VC models are substan-
tially Hammingian.

4.3 VC ≡ HVC
Before exhausting the reader’s patience, we now reveal
where the tree comes from: it is constructed according to
subformulas in the formula φ, noted sub(φ), of interest. The
construction is described in (Friedman and Halpern 1994).

Proposition 7 ((Friedman and Halpern 1994)). If φ is satis-
fiable in VC, then φ is satisfiable in some tree VC model.

The proof relies on a series of lemmas to construct such
a tree, which we shall call the FH tree after the authors.
For the sake of both self-containedness and simplicity, we
rephrase how the tree is constructed.

Friedman-Halpern tree for VC model The first key no-
tion is basici(φ) ⊆ atm(φ) ∪ sub�(φ) where sub�(φ) de-
notes the subformulas of φ whose principal connective is
�. Intuitively, basici(φ) is defined as the union of all atoms
in φ and counterfactuals in exactly the i-th level of the nest-
ing of φ. A formal definition is:

basici(p) =
{
{p} if i = 0,
∅ otherwise;

basici(¬φ) = basici(φ);
basici(φ ∧ ψ) = basici(φ) ∪ basici(ψ);

basici(φ� ψ) =
{
{φ� ψ} if i = 0,
basici−1(φ) ∪ basici−1(ψ) otherwise.

Take φ† = ¬p1 ∧ (p1 � (¬p2 ∧ (p2 � (¬p3 ∧ (p3 �
p1)))) from Example 1, then basic0(φ†) = {p1, p1 � (¬p2∧

(p2 � (¬p3 ∧ (p3 � p1))))}, basic1(φ†) = {p1, p2, p2 �
(¬p3 ∧ (p3 � p1))}, basic2(φ†) = {p2, p3, p3 � p1} and
basic3(φ†) = {p1, p3}.

We describe an FH tree given a finite VC model M =
(W, (Ww)w∈W , (⪯w)w∈W ,V) and a formula φ s.t. (M,w0) |= φ.

The tree iteratively “chooses” worlds in W as vertices ac-
cording to vertices and formulas at the previous level. The
root is w0. Since the function of choosing is not necessarily
injective, for any vertex v we write v−1 for the chosen world
in M. But we only write w0 for simplicity. Level 0 has only
the root w0. At level 1, for any ξ� θ ∈ basic0(φ) there is
a vertex named as w0,ξ�θ. And w−1

0,ξ�θ was chosen from M
with the following constraints:

1. w−1
0,ξ�θ ∈ σw0 (ξ � θ), if (M,w0) |= ξ � θ and

σw0 (ξ� θ) , ∅;
2. w−1

0,ξ�θ is w0, if σw0 (ξ� θ) = ∅;

3. w−1
0,ξ�θ ∈ σw0 (ξ � θ) and (M, v) |= ¬θ, if (M,w0) |=
¬(ξ� θ).

Notice that when (M,w0) |= ξ, w−1
0,ξ�θ has to be w0. Nat-

urally, for every such vertex, we draw an edge between it
and w0 to obtain a (sub)tree. Then define a model Mw0 =
(Ww0 , (Ww0

v )v∈W0 , (⪯
w0
w )w∈Ww0

,Vw0 ) s.t. v ∈ Ww0 if (w0, v) is
an edge; Vw0 (v) = V(v−1). Then, we simply put Ww0

v = ∅ if
v , w0. Let ⪯w0

w0 be a total order on Ww0 s.t. Centering is
satisfied and ∀w0,ξ�θ,w0,ξ′�θ′ ∈ Ww0 , w0,ξ�θ ⪯

w0
w0 w0,ξ′�θ′

iff (M,w0) |= ξ ∨ ξ′� ξ.
Now let v be a vertex at level 1. We define φv :=∧
ψ∈basic1(φ),(M,v−1)|=ψ ψ ∧

∧
ψ∈basic1(φ),(M,v−1)|=¬ψ ¬ψ. We re-

cursively apply the procedure on (M, v−1) and φv to ob-
tain a subtree and a submodel. Since sub�(φv) ⊆
sub�(φ), basici(φv) ⊆ basici+1(φ), the construction termi-
nates. Finally, we union all of them to obtain the FH tree
and its associated VC model noted Mt. Figure 4 illustrates a
tree truth-preserving φ relative to VC.9

Remark & convention For readability we save the recur-
sively defined function for the “standard name” of worlds in
Mt, which takes the form w∗,ξ�θ where ξ� θ ∈ basici(φ)
for some i and w∗ is the name of a world at level i. We may
enumerate these names and hence wk = w j,ψ if wk exists
w.r.t. some world w j and formula ξ� θ. Notice that while
w j , wk for j , k, it is possible that w−1

j = w−1
k .

Example 2. Figure 4 is the graph G of the tree model Mt

constructed from some finite VC model M and (p� (q�
r) ∧ ¬((q � q) � r). The formula attached to every
edge denotes the member of basici(φ) making the target ver-
tex exist. For example, the arrow with p means that w1 is
chosen from σw0 (p � (q � r)) during the tree construc-
tion. Formulas in each world v are the conjuncts of φv as
defined in the proof of Proposition 7. Notice, e.g. though w4
exists for sake of ¬(q � p), we also know (Mt,w4) |= r,
because w4 is chosen from M as w−1

4 ∈ σw−1
1

(q). Since
(M,w−1

1 ) |= q� r, it must be r ∈ V t(w3).

Lemma 2. Let (M,w0) |= φ where M is a finite VC model.
Then there is an FH tree VC model Mt built from (M,w0)
and φ, s.t. (Mt,w0) |= φ.

9We defined our tree as undirected in accordance with the se-
mantics of ⪯w. In fact, the tree in the construction above is bet-
ter understood as directed in accordance with the semantics of σw.
However, since it causes minor problems of understanding, we do
not add more definitions to increase the opaqueness.
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p� (q� r),
¬((q� p)� r)

w0

p, q� r, r
¬(q� p)

w1

q� p, ¬r, p
¬(q� r),

w2

q, r
w3

q, ¬p
w4

q, p
w5

q, ¬r
w6

p

q� p

q

q

q

q

Figure 4. Example for (p� (q� r) ∧ ¬((q� q)� r)

Hammingize the tree VC model Are we done? Al-
most yet not. We know that FH tree construction is truth-
preserving, and a weighted tree is substantially Hammin-
gian. It remains to Hammingize the weighted FH tree in
order to turn Thesis 1 into a theorem.
Theorem 1. Let Atm be infinite. Then VC ≡ HVC.

Proof. HVC ⊂ VC, so only need prove the only-if-
part. For any φ satisfiable in VC, using the filtration re-
sult of (Segerberg 1989), there is a finite model M f =

(W f , (W f
w)w∈W f , (⪯ f

w)w∈W f ,V f ) s.t. (M f ,w0) |= φ, and par-
ticularly

⋃
v∈W f V f (v) ⊆ atm(φ). That is, no world in W f

verifies any variable outside of atm(φ). We build an FH tree
model M = (W, (Ww)w∈W , (⪯w)w∈W ,V) from (M f ,w0) and φ.
By Lemma 2, (M,w0) |= φ. A weighted tree G# = (W, E, #)
is defined s.t. E = {(w j,w j,ξ�θ) : w j,w j,ξ�θ ∈ W)}, and
∀w, v, u ∈ W, if v ⪯w u then #(v,w) ≤ #(w, u). We
obtain V ′ by assembling three valuations. The first one
is some Vh which enables Hammingization in Lemma 1,
with

⋃
v∈W Vh(v) ∩ atm(φ) = ∅. The second one is V , be-

cause we want V ′(w) ∩ atm(φ) = V(w) ∩ atm(φ) for truth-
preserving φ. But now the Hamming distance perturbs,
which needs a third one Vb to “counterbalance” it. Let
w◦,w◦ be two worlds that differ at most on atoms in atm(φ),
say, ℏV (w◦,w◦) = n. Let

⋃
v∈W Vb(v) = X be disjoint from

atm(φ) and
⋃

v∈W Vh(v) with |X| = n. Then we enumerate
V(w◦)△V(w◦) as p1, p2, . . . pn, and X as q1, q2, . . . qn,

1. let Vb(w◦) ∩ X = X and Vb(w◦) ∩ X = ∅;
2. ∀v ∈ W, ∀pi ∈ atm(φ), pi ∈ V(v) ∩ V(w◦) if and only if

qi < Vb(v).

This step guarantees that ∀w, v ∈ W, |Vb(w)∩ (X∪atm(φ))| =
|Vb(v) ∩ (X ∪ atm(φ))|. Namely w and v are “numerically
equal” regarding atm(φ) ∪ X, so that Vh can do its job right.
Finally we let ∀w ∈ W,V ′(w) = V(w) ∪ Vb(w) ∪ Vh(w).
Obviously, M′ is Hammingian and still (M′,w0) |= φ. □

4.4 VCU ≡ HVCU
We did not apply the method above directly to VCU, because
of an apparent shortcoming and a potential danger. 1) The
tree VC model is not uniform but “local”: each Wv contains
only v and its adjacents. We can of course extend ⪯v to ob-
tain Uniformity by the information of the weighted FH tree.
But then 2) one may suppose that (Mv, v) |= ¬ξ� ⊥ holds

p� (q� r),
¬((q� p)� r)

w0

p, q� r, r
¬(q� p)

w1

q� p, ¬r, p
¬(q� r),

w2

q, r
w3

q, ¬p
w4

q, p
w5

q, ¬r
w6

2: p

3: q� p

1: q

1: q

1: q

1: q

Figure 5. A weighted tree G# for G in Figure 4

vacuously, i.e. σv
v(¬ξ) = ∅, but after the extending possibly

in M, σv(¬ξ) , ∅. Hence finally (M, v) |= ¬(¬ξ� ⊥).10

We are going to show that refining the tree construction
in a certain way, not only the shortage is overcome, the po-
tential danger is actually no danger. The key fact is that,
though every Mw j is constructed “shortsightedly”, the orig-
inal finite model this time satisfies Uniformity. Hence if
some ξ� ⊥ is vacuously true in the tree model, that must
be already vacuously true in the original model.

Instead of first presenting the refined FH tree for a VCU
model and then Hammingianize it, for simplicity we do the
two steps simultaneously.

Forward-weighted tree for HVCU model Let the FH
tree construction remain the same, but the input model is
VCU instead of VC. The output model is (still) a tree VC
model. Now our goal is an HVCU model, where Uniformity
is obtained naturally by generalizing all W t

w to the whole W t;
and the information of the weighted tree truth-preserves cer-
tain formulas.

To this end we need ensure the distance between worlds
to go with the “direction” of the tree construction, so that for
each v, its sets of closest worlds regarding basic0(φv) remain
invariant. Thus we need the wanted weighted tree to have a
particular global property defined as following.

Definition 15 (Forward-weighted tree). Let M be a tree VC
model associated with a weighted tree G# = (W, E, #) and
w0 be the root. We call G# forward-weighted, if ∀w, v, u, if
π(w0,w) ⊂ π(w0, v) ⊂ π(w0, u), then #π(w, v) > #(v, u).

In plain words, the farther we go from the root, the smaller
weights we assign the edges. If in the graph (w0,w, v, u)
forms a path, then #(w, v) > #(v, u). So when we search the
closest worlds of v regarding some ξ, we will not “go back”
to w. This is the intuition where the term comes from.

It is not hard to see, similar to what we did in the last
subsection, that a forward-weighted tree associating a VCU
model induces an HVCU model. In particular, we have the
following lemma, which is proven similar to Theorem 1.

10(Friedman and Halpern 1994) mentioned a similar concern in
satisfiability problem in VCU and hinted a solution which raises
the complexity to EXPTIME. They claimed to leave the details to
the full paper. According to personal communication, no full paper.
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Example 3. Figure 5 hammingizes the G in Figure 4 as G#.
For example, the edge labelled 2:p is because we want w1 ∈

σw0 (p). Notice if the edge with q � p weighted as 2, then
we would also have w2 ∈ σw0 (p) since (M,w2) |= p, which
would make (M,w0) ⊭ p � (q � r), since (M,w2) |=
¬(q � r). Also, if (M,w0) |= q ∧ ¬r and we weighted the
edge of r � q as 1, then we would have (M,w2) ⊭ q� r,
since w0 ∈ σw2 (q), and we “go back”. Finally, construct an
HV model M′ via G# instructed by Theorem 1, s.t. for its V ′:
• ℏV ′ (i, j) = 2n iff #π(wi,w j) = n;
• ∀pk ∈ {p, q, r}, pk ∈ V ′(wi) iff pk ∈ V(wi).
Lemma 3. Let Mt = (W t, (W t

w)w∈W t , (⪯t
w)w∈W ,V) be an FH

tree VC model constructed from some finite VCU model and
φ. Then there exists a forward-weighted tree G# of M, which
induces an HVCU model M′ = (W t, (W ′w)w∈W , (⪯′w)w∈W ,V ′),
s.t. ∀w ∈ W, W ′w = W t and V(w)∩atm(φ) = V ′(w)∩atm(φ).

Key lemma We have enabled FH tree VC model with Uni-
formity and Hammingized it to obtain an HVCU model. We
aim to show a key lemma to disprove the potential danger.
Lemma 4. Let M = (W, (Ww)w∈W , (⪯w)w∈W ,V) be a finite
VCU model, w0 ∈ W, φ ∈ L(Atm) s.t. (M,w0) |= φ. Let M′ =
(W t, (W t

w)w∈W t , (⪯′w)w∈W ,V ′) be an HVCU model constructed
through FH tree and Lemma 1. Then (M,w0) |= φ if and only
if (M′,w0) |= φ.

Proof. Inherited from the FH tree for VC models, we have
∀w j ∈ W t chosen by the tree construction at level i, ∀ψ ∈
basici(φ), (M,w−1

j ) |= ψ if and only if (M′,w j) |= ψ.
So the only concern is when ψ ∈ sub(φ) is some χ �

χ′ such that either χ is vacuously true at (M,w−1
j ) but not

vacuously true at (M′,w j); or the other way around. Notice
ψ may not be at the same level as w j is chosen, but crucially
it must be ψ ∈ basick(φ) for some k. For convenience instead
of saying vacuously true or σw−1

j
(χ) = ∅we write (M,w−1

j ) |=
χ� ⊥. We do induction on the conditional degree of χ.

The induction basis is cd(χ) = 0, viz. χ is Boolean. If
(M,w−1

j ) |= χ � ⊥, then ∀v ∈ W t we have (M, v−1) |=
¬χ. Since χ is Boolean we have (M′, v) |= ¬χ, hence
(M′,w j) |= χ� ⊥. For the other direction let (M′,w j) |=
χ � ⊥, and we need show (M,w−1

j ) |= χ � ⊥. No-
tice, crucially, that χ � χ′ must occur in basick(φ) for
some k. At level k we must choose a world wl to decide
whether χ � χ′ holds at (M′,wl) according to what hap-
pens at (M,w−1

l ). But whatever w−1
l ∈ W is, it must be

(M,w−1
l ) |= χ � ⊥, otherwise at level k + 1 we would

have chosen a wl,χ�χ′ s.t. (M′,wl,χ�χ′ ) |= χ , which
eventually made (M′,w j) |= ¬(χ � ⊥), a contradiction.
This indicates ∀v ∈ W, (M, v) |= ¬χ. Since χ is Boolean,
∀w ∈ W t, (M,w) |= ¬χ, viz. (M,w−1

j ) |= χ� ⊥ as we want.
Now we run the induction. Suppose for any subformula of

conditional degree n, it is true at (M, v−1) if and only if true at
(M′, v) for all v ∈ W t. Now we consider χ with cd(χ) = n+1
and show (M,w−1

j ) |= χ � ⊥ iff (M′,w j) |= χ � ⊥. It
needs a further induction on the main connective of χ.

1) The case of conjunction is straightforward. 2) If χ
has the form ξ � θ and (M,w−1

j ) |= (ξ � θ) �

⊥, then suppose towards a contradiction that ∃v ∈ W t

s.t. (M′, v) |= ξ � θ. By induction hypothesis we
have (M, v−1) |= ξ � θ, which contradicts (M,w−1

j ) |=
(ξ � θ) � ⊥. For the other direction suppose to-
wards a contradiction that (M′,w j) |= (ξ � θ) � ⊥ but
(M,w−1

j ) |= ¬((ξ � θ) � ⊥). Notice, crucially, that
(ξ � θ) � χ′ occurs in basick(φ) for some k. Thus at
level k of the tree construction there was a wl ∈ W t which
chose a wl,(ξ�θ)�χ′ from W for the level k + 1 according
to whether (ξ � θ) � χ′ holds at (M,w−1

l ). It must be
(M,w−1

l ) |= ¬((ξ � θ) � ⊥) because of the supposition
(M,w−1

j ) |= ¬((ξ� θ) � ⊥). Thus the tree construction
chose a wl,(ξ�θ)�χ′ s.t. (M,w−1

l,(ξ�θ)�χ′ ) |= ξ � θ. By
induction hypothesis (M′,wl,(ξ�θ)�χ′ ) |= ξ � θ, contra-
dicting (M′,w j) |= (ξ� θ)� ⊥ as we want.

3) If χ has the form ¬ζ, we need a further induction. But
the only interesting case is when χ equals some ¬(ξ� θ).
Assume (M,w−1

j ) |= ¬(ξ� θ) � ⊥, we need now show
(M′,w j) |= ¬(ξ � θ) � ⊥. Suppose not towards a
contradiction. Then ∃v ∈ W t, (M′, v) |= ¬(ξ � θ), viz.
∃u ∈ σt

v(ξ), (M′, u) |= ξ ∧ ¬θ. By induction hypothesis,
(M, u−1) |= ξ ∧ ¬θ. By Centering we have (M, u−1) |=
¬(ξ� θ), contradicting the assumption.

For the other direction, suppose towards a contradiction
that (M′,w j) |= ¬(ξ� θ)� ⊥ but (M,w−1

j ) |= ¬(¬(ξ�
θ) � ⊥). Now notice, crucially, that ¬(ξ � θ) � χ′

occurs in basick(φ) for some k. Then at level k there was
a wl ∈ W t which chose a wl,¬(ξ�θ)�χ′ from W for the
level k + 1. Because of the eventual (M′,w−1

j ) |= ¬(ξ �
θ) � ⊥ it must be during the tree construction we had
(M′,wl,¬(ξ�θ)�χ′ ) |= ¬(ξ � θ). By induction hypothesis
(M,w−1

l,¬(ξ�θ)�χ′ ) |= ¬(ξ� θ), a wanted contradiction. □

Now Thesis 2 becomes a theorem.

Theorem 2. Let Atm be infinite. Then VCU ≡ HVCU.

Proof. Since HVCU ⊂ VCU, we only need prove the rest
direction. Similar to the proof of Theorem 1, for any φ
satisfiable in VCU, we start with a filtration model M f =

(W f , (W f
w)w∈W f (⪯ f

w)w∈W f ,V f ) and a w0 ∈ W f s.t. (M f ,w0) |=
φ. Then we build an FH tree model M by Lemma 3. The
next step is associating M with a forward-weighted tree G#

and construct an HVCU model M′. Finally, with the help of
Lemma 4, an induction on φ can show that (M′,w0) |= φ,
which is what we want. □

5 Application to Classifier Explanation
In this section, we are going to show how the Hammin-
gian semantics for the logic of conditionals can be used to
define an interesting notion of counterfactual explanation.
This notion has been widely discussed in the area of ex-
plainable AI (XAI) (Mittelstadt, Russell, and Wachter 2019;
Mothilal, Sharma, and Tan 2020; Sokol and Flach 2019;
Kenny and Keane 2021). It is paramount to explaining the
decisions of classifier systems. Here, we focus on binary
classifier systems. We define counterfactual explanation by
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the following abbreviation:

CfXp(φ, ψ) =def ψ ∧ (¬φ� ¬ψ).

CfXp(φ, ψ) has to be read “the fact φ counterfactually ex-
plains the fact ψ”. The latter just means that ψ is true and
that if φ was false, ψ would be false as well. Formula φ is
the explanans, while ψ is the explanandum.

We illustrate the definition with the help of a concrete ex-
ample of a binary classifier that has to decide whether an
application for a loan to the bank has to be accepted (acc)
or rejected (¬acc). The classifier’s decision depends on the
values of three binary variables: whether the applicant has a
permanent job (pe), whether she/he earns a salary of at least
3000€ per month (sa), and whether she/he is a European
citizen (eu). For the sake of modeling, we suppose that the
set of atomic propositions Atm0 is finite.

The binary classifier is fully described in Table 2. It is
represented by a formula of our language, namely, the □-
modality followed by the canonical DNF of the boolean
function corresponding to it:

φcl =def □(acc↔
(
(pe ∧ ¬sa ∧ ¬eu) ∨
(¬pe ∧ sa ∧ eu) ∨
(pe ∧ ¬sa ∧ eu) ∨
(pe ∧ sa ∧ ¬eu) ∨
(pe ∧ sa ∧ eu)

)
.

The following formula characterizes completeness of the
model, that is, the fact that all possible valuations of propo-
sitional atoms are in it:

φcomp =def

∧
X⊆Atm0

^
(∧

p∈X

p ∧
∧

q∈Atm0\X

¬q
)
.

The assumption that the set Atm0 is finite is essential. Oth-
erwise φcomp woud be an infinite formula. We have the fol-
lowing validity:

|=HVCU
(
φcomp ∧ φcl ∧ (¬pe ∧ ¬sa ∧ eu)

)
→ CfXp(¬sa,¬acc).

This means that, under the completeness assumption φcomp
and given the classifier described by the formula φcl if the
applicant has no permanent job, her/his salary is lower than
3000€ per month and she/he is European, then the fact of
not having a monthly salary of at least 3000€ counterfactu-
ally explains the failure of her/his application. Indeed, un-
der the hypothesis that the applicant has the features ¬pe,
¬sa and eu, if her/his salary was at least 3000€ per month,
her/his application would be successful.

The requirement that Atm is finite is at odds with our hy-
pothesis that there is an infinite reserve of propositional vari-
ables, which was instrumental in proofs of Theorems 1 and
2. Instead of the HVCU validity checking one could use
symbolic model checking and suppose that the set of pos-
sible valuations of an HVCU model is characterized by a
propositional formula χ. Then models (M,w) can be re-
placed by pairs (χ, v) where χ is a propositional formula and
v ⊆ Atm is a valuation satisfying χ in propositional logic. It
remains to define an algorithm checking whether a formula
φ is satisfied by a pair (χ, v). In the case of the present exam-
ple φ is CfXp(¬sa,¬acc), χ is φcl without the box-operator

Permanent job >3000€ salary EU citizen Accept
0 0 0 No
0 0 1 No
0 1 0 No
1 0 0 Yes
0 1 1 Yes
1 0 1 Yes
1 1 0 Yes
1 1 1 Yes

Table 2. A classifier for loan application

and v is {eu}. We conjecture that symbolic model check-
ing so formulated is PSPACE-complete. The upper bound
is provable by giving a PSPACE algorithm, while the lower
bound via a reduction of TQBF into our problem.

6 Conclusion and Further Discussion

We studied the Hammingian V models, and in particular
proved VC ≡ HVC and VCU ≡ HVCU given infinite vari-
ables in the language. Notice the precondition, which is be-
cause Hammingization relies on manipulating variables out
of atm(φ). This cannot happen without an unbounded num-
ber of fresh variables: it is known that when Atm is finite
then Hamming distance can be axiomatized (Liu and Lorini
2023) by, essentially, taking the conjunction of a maximal
consistent set of literal to express a state syntactically.

The technical conclusion is that the property of being
Hammingian is unaxiomatizable given the basic language of
counterfactuals with infinite variables. The most straightfor-
ward philosophical interpretation is that any abstract notion
of distance, e.g. epistemic entrenchment, system of spheres,
etc, can be re-interpreted/implemented by Hamming dis-
tance by means of “hidden variables”. In this sense we call
Hamming distance “grounded” for VC and VCU.

For future work, Friedman & Halpern (Friedman and
Halpern 1994) claimed that the satisfiability problem for
VCU is EXPTIME-complete. They gave a PSPACE al-
gorithm check-tree for V models without Uniformity, and
mentioned that it does not work directly for models with
Uniformity but needs possibly exponential expansion. But
since our study on satisfiability showed that FH trees apply
to VC and VCU models in a similar way, it is interesting to
check that whether the complexity can be lower. Also we
will address the conjecture of the PSPACE-complete com-
plexity of model checking at the end of Section 5.

Another intriguing topic is that given that Hamming dis-
tance grounds the comparative similarity when it is a total
preorder, does another concrete definition of distance, sub-
set relation of valuations, ground the partial order version?

Acknowledgements

This work is supported by the EU ICT-482020 project TAI-
LOR (No.952215) and by the ANR-3IA Artificial and Nat-
ural Intelligence Toulouse Institute (ANITI).

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

10



References
Aiguier, M.; Atif, J.; Bloch, I.; and Hudelot, C. 2018. Belief
revision, minimal change and relaxation: A general frame-
work based on satisfaction systems, and applications to de-
scription logics. Artificial Intelligence 256:160–180.
Burgess, J. P. 1981. Quick completeness proofs for some
logics of conditionals. Notre Dame Journal of Formal Logic
22(1):76–84.
Dalal, M. 1988. Investigations into a theory of knowl-
edge base revision: preliminary report. In Proceedings of
the Seventh National Conference on Artificial Intelligence,
volume 2, 475–479.
Darwiche, A., and Hirth, A. 2020. On the reasons behind
decisions. In 24th European Conference on Artificial Intel-
ligence (ECAI 2020), volume 325 of Frontiers in Artificial
Intelligence and Applications, 712–720. IOS Press.
Delgrande, J. P., and Peppas, P. 2015. Belief revision in
Horn theories. Artificial Intelligence 218:1–22.
Dizadji-Bahmani, F., and Bradley, S. 2014. Lewis’ ac-
count of counterfactuals is incongruent with Lewis’ account
of laws of nature. available at http://philsci-archive.pitt.edu/
10875/.
Eiter, T., and Gottlob, G. 1992. On the complexity of propo-
sitional knowledge base revision, updates, and counterfactu-
als. Artif. Intell. 57(2-3):227–270.
Floridi, L. 2010. Information, possible worlds and the coop-
tation of scepticism. Synthese 175(Suppl 1):63–88.
Friedman, N., and Halpern, J. Y. 1994. On the complexity
of conditional logics. In Principles of Knowledge Represen-
tation and Reasoning, 202–213. Morgan Kaufmann.
Gärdenfors, P. 1984. Epistemic importance and mini-
mal changes of belief. Australasian Journal of Philosophy
62(2):136–157.
Goldszmidt, M., and Pearl, J. 1992. Rank-based systems:
A simple approach to belief revision, belief update, and rea-
soning about evidence and actions. KR 92:661–672.
Grahne, G. 1998. Updates and counterfactuals. Journal of
Logic and Computation 8(1):87–117.
Grove, A. 1988. Two modellings for theory change. J. of
Philosophical Logic 17:157–170.
Herzig, A. 1998. Logics for belief base updating. In Dubois,
D.; Gabbay, D.; Prade, H.; and Smets, P., eds., Handbook of
defeasible reasoning and uncertainty management, volume
3 - Belief Change. Kluwer. 189–231.
Huang, X.; Izza, Y.; Ignatiev, A.; Cooper, M.; Asher, N.;
and Marques-Silva, J. 2022. Tractable explanations for d-
dnnf classifiers. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, 5719–5728.
Katsuno, H., and Mendelzon, A. O. 1991. Propositional
knowledge base revision and minimal change. Artificial In-
telligence 52(3):263–294.
Kenny, E. M., and Keane, M. T. 2021. On generating plau-
sible counterfactual and semi-factual explanations for deep
learning. In Proceedings of the Thirty-Fifth AAAI Confer-

ence on Artificial Intelligence (AAAI 2021), 11575–11585.
AAAI Press.
Kraus, S.; Lehmann, D.; and Magidor, M. 1990. Nonmono-
tonic reasoning, preferential models and acumulative logics.
Artificial Intelligence 44(1-2):167–207.
Lewis, D. K. 1973. Counterfactuals. Harvard University
Press.
Lewis, D. K. 1995. Causation. Journal of Philosophy
70(17):556–567.
Liu, X., and Lorini, E. 2021. A logic for binary classi-
fiers and their explanation. In Baroni, P.; Benzmüller, C.;
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