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Abstract

This paper introduces a novel method for merging open-
domain terminological knowledge. It takes advantage of the
Region Connection Calculus (RCC5), a formalism used to
represent regions in a topological space and to reason about
their set-theoretic relationships. To this end, we first pro-
pose a faithful translation of terminological knowledge pro-
vided by several and potentially conflicting sources into re-
gion spaces. The merging is then performed on these spaces,
and the result is translated back into the underlying language
of the input sources. Our approach allows us to benefit from
the expressivity and the flexibility of RCC5 while dealing
with conflicting knowledge in a principled way.

1 Introduction
Commonsense knowledge is playing an increasingly impor-
tant role in the development of AI systems. Such knowledge
is available, for example, in large open-domain terminologi-
cal knowledge bases Cyc or SUMO as ontological knowl-
edge, in knowledge graphs (KGs) such as DBpedia and
WikiData, and as semantic markup (e.g., RDFa). Ontolo-
gies, as frameworks for expressing terminological knowl-
edge, encode structured relations about the concepts and
properties of a given domain. In this paper, we focus on
terminological knowledge about concepts that can be ex-
pressed using ontologies as these latter are playing an im-
portant role in areas such as semantic web (Homburg, Staab,
and Janke 2020), information retrieval (Chen et al. 2019),
natural language processing (Rospocher and Corcoglioniti
2018), and machine learning (Hohenecker and Lukasiewicz
2020), among others. For instance, Bouraoui and Schock-
aert (2018) have shown that knowledge encoded in ontolo-
gies, as prior conceptual knowledge, is useful for learning
concept representations from few examples.

However, the available ontologies (and KGs, as simple
ontologies) are inevitably incomplete, where several rules
and facts are missing. Several methods have been pro-
posed for automated ontology (KG) completion (Beltagy
et al. 2013; Rocktäschel and Riedel 2017; Li, Bouraoui,
and Schockaert 2019) that exploit statistical regularities in
a given ontology to predict plausible missing rules or facts.
Unfortunately, meaningful knowledge is difficult to predict,
especially when only a few examples of facts or rules are
available. Moreover, as most of the existing approaches are

mainly based on statistical regularities, the resulting pre-
dictions might be conflicting with each other. A repair-
based mechanism is then required to maintain the consis-
tency of the set of terminological statements, i.e., ensure
that there are no conflicting (or contradictory) statements.
In the same perspective, to widen the coverage of termi-
nological knowledge to several domains and to deal with
incompleteness and conflicting statements, one may com-
bine knowledge from several sources. However, it turns out
that merging open-domain knowledge bases is a particularly
challenging task as pointed out, for example, in (Tanon et
al. 2016) reporting the different problems and difficulties
encountered when merging Freebase with WikiData. Con-
flicting information may occur when the statements of sev-
eral sources are simply gathered together. Ontology merging
and alignment / matching has also attracted much attention
in the literature (Thiéblin, Haemmerlé, and Trojahn 2018;
Chang, wei Chen, and Zhang 2019; Benferhat et al. 2019;
Zhao and Zhang 2016; Laadhar et al. 2017; Thiéblin, Haem-
merlé, and Trojahn 2018). The approach generally consists
in studying an equivalence matching between a source and
target taxonomy. In this work, we assume that all knowl-
edge encoded by the different sources are already aligned
and mapped to each other. Namely, we suppose that they
share the same terminology. Hence, while ontology align-
ment (or matching) is the process of determining correspon-
dences between terminologies of ontologies, ontology merg-
ing aims to combine two (or more) ontologies having the
same terminology while handling conflicting statements.

Let us consider an example to illustrate the merging prob-
lem. Assume that a first source says that the concept 𝑃𝑎𝑝𝑒𝑟
is disjoint with the concept 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡, while another source
says that every 𝑃𝑎𝑝𝑒𝑟 is a 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡. Obviously enough,
these two statements are conflicting. To be faithful to both
sources while resolving conflicts, a sensible choice would be
to assume that 𝑃𝑎𝑝𝑒𝑟 and 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 are not disjoint con-
cepts, but every 𝑃𝑎𝑝𝑒𝑟 is not necessarily a 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡, that
is, the two concepts partially overlap. This kind of result
is clearly consistent and can be seen as a good compromise
between both sources. Finding a meaningful and relevant
compromise between sources during the merging process is
difficult to obtain. This is mainly due the fact that ontology
languages (Description Logics for example) are not expres-
sive enough to capture salient knowledge that might emerge
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during the merging process. The simple example pointed out
above clearly shows some pieces of knowledge that should
be taken into account during the merging process, but that
cannot be captured in the ontology language. The problem
of ontology (or DL) merging is close to the problem of be-
lief merging in a propositional setting (Benferhat et al. 2019;
Benferhat et al. 2014; Kumar and Harding 2016; Wang et al.
2012; Patricia, Konieczny, and Marquis 2008). For instance,
Benferhat et al. (2019) studied merging assertional bases in
the DL-Lite fragment. They have determined the minimal
subsets of assertions to resolve conflicts based on the incon-
sistency minimization principle. Bouraoui et al. (2020a)
proposed a model-based merging operator for merging EL
ontologies which solves semantic conflicts that arise during
the merging process.

In this paper, to handle the merging problem, we take in-
spiration from conceptual spaces, which are geometric rep-
resentation frameworks, in which the objects are represented
as points in a topological space, and concepts are modelled
as regions (Haarslev and Möller 1997; Gärdenfors 2000;
Douven et al. 2022). Motivated by the fact that concep-
tual knowledge in an ontology can be to some extent mod-
elled as geometric objects and constraints on metric spaces
(Bouraoui et al. 2020b), this paper proposes a method for
ontology merging that takes advantage of qualitative spa-
tial reasoning to find out a relevant compromise between
sources while resolving conflicts. Qualitative spatial rea-
soning is a suitable paradigm for efficiently reasoning about
spatial entities and their relationships, where knowledge is
represented as a so-called qualitative constraint network
(QCN). Spatial information is usually represented in terms
of basic or non-basic relations in a qualitative calculus,
where reasoning tasks are then formulated as solving a set
of qualitative constraints (Randell, Cui, and Cohn 1992;
Cohn et al. 1997; Bhatt et al. 2011; Sioutis, Long, and Jan-
hunen 2020). In particular, the Region Connection Calcu-
lus (RCC) is a well-studied formalism for qualitative topo-
logical representation and reasoning, including its subsets
RCC-5 (Schockaert and Li 2013) and RCC-8 (Randell, Cui,
and Cohn 1992). Two significant advantages of the RCC
framework are its ability to reason efficiently about the re-
lationships between spatial entities, and its ability to deal
with conflicts in qualitative constraint merging as shown in
(Condotta et al. 2010; Thau, Bowers, and Ludäscher 2009).
In short, the representation of region constraints into QCNs
allows for more expressivity than when using DL rules (or
constraints). In particular, QCNs are expressive enough to
allows for disjunctions in the constraints.

Several QCN merging operators have been introduced in
the literature (e.g., (Condotta et al. 2009; Condotta et al.
2010; Thau, Bowers, and Ludäscher 2009; Julien and West-
phal 2012). Roughly speaking, these operators compute a
distance between QCN scenarios and the input QCNs. Then
the scenarios with a minimal distance are selected as the best
candidates for the merged result. Taking inspiration from
these works, in this paper we take advantage of the RCC-5
formalism and propose a method for merging open-domain
terminological knowledge (simply called ontologies) using
QCNs. We first show how to translate such knowledge into

qualitative spaces while preserving its semantics and prop-
erties. Second, we propose a merging operator that produces
a single and consistent region space representing a compro-
mise between sources. Lastly, we show how to express the
region space in the input ontology language while maintain-
ing all relevant information.

The proofs of propositions are available online1.

2 Background
Our method is based on two complementary frameworks for
merging open-domain terminological knowledge: we rely
on a lightweight Description Logic (DL) framework to en-
code knowledge and use RCC-5 and qualitative constraints
for performing the merging. This section briefly recalls the
technical background required on these two topics.

Description Logics. EL is a family of lightweight DLs,
which underlies the Ontology Web Language profile OWL2-
EL, that is considered as one of the main representation
formalisms to express terminological knowledge (Baader,
Brandt, and Lutz 2005). The main ingredients of DLs are
individuals, concepts, and roles, which correspond at the se-
mantic level to objects, sets of objects, and binary relations
between objects. More formally, let 𝑁𝐶 , 𝑁𝑅, 𝑁𝐼 be three
pairwise disjoint sets where 𝑁𝐶 denotes a set of atomic con-
cepts, 𝑁𝑅 denotes a set of atomic relations (roles), and 𝑁𝐼

denotes a set of individuals. In this paper, we consider EL⊥
concept expressions (Kriegel 2020) which are built accord-
ing to the following grammar:

𝐶 ::= ⊤ | ⊥ | 𝑁𝐶 | 𝐶 ⊓ 𝐶 | ∃𝑟.𝐶 where 𝑟 ∈ 𝑁𝑅 .

Let 𝐶, 𝐷 ∈ 𝑁𝐶 , 𝑎, 𝑏 ∈ 𝑁𝐼 , and 𝑟 ∈ 𝑁𝑅. An EL ontology
O = ⟨T ,A⟩ (a.k.a. knowledge base) comprises two com-
ponents, the TBox (Terminological Box denoted by T ) and
ABox (denoted by A). The TBox consists of a set of Gen-
eral Concept Inclusion (GCI) axioms of the form 𝐶 ⊑ 𝐷,
meaning that 𝐶 is more specific than 𝐷 or simply 𝐶 is sub-
sumed by 𝐷, and axioms of the form 𝐶 ⊓ 𝐷 ⊑ ⊥, meaning
that 𝐶 and 𝐷 are disjoint concepts. The ABox is a finite
set of assertions on individual objects of the form 𝐶 (𝑎) or
𝑟 (𝑎, 𝑏).

The semantics is given in terms of interpretations I =

(ΔI , ·I), which consist of a non-empty interpretation do-
main ΔI and an interpretation function ·I that maps each
individual 𝑎 ∈ 𝑁𝐼 into an element 𝑎I ∈ ΔI , each concept
𝐴 ∈ 𝑁𝐶 into a subset 𝐴I ⊆ ΔI , and each role 𝑟 ∈ 𝑁𝑅 into a
subset 𝑟I ⊆ ΔI × ΔI .

A summary of the syntax and semantics of EL⊥ is shown
in Table 1. An interpretation I is said to be a model of (or
satisfies) an axiom Φ in the form of the left column in the ta-
ble, denoted by I |= Φ, when the corresponding condition in
the right column is satisfied. For instance, I |= 𝐶 ⊑ 𝐷 if and
only if𝐶I ⊆ 𝐷I . Similarly, I satisfies a concept (resp. role)
assertion, denoted by I |= 𝐶 (𝑎) (resp. I |= 𝑟 (𝑎, 𝑏)), if
𝑎I ∈ 𝐶I (resp. (𝑎I , 𝑏I) ∈ 𝑟I). An interpretation I is a
model of an ontology O if it satisfies all the axioms and as-
sertions in O. An ontology is said to be consistent if it has

1https://arxiv.org/abs/2205.02660
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Syntax Semantics
𝐶 ⊑ 𝐷 𝐶I ⊆ 𝐷I

𝑟 𝑟I ⊆ ΔI × ΔI
𝑎 𝑎I ∈ ΔI

𝐶 ⊓ 𝐷 𝐶I ∩ 𝐷I

⊤ ΔI

⊥ ∅
∃𝑟.𝐶 {𝑥 ∈ ΔI | ∃𝑦 ∈ ΔI 𝑠.𝑡.(𝑥, 𝑦) ∈ 𝑟I , 𝑦 ∈ 𝐶I}

Table 1: Syntax and semantics of EL⊥

a model. Otherwise, it is inconsistent. An axiom Φ is en-
tailed by an ontology, denoted by O |= Φ, if Φ is satisfied
by every model of O. We say that 𝐶 is subsumed by 𝐷 w.r.t.
an ontology O iff O |= 𝐶 ⊑ 𝐷. Similarly, we say that 𝑎 is
an instance of 𝐶 w.r.t. O iff O |= 𝐶 (𝑎). An interpretation
I = (ΔI , ·I) is said to be fulfilling when each concept name
in the ontology is non-empty in I, i.e., for each concept
𝐶𝑖 ∈ 𝑁𝐶 , ·I (𝐶𝑖) ≠ ∅.

The main reasoning task that is considered in termino-
logical ontologies is classification. It consists in computing
all the entailed subsumptions (𝐶 ⊑ 𝐷) (and equivalences
(𝐶 ≡ 𝐷)) that hold between atomic concepts of an ontol-
ogy, or the concepts ⊤ or ⊥. Such a procedure is described
in (Baader, Brandt, and Lutz 2005), which first consists in
transforming the ontology into a normal form using a set of
rules, and then performing a classification reasoning process
using the set of inference (completion) rules (see (Baader,
Brandt, and Lutz 2005) for more details). In this paper, we
assume that the input ontologies are provided in a specific
normal form, to which we apply completion rules for clas-
sification. This classification step is to normalize the input
ontologies. The reason of conducting normalization is to
handle and transform the complex axioms into the axioms
of all atomic concepts to be simpler for the translation pro-
cess. That is, before translating the input ontologies into a
region-based representation, we assume that each of them is
in the strict normal form, i.e., if its TBox T only consists
of inclusions of the fundamental form: 𝐴 ⊑ 𝐵, 𝐴 ⊓ 𝐵 ⊑ ⊥,
𝐴 ⊑ ∃𝑟.𝐵 and ∃𝑟.𝐴 ⊑ 𝐵 where 𝐴, 𝐵 ∈ 𝑁𝐶 . Such an as-
sumption is made without loss of generality, since for each
ontology O, one can compute an ontology O ′ in the strict
normal form in polynomial time (Baader, Brandt, and Lutz
2005).

Region Connection and Qualitative Constraints. The
RCC (Region Connection Calculus) formalism allows one
to represent and reason about the relationships between spa-
tial entities (Randell, Cui, and Cohn 1992). Among the
fragments of the RCC theory, RCC-5 fragment is expres-
sive enough to reason about set-theoretic relations between
regions (Bennett 1994; Peter and Thomas 1997). In RCC-
5, regions can simply be interpreted as non-empty sub-
sets of a given set and the focus is given on a set B =

{𝐷𝑅, 𝑃𝑂, 𝐸𝑄, 𝑃𝑃, 𝑃𝑃𝑖} of five binary relations between re-
gions called basic relations. The set B forms a jointly ex-
haustive and pairwise disjoint set of relations, that is, each

Name (Symbol) Syntax Semantics

Proper Part of (PP ) 𝑣𝐶 {𝑃𝑃}𝑣𝐷 𝑣S
𝐶
⊂ 𝑣S

𝐷

Inverse PP of (PPi) 𝑣𝐶 {𝑃𝑃𝑖}𝑣𝐷 𝑣S
𝐷
⊂ 𝑣S

𝐶

Equals (EQ) 𝑣𝐶 {𝐸𝑄}𝑣𝐷 𝑣S
𝐶
= 𝑣S

𝐷

Disjoint From (DR) 𝑣𝐶 {𝐷𝑅}𝑣𝐷 𝑣S
𝐶
∩ 𝑣S

𝐷
= ∅

Partially Overlaps 𝑣𝐶 {𝑃𝑂 }𝑣𝐷 𝑣S
𝐶
∩ 𝑣S

𝐷
̸≠ ∅

(PO) 𝑣S
𝐶
⊈ 𝑣S

𝐷
, 𝑣S

𝐷
⊈ 𝑣S

𝐶

Table 2: Syntax and semantics of RCC-5, 𝑣𝐶 , 𝑣𝐷 ∈ 𝑉 .

pair of regions satisfies exactly one relation from B: the re-
lation 𝐷𝑅 (resp. 𝑃𝑂, 𝐸𝑄, 𝑃𝑃) holds between two regions
whenever the two regions are disjoint (resp. when they par-
tially overlap, are equal, when the first is a strict subset of
the second), and 𝑃𝑃𝑖 is the converse of 𝑃𝑃. Based on B,
more complex pieces of information about the relative po-
sitions of a set of regions can be represented by means of
qualitative constraint networks (QCNs). Formally, a QCN is
a pair N = ⟨𝑉,Ψ⟩, where 𝑉 = {𝑣𝐶 , 𝑣𝐷 , . . .} is a set of re-
gion variables representing the spatial entities and Ψ is a set
of binary constraints between these entities. Each constraint
Ψ𝐶𝐷 ∈ Ψ is a mapping from 𝑉 × 𝑉 to 2B , and is simply
denoted by Ψ𝐶𝐷 = 𝑣𝐶 𝜑 𝑣𝐷 , where 𝜑 ⊆ 2B ; and Ψ𝐶𝐷 is
said to be a singleton constraint whenever 𝜑 is a singleton.

An interpretation of a QCNN is defined asS = (DS , ·S),
where DS is a non-empty set (the domain of the regions),
and ·S is an interpretation function which maps each vari-
able 𝑣𝐶 to a non-empty subset 𝑣S

𝐶
of DS . Table 2 precises

how singleton constraints from Ψ are interpreted in RCC-5,
i.e., an interpretation S of N satisfies a singleton constraint
Ψ𝐶𝐷 , denoted by S |= N , if the relation between 𝑣S

𝐶
and

𝑣S
𝐷

according to the table is satisfied (e.g., S |= 𝑣𝐶 {𝑃𝑃}𝑣𝐷}
whenever 𝑣S

𝐶
⊂ 𝑣S

𝐷
). The satisfaction relation is extended

to any (non-singleton) constraint from 2B as follows: for
each 𝜑 ∈ 2B , S |= 𝑣𝐶 𝜑 𝑣𝐷 iff S |= 𝑣𝐶 {𝜑𝑖} 𝑣𝐷 for some
𝜑𝑖 ∈ 𝜑 (e.g., S |= 𝑣𝐶 {𝑃𝑃, 𝐸𝑄}𝑣𝐷 iff S |= 𝑣𝐶 {𝑃𝑃}𝑣𝐷 or
𝑣𝐶 {𝐸𝑄}𝑣𝐷}). An interpretation S of a QCN N = ⟨𝑉,Ψ⟩
is said to be a solution of N , denoted by S |= N , iff
S |= Ψ𝐶𝐷 for each Ψ𝐶𝐷 ∈ Ψ. A QCN is consistent
iff it admits a solution. A sub-network of N is a QCN
N ′ = (𝑉,Ψ′) such that Ψ′ ⊆ Ψ. A quasi-atomic QCN
⟨𝑉,Ψ⟩ is a QCN where for each 𝑣𝐶 , 𝑣𝐷 ∈ 𝑉 , there is a
unique constraint Ψ𝐶𝐷 ∈ Ψ, and where Ψ𝐶𝐷 is either a
singleton or Ψ𝐶𝐷 ∈ {{𝑃𝑃, 𝐸𝑄}, {𝑃𝑃𝑖, 𝐸𝑄}}. A scenario
of a QCN is a quasi-atomic sub-network of N . Noteworthy,
a QCN is consistent if it admits a consistent scenario.

3 Merging Framework Description
This short section summarizes our method for merging
open-domain terminological knowledge (i.e., ontologies)
using qualitative constraint networks (QCNs). As high-
lighted in the introduction, QCNs are expressive enough to
capture some relevant information that might emerge dur-
ing the merging process, which in turn allows one to select
a consistent compromise between sources when expressing
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the merging result.
The first task is to find a “faithful translation” from an on-

tology to a QCN that preserves the semantics and maintains
the initial knowledge encoded in the ontology. Then, it is
assumed that every input ontology is translated into a QCN,
so we are given a multiset of QCNs, also called profile. The
second task is then to define a merging operator that asso-
ciates the QCN profile into a single QCN, representing the
QCN profile in a global and consistent way. As constraints
of the merged QCN are sets of basic relations, this QCN
cannot be translated back into the target ontology language
in the general case. So we select one of its “best” consistent
scenarios which, in contrast, can be expressed as an ontol-
ogy.

More precisely, our approach involves the following main
steps:

1. The translation of terminological knowledge sources (i.e.,
the input ontologies given in the strict normal form) into
QCNs (Section 4). In this step, we present a translation
function that ensures the faithfulness of the translation
from an ontology into a QCN.

2. The definition of a QCN merging operator (Section 5).
Exploiting the notion of “distance” between basic rela-
tions and constraints, this step associates the input QCN
profile (the translated ontologies) with a single merged,
consistent QCN.

3. The selection of a “best” consistent scenario of the
merged QCN as a candidate of the merged result (Sec-
tion 6). This selection process takes advantage of the no-
tion of distance between scenarios and some plausible in-
stantiation of the input ontologies (i.e., some interpreta-
tions).

4. The translation of the selected consistent scenario back
into an ontology, i.e., the underlying language of the input
sources (Section 7).

4 Translating Terminological Knowledge
into QCNs

In this section, we present a translation function from any
ontology to a QCN. More precisely, we (1) map atomic con-
cepts names into QCN variables and axioms into constraints,
and (2) show that the translation is faithful to the TBox of the
initial ontology.
Definition 1 (Forward translation 𝜏▷). A forward transla-
tion is a function 𝜏▷ : 𝑁𝐶 −→ 𝑉 s.t. 𝜏▷ (𝐶) def

= 𝑣𝐶 . 𝜏▷ is
extended to map axioms in the (strict) normal form into con-
straints as follows:
• 𝜏▷ (𝐶 ⊑ 𝐷) def

= 𝜏▷ (𝐶){𝑃𝑃, 𝐸𝑄}𝜏▷ (𝐷), and
• 𝜏▷ (𝐶 ⊓ 𝐷 ⊑ ⊥) def

= 𝜏▷ (𝐶){𝐷𝑅}𝜏▷ (𝐷).
Moreover, 𝜏▷ is extended to translate ontologies in the
(strict) normal form into a set of constraints in the expected
way: 𝜏▷ (O) def

= {𝜏▷ (Φ) | Φ ∈ O}.
To show that the translation is faithful, we provide a “se-

mantic” mapping from O to 𝜏▷ (O), and conversely. Let
us first show how models of O correspond to solutions of
𝜏▷ (O):

Definition 2 (Flattening of an interpretation). Let I =

(ΔI , ·I) be a fulfilling interpretation. With SI def
= (ΔI , ·SI )

we denote the flattening of I, where ·SI : 𝑉 −→ 2ΔI is such
that (𝑣𝐶 )SI = 𝐶I .

Notably, non-fulfilling interpretations are not considered
(are irrelevant) in the paper because the corresponding trans-
lation regions cannot be empty (are non-empty subsets) in
RCC-5.

Theorem 1. Let O be an ontology, and let I be a fulfilling
interpretation of O such that I |= O. Then SI |= 𝜏▷ (O).

The other way around, let us show how solutions of 𝜏▷ (O)
correspond to interpretations satisfying all axioms from O.

Definition 3 (Inflation of a solution). Let S = (DS , ·S) be a
semantic solution to a QCNN over 𝑉 . With IS def

= (ΔIS , ·IS ),
where ΔIS = DS and, for every 𝐴 ∈ 𝑁𝐶 , 𝐴IS = (𝑣𝐴)S , we
call IS an inflation of S.

Intuitively, the inflation of S corresponds to an interpreta-
tion blown up from S by interpreting atomic concept names
in the same way their corresponding variable names are
“populated” by the solution. Notice that there are as many
possible inflations of S as there are ways of interpreting 𝑁𝑅

and 𝑁𝐼 over ΔIS . An immediate consequence of Definition 3
is that every inflation of a solution S is fulfilling.

Theorem 2. Let O be an ontology and let S be a solution
of 𝜏▷ (O). Then there is an inflation IS of S s.t. IS |= Φ for
each axiom Φ of O.

Theorems 1 and 2 establish that our translation is faithful,
i.e., that the set of all fulfilling models of an ontology O are
captured precisely in its translated QCN 𝜏▷ (O).

5 QCN Merging
We reduce the merging of a profile of ontologies P =

⟨O1, . . . ,O𝑛⟩ to the merging of a profile of QCNs N =

⟨N1, . . . ,N𝑛⟩, where for each 𝑖 ∈ {1, . . . , 𝑛}, N 𝑖 =

(𝑉,Ψ𝑖) = 𝜏▷ (O𝑖), based on the faithful translation given
the previous section. Inspired by works on syntactical QCN
merging (Condotta et al. 2010), this QCN merging process
is summarized as follows. We associate with the profileN a
single merged and consistent QCNN = (𝑉,Ψ) representing
N in a “global” way. This is performed in a constraint-wise
fashion: for each pair of variables 𝑣𝐶 , 𝑣𝐷 ∈ 𝑉 , we associate
each basic relation 𝑏 ∈ B with a value representing its dis-
tance to the profile of constraints ℰ𝐶𝐷 = ⟨Ψ1

𝐶𝐷
, . . . ,Ψ𝑛

𝐶𝐷
⟩.

This distance is the key tool to form the constraint Ψ𝐶𝐷 of
the merged QCNN . Intuitively, each constraint Ψ𝐶𝐷 corre-
sponds to the set of basic relations with the lowest distances
to the profile ℰ𝐶𝐷 , while ensuring that the resulting QCN is
consistent.

Example 1. Consider the profile of ontologies P =

⟨O1,O2,O3,O4⟩ that encodes the following knowledge about
the four concepts of Paper, Text, Document and Book, re-
spectively denoted by 𝑃, 𝑇 , 𝐷 and 𝐵2.

2An implementation to illustrate our method is also made avail-
able at the following link: https://github.com/ontologymerging/
MergingOntologyWithQCN.
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Figure 1: QCN profile of Example 1

• O1 = ⟨T 1={𝑃 ⊑ 𝑇, 𝑇 ⊓ 𝐷 ⊑ ⊥, 𝑃 ⊑ 𝐵, 𝑃 ⊓ 𝐷 ⊑ ⊥,
𝐵 ⊓ 𝐷 ⊑ ⊥}, A1 = {𝑃(𝑝1), 𝑇 (𝑝1), 𝑇 (𝑡1), 𝐷 (𝑑1), 𝐵(𝑝1),
𝐵(𝑏1)} ⟩,

• O2= ⟨T 2={𝑃 ⊑ 𝑇, 𝑇 ⊑ 𝐵, 𝐷 ⊑ 𝐵, 𝐷 ⊑ 𝑃}, A2=
{𝑃(𝑝2), 𝑃(𝑑2), 𝑇 (𝑝2), 𝑇 (𝑡2), 𝐷 (𝑑2), 𝐵(𝑝2), 𝐵(𝑏2)} ⟩,

• O3= ⟨T 3={𝐵 ⊑ 𝐷, 𝐷 ⊑ 𝑃, 𝑃 ⊑ 𝑇, 𝐷 ⊑ 𝑇}, A3 =
{𝑃(𝑝3), 𝑇 (𝑡3), 𝑇 (𝑝3), 𝐷 (𝑑3), 𝐵(𝑏3)} ⟩,

• O4= ⟨T 4={𝐷 ⊓ 𝑃 ⊑ ⊥, 𝑃 ⊑ 𝑇, 𝐵 ⊑ 𝐷, 𝑇 ⊓ 𝐵 ⊑ ⊥,
𝑇 ⊓ 𝐷 ⊑ ⊥}, A4 = {𝑃(𝑝4), 𝑇 (𝑡4), 𝑇 (𝑝4), 𝐷 (𝑏4), 𝐷 (𝑑4),
𝐵(𝑏4)}⟩.
Using the forward translation 𝜏▷ presented in the pre-

vious section, one associates with P a profile of QCNs
⟨𝜏▷ (O𝑖)⟩ = ⟨N 𝑖⟩ (𝑖 ∈ {1, . . . , 4}). The four QCNs are de-
picted in Figure 1 (to alleviate the figures, we do not repre-
sent the Ψ𝐶𝐷 when Ψ𝐶𝐷 = B, i.e., when the QCN does not
provide any information between the relationship between
𝑣𝐶 and 𝑣𝐷).

Although we do not require it in the general case, note
that in this example each ontology O𝑖 is consistent, i.e., the
TBox of each input ontology does not contain conflicting
information. As a direct consequence of Theorem 1, each
QCN is consistent. However, simply combining these QCNs
can easily lead to conflicts. For instance, there is no basic
relation shared in the constraints Ψ1

𝐵𝐷
and Ψ3

𝐵𝐷
, since in

N1 we have that 𝐵𝑜𝑜𝑘 {𝐷𝑅} 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 whereas inN3 we
have that 𝐵𝑜𝑜𝑘 {𝑃𝑃, 𝐸𝑄} 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡. This calls for our
QCN merging procedure.

5.1 Computing a Distance between a Basic
Relation and a Profile of Constraints

We start by considering a distance between basic relations.
Firstly introduced in (Freksa 1992) in the context of tempo-
ral reasoning, the notion of conceptual neighborhood (CN)
between relations was later adapted to QCN merging in
(Condotta, Kaci, and Schwind 2008) to define such a dis-
tance. Intuitively, two basic relations 𝑏, 𝑏′ ∈ B are CNs
if a continuous transformation of two regions which sat-
isfy the basic relation 𝑏 ∈ 𝐵 leads them to directly sat-
isfy the basic relation 𝑏′ without satisfying any other ba-
sic relation from B. For instance, 𝑃𝑃 and 𝐸𝑄 are CNs
since “shrinking” a first region 𝐶 initially equal to another

region 𝐷 directly makes it a proper part of 𝐷. This re-
sults in the neighborhood relation {(𝐷𝑅, 𝑃𝑂), (𝑃𝑂, 𝐷𝑅),
(𝑃𝑂, 𝑃𝑃), (𝑃𝑃, 𝑃𝑂), (𝑃𝑂, 𝑃𝑃𝑖), (𝑃𝑃𝑖, 𝑃𝑂), (𝑃𝑃, 𝐸𝑄),
(𝐸𝑄, 𝑃𝑃), (𝑃𝑃𝑖, 𝐸𝑄), (𝐸𝑄, 𝑃𝑃𝑖)}. This neighborhood re-
lation induces a neighborhood graph G whose vertices are
the elements of B, and where there is an edge between two
basic relations 𝑏, 𝑏′ ∈ B whenever 𝑏 and 𝑏′ are CNs ac-
cording the neighborhood relation. The distance 𝑑 (𝑏, 𝑏′)
between two basic relations 𝑏 and 𝑏′ is defined as the length
of the shortest path between 𝑏 and 𝑏′ in the neighborhood
graph. For instance, 𝑑 (𝐷𝑅, 𝑃𝑂) = 1 since 𝐷𝑅 and 𝑃𝑂

are CNs, and 𝑑 (𝐷𝑅, 𝐸𝑄) = 3 since 𝐷𝑅 and 𝑃𝑂 (resp.
(𝑃𝑂, 𝑃𝑃) and (𝑃𝑃, 𝐸𝑄)) are CNs, but 𝐷𝑅 and 𝐸𝑄 are
not. This distance is extended to a distance between a ba-
sic relation 𝑏 ∈ B and a constraint 𝜑 ∈ 2B , defined as
𝑑 (𝑏, 𝜑) = min𝑏′∈𝜑 𝑑 (𝑏, 𝑏′). Lastly, given two variables
𝑣𝐶 , 𝑣𝐷 ∈ 𝑉 , the distance between each 𝑏 ∈ B and the pro-
file of constraints ℰ𝐶𝐷 = ⟨Ψ1

𝐶𝐷
, . . . ,Ψ𝑛

𝐶𝐷
⟩ is defined by

𝑑 (𝑏,ℰ𝐶𝐷) =
∑

𝑖∈{1,...,𝑛} 𝑑 (𝑏,Ψ𝑖
𝐶𝐷
).

Example 1 (continued). Let us focus on 𝑇𝑒𝑥𝑡 (T) and
𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 (D). We haveℰ𝑇𝐷 = ⟨Ψ1

𝑇𝐷
, Ψ2

𝑇𝐷
, Ψ3

𝑇𝐷
, Ψ4

𝑇𝐷
⟩ =

⟨{𝐷𝑅}, B, {𝑃𝑃𝑖, 𝐸𝑄}, {𝐷𝑅}⟩. For the distance between
the basic relation 𝑃𝑃 andℰ𝑇𝐷 , we have that 𝑑 (𝑃𝑃,ℰ𝑇𝐷) =
𝑑 (𝑏,Ψ1

𝑇𝐷
) + 𝑑 (𝑏,Ψ2

𝑇𝐷
) + 𝑑 (𝑏,Ψ3

𝑇𝐷
) + 𝑑 (𝑏,Ψ4

𝑇𝐷
), where:

𝑑 (𝑃𝑃,Ψ1
𝑇𝐷
) = 𝑑 (𝑃𝑃, {𝐷𝑅}) = 𝑑 (𝑃𝑃, 𝐷𝑅) = 2,

𝑑 (𝑃𝑃,Ψ2
𝑇𝐷
) = 𝑑 (𝑃𝑃,B) = 𝑑 (𝑃𝑃, 𝑃𝑃) = 0,

𝑑 (𝑃𝑃,Ψ3
𝑇𝐷
) = 𝑑 (𝑃𝑃, {𝑃𝑃𝑖, 𝐸𝑄}) = 𝑑 (𝑃𝑃, 𝐸𝑄) = 1,

𝑑 (𝑃𝑃,Ψ4
𝑇𝐷
) = 𝑑 (𝑃𝑃, {𝐷𝑅}) = 𝑑 (𝑃𝑃, 𝐷𝑅) = 2.

We get that 𝑑 (𝑃𝑃,ℰ𝑇𝐷) = 5. The distances between each
basic relation from B and the profile of constraints ℰ𝐶𝐷 for
each pair of variables 𝑣𝐶 , 𝑣𝐷 ∈ 𝑉 is summarized in Table 3.

ℰ ℰ𝑇𝑃 ℰ𝑇𝐵 ℰ𝑇𝐷 ℰ𝑃𝐵 ℰ𝑃𝐷 ℰ𝐵𝐷

B

𝐷𝑅 8 2 2 2 4 6
𝑃𝑂 4 2 3 1 4 4
𝑃𝑃 4 2 5 0 6 3
𝑃𝑃𝑖 0 3 4 1 4 4
𝐸𝑄 0 3 6 0 6 3

Table 3: Distances between relations from B and the profile of
constraints ℰ𝐶𝐷 , for each pair of variables 𝑣𝐶 , 𝑣𝐷 ∈ 𝑉 .

5.2 Using the Distance to Build a Merged
Consistent QCN

We now describe our procedure which associates a profile of
QCNs with a merged, consistent QCN. This takes advantage
of the distance between basic relations and a profile of con-
straints ℰ𝐶𝐷 . Let us first formally define two intermediate
functions 𝑟𝑒𝑙𝑎𝑥𝐶𝐷 and 𝑣𝑎𝑙𝐶𝐷 which are used in our proce-
dure. Given a total preorder3 ⪯ over a finite set 𝐸 , let us de-
note by min(𝐸, ⪯) the set of minimal elements of 𝐸 w.r.t. ⪯,

3A total preorder over a set 𝐸 is a total, symmetric and transitive
relation.
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i.e., min(𝐸, ⪯) = {𝑒 ∈ 𝐸 | ∀𝑒′ ∈ 𝐸, 𝑒 ⪯ 𝑒′}. Each pair
of variables 𝑣𝐶 , 𝑣𝐷 is associated with a total preorder ⪯𝐶𝐷

over the basic relations from B defined for all 𝑏, 𝑏′ ∈ B
as 𝑏 ⪯𝐶𝐷 𝑏′ iff 𝑑 (𝑏,ℰ𝐶𝐷) ≤ 𝑑 (𝑏′,ℰ𝐶𝐷). Then the func-
tion 𝑟𝑒𝑙𝑎𝑥𝐶𝐷 is a mapping 𝑟𝑒𝑙𝑎𝑥𝐶𝐷 : 2B ↦→ 2B defined
for each 𝜑 ∈ 2B as 𝑟𝑒𝑙𝑎𝑥𝐶𝐷 (𝜑) = 𝜑 ∪ min(B \ 𝜑, ⪯𝐶𝐷).
It corresponds to the relaxation of a constraint 𝜑 w.r.t.. the
total preordering ⪯𝐶𝐷 . Noteworthy, 𝑟𝑒𝑙𝑎𝑥𝐶𝐷 (∅) corre-
sponds to the set of basic relations with a minimal distance
to the profile of constraints ℰ𝐶𝐷 . The function 𝑣𝑎𝑙𝐶𝐷 is
a mapping 𝑣𝑎𝑙𝐶𝐷 : 2B ↦→ N defined for each 𝜑 ∈ 2B
as 𝑣𝑎𝑙𝐶𝐷 (𝜑) = max𝑏∈𝜑 𝑑 (𝑏,ℰ𝐶𝐷). For instance, ac-
cording to Table 3 and focusing on 𝐵𝑜𝑜𝑘 and 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡

(cf. ℰ𝐵𝐷), we get that 𝑃𝑃, 𝐸𝑄 ⪯𝐵𝐷 𝑃𝑂, 𝑃𝑃𝑖 ⪯𝐵𝐷 𝐷𝑅,
that 𝑟𝑒𝑙𝑎𝑥𝐵𝐷 (∅) = {𝑃𝑃, 𝐸𝑄}, that 𝑟𝑒𝑙𝑎𝑥𝐵𝐷 ({𝑃𝑃, 𝐸𝑄}) =
{𝑃𝑃, 𝐸𝑄, 𝑃𝑂, 𝑃𝑃𝑖}, and that 𝑣𝑎𝑙𝐵𝐷 ({𝑃𝑃, 𝐸𝑄}) = 3.

We are ready to introduce our main procedure, whose out-
line is given in Algorithm 1 that defines an initial QCNN by
setting each one of its constraints Ψ𝐶𝐷 to the set of basic re-
lations from B having a distance to the profile of constraints
ℰ𝐶𝐷 that is minimal (lines 2 to 5). If this QCN is consistent,
then it is returned as the merged QCN (line 12). If not, some
of the constraints ofN are relaxed in line 7, in the sense that
some basic relations are added to these constraints. Such a
set of constraints 𝑆 is selected as follows. In line 7, 𝑆 is first
restricted to those constraints fromN which can be relaxed,
i.e., those constraints not equal toB. Among those candidate
constraints, one selects in line 8 the constraints Ψ𝐶𝐷 having
a highest value 𝑣𝑎𝑙𝐶𝐷 (Ψ𝐶𝐷). Indeed, we do not want to
relax first the constraints consisting of basic relations which
are “close” to the input profile, but rather would one prior-
itize the relaxation of more “controversial” constraints, i.e.,
those with a high value according to 𝑣𝑎𝑙𝐶𝐷 . For instance, let
us look back at Table 3. It can be seen that 𝑑 (𝑃𝑃𝑖,ℰ𝑇𝑃) =
𝑑 (𝐸𝑄,ℰ𝑇𝑃) = 0, and thus 𝑣𝑎𝑙𝑇𝑃 ({𝑃𝑃𝑖, 𝐸𝑄}) = 0; this low
value reflects the consensus between sources on the fact that
one of the basic relations 𝑃𝑃𝑖, 𝐸𝑄 holds between 𝑇𝑒𝑥𝑡 and
𝑃𝑎𝑝𝑒𝑟, and indeed it can be verified that the axiom 𝑃 ⊑ 𝑇

is consistent with each input TBox. On the contrary, one has
that 𝑣𝑎𝑙𝑃𝐷 ({𝐷𝑅, 𝑃𝑂, 𝑃𝑃𝑖}) = 4; this higher value reflects
a disagreement between the input sources about the relation-
ship between the concepts of 𝑃𝑎𝑝𝑒𝑟 and 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡. And
in the general case, whenever possible and in order to restore
the consistency of the merged QCN, it is a sensible choice to
keep unchanged those constraints unanimely accepted by the
input sources, and rather weaken first the most disputed con-
straints. This “relaxation” process is repeated iteratively un-
til the resulting QCN is consistent which, obviously enough,
is guaranteed after a finite number of iterations.
Example 1 (continued). Initially, the merged QCN N =

⟨𝑉,Ψ⟩ is defined by the following set of constraints, which
correspond the basic relations highlighted in Table 3 (this
QCN is also depicted in Figure 2(a)):

Ψ𝑇𝑃 = {𝑃𝑃𝑖, 𝐸𝑄} Ψ𝑇𝐵 = {𝐷𝑅, 𝑃𝑂, 𝑃𝑃}
Ψ𝑇𝐷 = {𝐷𝑅} Ψ𝑃𝐵 = {𝑃𝑃, 𝐸𝑄}
Ψ𝑃𝐷 = {𝐷𝑅, 𝑃𝑂, 𝑃𝑃𝑖} Ψ𝐵𝐷 = {𝑃𝑃, 𝐸𝑄}

This QCN is inconsistent. One can see that the constraints
Ψ𝑃𝐵 and Ψ𝐵𝐷 imply by transitivity that the relation between

Algorithm 1: Computing a merged QCN
input: A profile of QCNs N = ⟨N1, . . . ,N𝑛⟩
output: A merged, consistent QCN N

1 begin
// Initialization of the output QCN N

2 Ψ←− {Ψ𝐶𝐷 | 𝑣𝐶 , 𝑣𝐷 ∈ 𝑉}
3 foreach (𝑣𝐶 , 𝑣𝐷) ∈ 𝑉 ×𝑉 do
4 Ψ𝐶𝐷 ←− 𝑟𝑒𝑙𝑎𝑥𝐶𝐷 (∅)
5 N ←− (𝑉,Ψ)
6 while N is not consistent do

// One relaxes some constraints of N
7 𝑆 ←− {Ψ𝐶𝐷 | Ψ𝐶𝐷 ∈ Ψ,Ψ𝐶𝐷 ≠ B}
8 𝑆 ←− arg max{𝑣𝑎𝑙𝐶𝐷 (Ψ𝐶𝐷) | Ψ𝐶𝐷 ∈ 𝑆)}
9 foreach Ψ𝐶𝐷 ∈ 𝑆 do

10 Ψ𝐶𝐷 ←− 𝑟𝑒𝑙𝑎𝑥𝐶𝐷 (Ψ𝐶𝐷)
11 N ←− (𝑉,Ψ)
12 return N

Figure 2: The QCNs iteratively generated by our algorithm.
Fig. 2(c) corresponds to the final consistent merged QCN.

𝑃 and 𝐷 must be 𝑃𝑃 or 𝐸𝑄, yet Ψ𝑃𝐷 ∩ {𝑃𝑃, 𝐸𝑄} = ∅.
Then the constraint Ψ𝑃𝐷 is selected (cf. line 8 in the al-
gorithm) as the only candidate for relaxation at this point,
since 𝑣𝑎𝑙𝑃𝐷 (Ψ𝑃𝐷) = 4, which is the highest value among
all constraints. And since 𝑟𝑒𝑙𝑎𝑥𝑃𝐷 (Ψ𝑃𝐷) = B, one up-
dates Ψ𝑃𝐷 to B which results in the QCN depicted in Fig-
ure 2(b). This QCN is, again, inconsistent (in this case,
explaining its inconsistency is more complex as it involves
dependencies between all four variables. We omit the de-
tails for space reasons). Then the constraint Ψ𝐵𝐷 is selected
for relaxation (𝑣𝑎𝑙𝐵𝐷 (Ψ𝐵𝐷) = 3) and one updates Ψ𝐵𝐷 to
{𝑃𝑃, 𝐸𝑄, 𝑃𝑂, 𝑃𝑃𝑖}. The resulting QCN (cf. Figure 2(c)) is
consistent and returned by the procedure.

Algorithm 1 runs in a time that is polynomial on the
size of the input QCN profile, given access to an NP ora-
cle in one step (line 6). Indeed, (i) checking the consistency
of an RCC-5 QCN can be performed by taking advantage
of a standard SAT solver (Condotta, Nouaouri, and Sioutis
2016), (ii) the number of possible relaxations of a given con-
straint is bounded by a constant (the number of RCC-5 basic
relations), and as a consequence, the number of iterations
performed in the loop starting from line 6 is in 𝑂 ( |𝑉 × 𝑉 |);
and (iii) the functions 𝑟𝑒𝑙𝑎𝑥𝐶𝐷 and 𝑣𝑎𝑙𝐶𝐷 are computed in
𝑂 (1) since the distance 𝑑 is computed in 𝑂 (1), again be-
cause the number of RCC-5 basic relations is bounded by
a constant. This makes the complexity of Algorithm 1 in
𝐹𝑃𝑁𝑃 , that is reminiscent of the complexity of the infer-
ence problem for propositional belief merging, i.e., 𝑃𝑁𝑃 ,
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Figure 3: The consistent scenarios of the merged QCN.

for a vast majority of the existing operators (Konieczny and
Marquis 2004).

Notably, the QCN merging step we propose in our frame-
work can be seen as an adaptation of (Condotta et al. 2010)
that allows one to work with a single QCN as a merged re-
sult (the output of Algorithm 1). Nevertheless, the work of
Condotta et al. (Condotta et al. 2010) does not provide such
a procedure.

6 Selecting a Representative Scenario of the
Merged QCN

Once we have obtained a merged, consistent QCN, our goal
is to express it in our initial (target) ontology language.
However, not every constraint Ψ𝐶𝐷 from the QCN (i.e., a
subset of B) can easily be translated as a set of axioms,
since non-singleton constraints express some disjunctive in-
formation between two concepts/regions. Moreover, since
the merged QCN is consistent, one can remark it necessar-
ily admits at least one consistent scenario, and since a sce-
nario involves singleton constraints (as well as the two con-
straints {𝑃𝑃, 𝐸𝑄}, {𝑃𝑃𝑖, 𝐸𝑄}), it can easily be translated
into a single ontology, as will be shown in the next section.
Then our aim is to (i) focus on all consistent scenarios of
the merged QCN, and (ii) select one representative scenario.
This can be done by exploiting information provided by the
input ABoxes as we intend to show in the rest of this section.

In our running example, the merged QCN admits four
consistent scenarios which are depicted in Figure 3. Let
us first discuss why these four scenarios seem to be reason-
able candidates to the input ontologies / QCNs provided by
the sources. First, note that all input ontologies state that
𝑃𝑎𝑝𝑒𝑟 ⊑ 𝑇𝑒𝑥𝑡 (𝑣𝑇 {𝑃𝑃𝑖, 𝐸𝑄}𝑣𝑃 in the QCN profile). And it
can be seen that this consensus is reflected in the four candi-
date scenarios, which entail that information. Second, while
the two sources O1 and O4 state that 𝑇𝑒𝑥𝑡 and 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡

are disjoint concepts (𝑣𝑇 {𝐷𝑅}𝑣𝐷 in the corresponding in-
put QCNs), only one source says that 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 ⊑ 𝑇𝑒𝑥𝑡

(𝑣𝑇 {𝑃𝑃, 𝐸𝑄}𝑣𝐷). In this case, it make sense to follow the
point of view of the majority of the sources. And accord-
ingly, in all four scenarios we have that 𝑣𝑇 {𝐷𝑅}𝑣𝐷 , thus
𝑇𝑒𝑥𝑡 and 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 are disjoint concepts. Third, the source
O1 states that 𝑃𝑎𝑝𝑒𝑟 ⊑ 𝐵𝑜𝑜𝑘 and all other sources have

no information on these concepts. It is sensible to keep
this information in the merged result, and accordingly all
four scenarios entail that information. More, one sees that
𝑣𝑃{𝑃𝑃}𝑣𝐵 holds in all scenarios, i.e., that 𝑃𝑎𝑝𝑒𝑟 is a strict
part of 𝐵𝑜𝑜𝑘 , or stated otherwise, that both concepts can-
not be equal while keeping the relationships between the re-
maining concepts consistent. This emergent property is also
an interesting feature of the merging process. Last, the rea-
son why there are four, equally reasonable, candidate scenar-
ios is that some strong disagreements hold on the relation-
ships between the concepts 𝑇𝑒𝑥𝑡 and 𝐵𝑜𝑜𝑘 on the one hand,
and the concepts 𝐵𝑜𝑜𝑘 and 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 on the other hand.
Accordingly, the only differences between the four scenarios
hold on the constraints between these two pairs of concepts
(𝑣𝑇 {𝑃𝑂}𝑣𝐵 / 𝑣𝑇 {𝑃𝑃}𝑣𝐵, and 𝑣𝐵{𝑃𝑃𝑖}𝑣𝐷 / 𝑣𝐵{𝑃𝑂}𝑣𝐷).

What remains to be done is to select one of these four sce-
narios. For this purpose, one takes advantage of the ABoxes
from the input ontologies and see how these ABoxes relate
to each scenario. To be as faithful as possible to what each
input source says, instead of simply considering each input
ABox as such, one considers the “closure” of it according
to its corresponding TBox. For instance, if a given source
states that 𝑃𝑎𝑝𝑒𝑟 ⊑ 𝑇𝑒𝑥𝑡 in its TBox and that 𝑃𝑎𝑝𝑒𝑟 (𝑝) in
its ABox, then it makes sense to also consider that 𝑇𝑒𝑥𝑡 (𝑝)
also holds in that source’s implicit knowledge. Formally,
let O = ⟨T ,A⟩ be an ontology. The deductive closure of A
w.r.t. T , denoted by C𝑙T (A), is defined as C𝑙T (A)def

={𝐵(𝑎) |
𝐵 ∈ 𝑁𝐶 , 𝑎 ∈ 𝑁𝐼 , O |= 𝐵(𝑎)} (Baader et al. 2007;
Benferhat, Bouraoui, and Tabia 2015). Accordingly, ⟨T ,A⟩
is logically equivalent to ⟨T , C𝑙T (A)⟩.

To select the representative scenario, we define a distance
between a scenario and the set of all input (closed) ABoxes,
and then use this distance to choose the scenario. The repre-
sentative scenario is the one having a minimal distance. So
given a scenario, the idea is to count the number of individ-
uals in each input ABox which raise a conflict w.r.t. the con-
straints of that scenario. This can naturally be done for any
scenario constraint 𝑣𝐶 𝜑 𝑣𝐷 where 𝜑 ≠ {𝑃𝑂}. For instance,
if 𝑃𝑎𝑝𝑒𝑟 (𝑝) and 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 (𝑝) hold in the ABox of a given
source, and 𝑣𝑃{𝐷𝑅}𝑣𝐷 holds in the scenario under consid-
eration, then according to that ABox 𝑝 is an individual that
raises a conflict with that scenario. Another example is if
𝑃𝑎𝑝𝑒𝑟 (𝑝) holds but not 𝑇𝑒𝑥𝑡 (𝑝), then 𝑝 is not a member of
the concept 𝑇𝑒𝑥𝑡 in the ABox (recall that ABoxes are closed
w.r.t. their TBox); in that case 𝑝 raises a conflict with the
constraints 𝑣𝑃 𝜑 𝑣𝑇 when 𝜑 ∈ {{𝑃𝑃}, {𝐸𝑄}, {𝑃𝑃, 𝐸𝑄}}.
More formally, given an ABox A, a scenario constraint
𝑣𝐶 𝜑 𝑣𝐷 where 𝜑 ≠ {𝑃𝑂}, and an individual 𝑝, we say
that 𝑝 raises a conflict with 𝜑 w.r.t A when:

𝐶 (𝑝) ∈ A, 𝐷 (𝑝) ∉ A when 𝜑 ⊆ {𝑃𝑃, 𝐸𝑄},
𝐷 (𝑝) ∈ A, 𝐶 (𝑝) ∉ A when 𝜑 ⊆ {𝑃𝑃𝑖, 𝐸𝑄},
𝐶 (𝑝), 𝐷 (𝑝) ∈ A when 𝜑 = {𝐷𝑅}.

And the number of conflicts raised by an ontology O =

⟨T ,A⟩ w.r.t. a a scenario constraint 𝑣𝐶 𝜑 𝑣𝐷 where
𝜑 ≠ {𝑃𝑂}, is defined as 𝑛𝑏𝐶𝑜𝑛 𝑓 (O, 𝜑) = |{𝑝 ∈
𝑁𝐼 | 𝑝 raises a conflict with 𝜑 w.r.t. C𝑙T (A)}|.

The case of 𝑃𝑂 is more complex. Indeed, it can be
easily seen that no individual can raise a conflict with
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𝑣𝐶 {𝑃𝑂}𝑣𝐷 . This is because all basic relations B \ {𝑃𝑂}
express explicit dependencies between concepts / regions,
whereas 𝑃𝑂 is a complementary relation that (explicitly)
expresses a notion of independency between concepts.
For instance, the concepts 𝑆𝑚𝑜𝑘𝑒𝑟 and 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟 can
naturally be thought of as independent concepts, in the
sense that one can easily find in a real-world context
individuals that are members of either both concepts, only
one of them, and none of them (note that this should not be
confused with the case of 𝐷𝑅, which expresses an explicit
dependency between concepts, e.g., the concepts 𝐷𝑜𝑔

and 𝐶𝑎𝑡.) So to evaluate the number of “conflicts” raised
by an ABox w.r.t. a constraint 𝑣𝐶 {𝑃𝑂}𝑣𝐷 , we propose
to count how “unbalanced” the number of conflicts are
w.r.t. the remaining forms of constraints. Formally, focusing
on the scenario constraint between two variables 𝑣𝐶 and
𝑣𝐷 , 𝑛𝑏𝐶𝑜𝑛 𝑓 (O, 𝜑) = max𝜑′≠{𝑃𝑂} 𝑛𝑏𝐶𝑜𝑛 𝑓 (O, 𝜑′)) −
min𝜑′≠{𝑃𝑂} 𝑛𝑏𝐶𝑜𝑛 𝑓 (O, 𝜑′)). For instance, when
𝑛𝑏𝐶𝑜𝑛 𝑓 (O, {𝑃𝑃, 𝐸𝑄}) = 𝑛𝑏𝐶𝑜𝑛 𝑓 (O, {𝑃𝑃𝑖, 𝐸𝑄}) =

𝑛𝑏𝐶𝑜𝑛 𝑓 (O, {𝐷𝑅}), then 𝑛𝑏𝐶𝑜𝑛 𝑓 (O, {𝑃𝑂}) = 0: since
individuals can be found equally (i) in both underlying
concepts, and (ii) in one concept but not the other, O raises
no conflict w.r.t. {𝑃𝑂}.

We have now a way to select the representative sce-
nario from a given set of candidates. The distance between
a scenario N𝑀 and the input profile of ontologies P =

⟨O1, . . . ,O𝑛⟩ is simply defined as the overall number of
conflicts raised by all input ABoxes w.r.t. all constraints of
N𝑀 , i.e., 𝑑 (N𝑀 ,P) = ∑

𝑖∈{1,...,𝑛},𝜑∈N𝑀 𝑛𝑏𝐶𝑜𝑛 𝑓 (O𝑖 , 𝜑).
Given a set of candidate scenarios, the representative sce-
nario is then the one having a minimal distance.

Example 1 (continued). Let us go back to our running ex-
ample. We have that C𝑙T3 (A3) = {𝑃(𝑝3), 𝑃(𝑏3), 𝑃(𝑑3),
𝑇 (𝑡3), 𝑇 (𝑑3), 𝑇 (𝑏3), 𝑇 (𝑝3), 𝐷 (𝑑3), 𝐷 (𝑏3), 𝐵(𝑏3)}. So
focusing on 𝑇𝑒𝑥𝑡 and 𝐵𝑜𝑜𝑘 (i.e., on the scenario con-
straints between the variables 𝑣𝑇 and 𝑣𝐵), we have that
𝑛𝑏𝐶𝑜𝑛 𝑓 (O3, {𝑃𝑃}) = |{𝑡3, 𝑑3, 𝑝3}| = 3, and one can easily
verify that 𝑛𝑏𝐶𝑜𝑛 𝑓 (O3, {𝑃𝑂}) = |{𝑡3, 𝑑3, 𝑝3}| = 3 − 0 = 3.
Summing up all conflicts, we get that 𝑑 (N𝑀

1 ,P) = 20,
𝑑 (N𝑀

2 ,P) = 18, 𝑑 (N𝑀
3 ,P) = 22, and 𝑑 (N𝑀

4 ,P) = 24.
Hence, the scenarioN𝑀

2 is selected as a representative sce-
nario of the merged QCN.

7 Translating the Representative Scenario
into a Terminological Knowledge

The last step of our framework is to translate back the result-
ing selected representative scenario into an ontology. The
translation is defined as follows.

Definition 4 (Backward translation 𝜏◁). A backward trans-
lation is a function 𝜏◁ : 𝑉 −→ C s.t. 𝜏◁ (𝑣𝐶 ) def

= 𝐶. 𝜏◁ is ex-
tended to map constraints into an ontology as follows, where
𝐴′, 𝐶 ′, and 𝐷 ′ are new concept names and 𝑎, 𝑏, and 𝑐 new
individual names:4

• 𝜏◁ (𝑣𝐶 {𝐸𝑄}𝑣𝐷) def
= ⟨{𝐶 ≡ 𝐷}, ∅⟩;

4Notice that the constraint {𝑃𝑂} cannot be translated into a set
of GCIs only, whence the use of ABox assertions in the translation.

• 𝜏◁ (𝑣𝐶 {𝐷𝑅}𝑣𝐷) def
= ⟨{𝐶 ⊓ 𝐷 ⊑ ⊥}, ∅⟩;

• 𝜏◁ (𝑣𝐶 {𝑃𝑂}𝑣𝐷) def
= ⟨{𝐴′ ⊑ 𝐶 ⊓ 𝐷,𝐶 ′ ⊑

𝐶,𝐶 ′ ⊓ 𝐷 ⊑ ⊥, 𝐷 ′ ⊑ 𝐷, 𝐷 ′ ⊓ 𝐶 ⊑
⊥}, {𝐴′(𝑎), 𝐶 (𝑐), 𝐶 (𝑎), 𝐷 (𝑑), 𝐷 (𝑎), 𝐶 ′(𝑐), 𝐷 ′(𝑑)}⟩;

• 𝜏◁ (𝑣𝐶 {𝑃𝑃, 𝐸𝑄}𝑣𝐷) def
= ⟨{𝐶 ⊑ 𝐷}, ∅⟩;

• 𝜏◁ (𝑣𝐶 {𝑃𝑃𝑖, 𝐸𝑄}𝑣𝐷) def
= ⟨{𝐷 ⊑ 𝐶}, ∅⟩;

• 𝜏◁ (𝑣𝐶 {𝑃𝑃}𝑣𝐷) def
= ⟨{𝐶 ⊑ 𝐷, 𝐷 ′ ⊑ 𝐷,𝐶 ⊓ 𝐷 ′ ⊑

⊥}, {𝐷 ′(𝑑), 𝐶 (𝑐),
𝐷 (𝑑), 𝐷 (𝑐)}⟩, and

• 𝜏◁ (𝑣𝐶 {𝑃𝑃𝑖}𝑣𝐷)) def
= ⟨{𝐷 ⊑ 𝐶,𝐶 ′ ⊑ 𝐶, 𝐷 ⊓ 𝐶 ′ ⊑

⊥}, {𝐶 ′(𝑐), 𝐷 (𝑑),
𝐶 (𝑑), 𝐷 (𝑐)}⟩.

Moreover, 𝜏◁ is extended to translate a set of constraints into
an ontology in the (strict) normal form in the expected way:
𝜏◁ (N) def

= ⟨T ,A⟩, where T def
=

⋃
𝜏◁ (Ψ)=⟨T′,A′⟩,Ψ∈N T ′ and

A def
=
⋃

𝜏◁ (Ψ)=⟨T′,A′⟩,Ψ∈N A ′.
Accordingly, our back translation is faithful. Using again

the notions of inflation and flattening (cf. Definitions 2 and
3), we show that the set of solutions of a scenario N are
captured precisely in its translated ontology 𝜏◁ (N).
Theorem 3. Let N be a scenario and S be solution of N .
Then there is an inflation IS ofS s.t. IS is a model of 𝜏◁ (N).
Theorem 4. Let N be a scenario and let I be a fulfilling
interpretation of 𝜏◁ (N) such that I is a model of 𝜏◁ (N).
Then SI |= N .
Example 1 (continued). Let us translate the selected sce-
nario N𝑀

2 into an ontology. From Definition 4, we get that:
𝜏◁ (N𝑀

2 ) = ⟨{(Ψ𝑇𝑃) 𝑃 ⊑ 𝑇, (Ψ𝑇𝐷) 𝑇 ⊓ 𝐷 ⊑ ⊥, (Ψ𝑃𝐷)
𝑃 ⊓ 𝐷 ⊑ ⊥, (Ψ𝑇𝐵) 𝑇 ⊑ 𝐵, 𝑆𝑢𝑏𝐵𝑜1 ⊑ 𝐵, 𝑆𝑢𝑏𝐵𝑜1 ⊓ 𝑇 ⊑ ⊥,
(Ψ𝑃𝐵) 𝑃 ⊑ 𝐵, 𝑆𝑢𝑏𝐵𝑜2 ⊑ 𝐵, 𝑆𝑢𝑏𝐵𝑜2⊓𝑃 ⊑ ⊥, (Ψ𝐵𝐷) 𝐷 ⊑
𝐵, 𝑆𝑢𝑏𝐵𝑜3 ⊑ 𝐵, 𝑆𝑢𝑏𝐵𝑜3 ⊓ 𝐷 ⊑ ⊥ },{𝑇 (𝑡1), 𝑆𝑢𝑏𝐵𝑜1(𝑠1),
𝐵(𝑡1), 𝐵(𝑠1), 𝑃(𝑝1), 𝑆𝑢𝑏𝐵𝑜2(𝑠2), 𝐵(𝑝1), 𝐵(𝑠2), 𝐷 (𝑑1),
𝑆𝑢𝑏𝐵𝑜3(𝑠3), 𝐵(𝑑1), 𝐵(𝑠3)}⟩.

8 Conclusion
In this paper, we introduced a terminological knowledge
merging procedure based on qualitative reasoning over re-
gion spaces, by providing a two-way translation between
terminological knowledge and RCC-5 based qualitative con-
straint networks. Accordingly, even if the input sources are
inconsistent when simply combined together, our approach
returns a consistent result. It also remains as close as pos-
sible to the input sources, i.e., by preserving as much infor-
mation as possible.

We have assumed that all input ontologies were provided
in a strict normal form. Notably, the process of translating
an ontology into another equivalent ontology in strict normal
form can be done in polynomial time, but this process also
allows one to obtain a full classification of all initial atomic
concepts, for instance by taking advantage of axioms involv-
ing constraints between complex concepts of the type ∃𝑟.𝐶
(Baader, Brandt, and Lutz 2005). For the scope of our paper,
we have focused on the merging of all atomic concepts from
the input ontologies, since considering more complex con-
cepts may lead to consider constraints of higher arity in the
translated qualitative constraint networks (e.g., for each role
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𝑟 in the signature, the assertion ∃𝑟.𝐴 ⊑ ∃𝑟.𝐵 holds when
𝐴 ⊑ 𝐵 holds, which would correspond to a constraint of arity
four in the translation), and our merging procedure does not
allow for these types of constraints. These kind of consider-
ations will be investigated in a future work. Further work
will also include the empirical evaluation of our method.
Moreover, an approach for representing regions and points
in vector spaces (combining natural language processing) is
another next interesting direction for merging ontologies.

Acknowledgments
This work has benefited from the support of the AI Chair
BE4musIA of the French National Research Agency (ANR-
20-CHIA-0028) and FEI INS2I 2022-EMILIE.

References
Baader, F.; Calvanese, D.; Mcguinness, D.; Nardi, D.; and
Patel-Schneider, P. 2007. The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge Uni-
versity Press.
Baader, F.; Brandt, S.; and Lutz, C. 2005. Pushing the EL
Envelope. In Proceedings of the 19th International Joint
Conferences on Artificial Intelligence (IJCAI’05), 364–369.
Beltagy, I.; Chau, C.; Boleda, G.; Garrette, D.; Erk, K.; and
Mooney, R. 2013. Montague meets Markov: Deep seman-
tics with probabilistic logical form. In Second Joint Con-
ference on Lexical and Computational Semantics (*SEM),
11–21.
Benferhat, S.; Bouraoui, Z.; Lagrue, S.; and Rossit, J. 2014.
Min-based Assertional Merging Approach for Prioritized
DL-Lite Knowledge Bases. In Proceedings of the 8th Inter-
national Conference on Scalable Uncertainty Management
(SUM’14), 8–21.
Benferhat, S.; Bouraoui, Z.; Papini, O.; and Würbel, E.
2019. Assertional removed sets merging of dl-lite knowl-
edge bases. In Proceedings of the 13th International Confer-
ence of Scalable Uncertainty Management (SUM’19), 207–
220.
Benferhat, S.; Bouraoui, Z.; and Tabia, K. 2015. How to se-
lect one preferred assertional-based repair from inconsistent
and prioritized dl-lite knowledge bases? In Proceedings of
the 24th International Conference on Artificial Intelligence
(IJCAI’15), 1450–1456.
Bennett, B. 1994. Spatial Reasoning with Propositional
Logics. In Proceedings of the 4th International Conference
on Principles of Knowledge Representation and Reasoning
(KR’94), 51–62.
Bhatt, M.; Guesgen, H.; Wölfl, S.; and Hazarika, S. 2011.
Qualitative Spatial and Temporal Reasoning: Emerging Ap-
plications, Trends, and Directions. Spatial Cognition &
Computation 11:1–14.
Bouraoui, Z., and Schockaert, S. 2018. Learning Conceptual
Space Representations of Interrelated Concepts. In Proceed-
ings of the 27th International Joint Conference on Artificial
Intelligence (IJCAI’18), 1760–1766.

Bouraoui, Z.; Konieczny, S.; Ma, T. T.; and Varzinczak, I.
2020a. Model-based Merging of Open-Domain Ontologies.
In Proceedings of the 33rd IEEE International Conference
on Tools with Artificial Intelligence (ICTAI’20), 29–34.
Bouraoui, Z.; Camacho-Collados, J.; Anke, L. E.; and
Schockaert, S. 2020b. Modelling Semantic Categories
using Conceptual Neighborhood. In Proceedings of the
34th AAAI Conference on Artificial Intelligence (AAAI’20),
7448–7455.
Chang, F.; wei Chen, G.; and Zhang, S. 2019. FCAMap-
KG Results for OAEI 2019. In Proceedings of the 18th
International Semantic Web Conference (OM@ISWC’19),
138–145.
Chen, Z.; Yu, S.; Shengxian, W.; and Dianhai, Y. 2019.
RLTM: An Efficient Neural IR Framework for Long Docu-
ments. In Proceedings of the 28th International Joint Con-
ference on Artificial Intelligence (IJCAI’19), 5457–5463.
Cohn, A.; Bennett, B.; Gooday, J.; and Gotts, M. 1997.
Qualitative Spatial Representation and Reasoning with the
Region Connection Calculus. GeoInformatica 275–316.
Condotta, J.-F.; Kaci, S.; Marquis, P.; and Schwind, N.
2009. Merging Qualitative Constraint Networks in a Piece-
wise Fashion. In Proceedings of the 21st IEEE International
Conference on Tools with Artificial Intelligence (ICTAI’09),
605–608.
Condotta, J.-F.; Kaci, S.; Marquis, P.; and Schwind, N.
2010. A Syntactical Approach to Qualitative Constraint Net-
works Merging. In Proceedings of the 17th International
Conference on Logic Programming and Automated Reason-
ing (LPAR’10), 233–247.
Condotta, J.-F.; Kaci, S.; and Schwind, N. 2008. A Frame-
work for Merging Qualitative Constraints Networks. In Pro-
ceedings of the 21st International Florida Artificial Intelli-
gence Research Society Conference (FLAIRS’08), 586–591.
Condotta, J.-F.; Nouaouri, I.; and Sioutis, M. 2016. A SAT
Approach for Maximizing Satisfiability in Qualitative Spa-
tial and Temporal Constraint Networks. In Proceedings of
the 15th International Conference on Principles of Knowl-
edge Representation and Reasoning (KR’16), 342–442.
Douven, I.; Elqayam, S.; Gärdenfors, P.; and Mirabile, P.
2022. Conceptual spaces and the strength of similarity-
based arguments. Cognition 218:104951.
Freksa, C. 1992. Temporal reasoning based on semi-
intervals. Artificial Intelligence 54(1):199–227.
Gärdenfors, P. 2000. Conceptual Spaces: The Geometry of
Thought. US: MIT Press.
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