
Sticky Policies in OWL2: Extending PL with Fixpoints and Transitive Closure

Piero A. Bonatti , Luigi Sauro ,
Università di Napoli Federico II
{pab, luigi.sauro}@unina.it

Abstract

PL is a low-complexity profile of OWL2, expressly designed
to encode data usage policies and personal data protection
regulations - such as the GDPR - in a machine understand-
able way. With PL, the compliance of privacy policies with
the GDPR and with the data subjects’ consent to processing
can be checked automatically and in real time. In this paper,
we extend PL to support ”sticky policies”. They are a sort
of license that applies to data transfers, and specifies how the
recipient can use the data. Sticky policies may be ”recursive”,
i.e. they may apply not only to the first data transfer, but also
to all subsequent transfer operations that the (direct or indi-
rect) recipients may execute in the future. Recursive sticky
policies can be encoded with fixpoints or transitive role clo-
sure. In this paper we prove that such extensions make com-
pliance checking intractable. Since the scalability of com-
pliance checking is a major requirement in this area, these
results justify a specialized, polynomial-time approach to en-
coding sticky policies.

1 Introduction
The European General Data Protection Regulation (GDPR)
has changed the landscape of personal data processing. Due
to the heavy sanctions and reputation loss incurred in case
of violations, the legal entities that process personal data
(controllers in GDPR’s terminology), are calling for auto-
mated support to compliance. The European H2020 projects
SPECIAL1 and TRAPEZE2 tackle this need by means of se-
mantic technnologies, that effectively yield reliability, inter-
operability, extensibility, flexibility, usability and scalabil-
ity (Bonatti, Sauro, and Langens 2021). In particular, us-
ability and scalability have been addressed in SPECIAL by
identifying a profile of OWL2, called OWL2-PL (policy lan-
guage), that is simpler to grasp for users with no background
in logic, and can be processed very efficently using special-
ized reasoners (Bonatti et al. 2020). The description logic
correponding to OWL2-PL is called PL. One of the goals
of TRAPEZE is extending PLwith additional constructs, so
as to support more general use cases. In this paper we focus
on extending PL to support sticky policies. They are a sort
of license that applies to data transfers, and specifies how di-
rect and indirect recipients can use the data. Before delving

1https://specialprivacy.ercim.eu/
2https://trapeze-project.eu/

into technical details, let us summarize the basic features of
the semantic policy framework of SPECIAL and TRAPEZE
that we are going to enrich.

The privacy policies of controllers, the consent to process-
ing of data subjects, and the personal data protection regu-
lations themselves are all policies. A policy can be identi-
fied with the set of operations authorized by the policy; such
operations can be abstracted as tuples of attributes (Bon-
atti, De Capitani di Vimercati, and Samarati 2002). Ac-
cordingly, the semantic policy framework encodes policies
in OWL2 as classes of reified tuples. In the personal data
protection domain, the characteristic attributes of operations
include (not exclusively) the data category being processed,
the purpose and the nature of the processing, the third parties
with which data are shared, the legal basis of the processing,
and other information related to the regulation (Bonatti et
al. 2020). For example, a privacy policy stating that email
addresses are transferred to third parties for advertising pur-
poses, based on the data subject’s consent, is encoded in de-
scription logics as follows:

∃has data.Email u
∃has processing.Transfer u
∃has purpose.Advertising u
∃has legal basis.Consent .

A (privacy) policy P complies with a policy P ′ (a consent
statement or regulation) if, and only if, all the operations
authorized by P are also authorized by P ′, that is, P is a
subclass of P ′. Thus, compliance checking is naturally re-
duced to subsumption checking in description logic. For ex-
ample, if Email is a subclass of Contact (contact data) and
Advertising a subclass of Marketing, then the above pol-
icy complies with the consent to transferring contact data
to third parties for marketing purposes, which is formalized
as:

∃has data.Contact u
∃has processing.Transfer u
∃has purpose.Marketing .

Note that the classical semantics of subsumption checking
(based on entailment) treats policies as closed policies, that
is, only what is explicitly allowed is permitted. For ex-
ample, a privacy policy whose purpose is not subsumed by
Marketing would not comply with the above consent state-
ment.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

73

https://specialprivacy.ercim.eu/
https://trapeze-project.eu/

Data transfers can be constrained with sticky policies. For
instance, the above consent statement can be refined to state
that third parties are allowed (only) to directly use the data
subject’s contact information for marketing purposes (which
implicitly forbids further transfers to third parties, if we as-
sume that Transfer is not subsumed by DirectUse):

∃has data.Contact u
∃has processing.Transfer u
∃has purpose.Marketing u
∃sticky.(
∃has data.Contact u
∃has processing.DirectUse u
∃has purpose.Marketing) .

Property “sticky” should be functional in order to avoid the
ambiguities that may arise from the application of different,
overlapping policies.

By nesting sticky policies, one may allow further transfers
to third parties, as in the following expression:

P0 u ∃sticky.(P1 u ∃sticky.(P2 u . . . ∃sticky.Pn . . .)) .

Here the controller should satisfy P0, while its direct recip-
ients have to satisfy P1; in turn, their recipients should sat-
isfy P2, and so on. Clearly, the above concept regulates only
finite disclosure chains of length n. In general, however,
disclosure chains can be unbounded. Then sticky policies
should be recursive, that is, they should identically apply to
all (direct and indirect) recipients, and allow each of them
to further transfer data to other third parties. Formally, one
would like to express something like the infinitary concept

P0 u ∃sticky.(P1 u ∃sticky.(P1 u ∃sticky.(P1 u . . .))) .

Logic provides at least two ways of expressing the above
class with a finite expression: greatest fixpoint operators (ν)
and transitive role closure (R+). Since sticky is a functional
property, the following are equivalent to the above concept:

P0 u νX.(∃sticky.(P1 uX)) ,

P0 u (∃sticky.P1) u ∀sticky+.(∃sticky.P1) .

Accordingly, in this paper, we are going to investigate the
extensions of PL with greatest fixpoints, universal quanti-
fiers, and transitive role closure. The ultimate goal is sup-
porting sticky policies in a very efficient manner, as some
of the use cases of interest to the industrial partners of SPE-
CIAL and TRAPEZE require to complete thousands of com-
pliance checks per second.

Example 1 (Streaming Scenario). Telecom providers, that
today are also Internet providers, receive from their base
stations about 15000 call records per second, and almost
10000 probing records per second from their wi-fi network.
The data contained in the aforementioned records are of
great interest for strategic applications and services, such
as location-based services and taylored recommendations;
however, call and probing records contain personal data,
and the European regulation on data protection prohibits the
above usage without the consent of the data subjects. With-
out consent, even storing the data temporarily, waiting for

a batch process to discard the records that cannot be pro-
cessed, is illegal. Then the description of how and why each
application processes the data must be checked in real-time
for compliance with the consent statements that apply to the
records being processed. This scenario is further compli-
cated by the fact that each data subject can withdraw or mod-
ify her consent anytime, and that she may selectively decide
to opt in or out each processing option (e.g. a customer might
accept only location tracking, and not internet tracking).

More generally, subsumption checks are going to be as
frequent as access control checks in our target applications.
Therefore, the semantic policy framework must satisfy ex-
treme scalability requirements, that are not common in the
knowledge representation area. Thus, an implied necessary
requirement is that subsumption checking must be possible
in deterministic polynomial time, and the degree of the poly-
nomial should be low.

In (Bonatti et al. 2020), it has been proved – both theoret-
ically and experimentally – that PL satisfies the scalability
requirement, and that real policies can be checked for com-
pliance in a few hundreds of µ-seconds using a sequential
Java implementation (i.e. a technology that is not intrinsi-
cally performant). The challenge now is supporting sticky
policies while preserving the performance of PL.

In sections 3 and 4 we prove that the extensions of PL
with ν, and with the combination of ∀ and transitive role clo-
sure – respectively – are intractable. We prove lower com-
plexity bounds at the first level of the polynomial hierarchy;
they suffice to conclude that the above extensions of PL are
not suitable for our purposes. Concerning upper complex-
ity bounds, the complexity of the logics supporting ν and
transitive role closure is typically much higher, namely, EX-
PTIME or harder, if a full set of boolean operators is sup-
ported. In our setting, getting a tighter complexity estimate
is difficult, due to the limited expressiveness of PL; this as-
pect is further detailed in section 6.

The intractability results justify a tractable approach tai-
lored to the use cases, based on a restricted language
PLsticky

0 that will be illustrated in section 5. This language
preserves the asymptotic complexity of reasoning of PL, so
it is a promising approach to sticky policy representation.

The basic notions about description logics and PL are
recalled in the next section. Related and future works are
discussed in section 6.

2 Preliminary Definitions
We assume the reader to be familiar with the basic notions
of Description Logics (DL) (Baader et al. 2003). Here we
recall only the aspects needed for this work. The DL lan-
guages of our interest are built from countably infinite sets of
concept names (NC), role names (NR), and concrete property
names (NF). An interpretation I is a structure I = (∆I , ·I)
where ∆I is a nonempty set, and the interpretation function
·I is such that (i) AI ⊆ ∆I if A ∈ NC; (ii) RI ⊆ ∆I ×∆I

if R ∈ NR; (iii)fI ⊆ ∆I × N if f ∈ NF, where N denotes
the set of natural numbers.

Compound concepts and roles are built from concept
names, role names, and the logical constructors listed in Ta-

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

74

Name Syntax Semantics

transitive R+ ⋃
i≥1(Ri)I (R ∈ NR)

closure
top > >I = ∆I

bottom ⊥ ⊥I = ∅
complement ¬C ¬CI = ∆I \ CI

intersection C uD (C uD)I = CI ∩DI

union C tD (C tD)I = CI ∪DI

existential ∃R.C {d ∈ ∆I | ∃(d, e) ∈ RI : e ∈ CI}
restriction
universal ∀R.C {d ∈ ∆I | ∀(d, e) ∈ RI : e ∈ CI}
restriction
interval ∃f.[`, u] {d ∈ ∆I | ∃i ∈ [`, u] : (d, i) ∈ fI}
restrictions

Table 1: Syntax and semantics of some DL constructs.

PL axiom α I |= α iff:

A v B AI ⊆ BI

A1 u · · · uAn v B AI1 ∩ · · · ∩AIn ⊆ BI

disj(A,B) AI ∩BI = ∅
range(R,A) (x, y) ∈ RI → y ∈ AI

func(R) (x, y) ∈ RI ∧ (x, z) ∈ RI → y = z

Table 2: Axioms for PL knowledge bases. Here A, with possible
subscripts, andB range over concept names whileR is a role name.

ble 1. We use metavariables A,B for concept names, C,D
for (possibly compound) concepts, R,S for role names, and
f, g for concrete property names. The third column shows
how to extend the valuation ·I of an interpretation I to com-
pound expressions; in the first row, let (R1)I = RI and
(Ri)I = RI ◦ (Ri−1)I , for all i > 1.

In (Bonatti et al. 2020) several extensions of PL are con-
sidered, where knowledge bases can be expressed with frag-
ments of Horn-SRIQ, under suitable restriction related to
import-by-query and knowledge compilation techniques, cf.
(Bonatti et al. 2020). Here, we consider only the axioms that
suffice to prove our lower bounds. These axioms and the
corresponding semantics are shown in Table 2.3 As usual,
an interpretation I is a model of a PL knowledge base KB
(in symbols, I |= KB) if and only if I |= α, for all axioms
α occurring in KB.

In PL, the query language differs from the knowledge
base language, and is equipped with the constructs needed
to express policies. Specifically, a simple PL concept is
defined by the following grammar, where A ∈ NC, R ∈ NR,
and f ∈ NF :

C ::= A | ⊥ | ∃f.[l, u] | ∃R.C | C u C .
A full PL concept is a union D1 t . . . tDn of simple PL

3Interestingly, the axioms listed in Table 2 also suffice to axiom-
atize the vocabularies that are actually employed in the use cases of
SPECIAL and TRAPEZE. Such vocabularies are being developed
by the DPVCG,4 a community group of the W3C devoted to the
development of standardized data privacy vocabularies.

concepts (n ≥ 1). PL’s subsumption queries are inclusions
C v D where C,D are full PL concepts. A PL subsump-
tion query C v D is simple if both C and D are simple.

If KB entails a subsumption query C v D (in symbols,
KB |= C v D), then we say that C complies with D (under
KB). Compliance checking is in general coNP-complete,
however it downgrades to P whenever the query C v D
is interval safe, that is: for all interval constraints ∃f.[l, u]
and ∃f ′.[l′, u′] occurring in C and D, respectively, either
[l, u] ⊆ [l′, u′] or [l, u] ∩ [l′, u′] = ∅ (Bonatti et al. 2020).

Notably, coming back to the general case where C and
D may contain partially overlapping intervals, and C =
C1 t · · · t Cn, it is always possible to turn C v D
into an equivalent, interval safe query by splitting the in-
tervals of C in a suitable way. The resulting concept C ′
has size O(|C| · |D|c), where c = max1≤i≤n ci and each
ci is the number of interval constraints occurring in Ci, for
i = 1, . . . , n. Fortunately, the exponent c is a fixed constant
in our use cases, therefore, C ′ can be computed in polyno-
mial time and compliance checking is tractable. In particu-
lar, policy encoding requires at most one interval constraint
per simple concept (such interval is used to specify how long
data are kept by the controller). In the following, no more
details about these complexity issues will be needed; the in-
terested reader is referred to (Bonatti et al. 2020) for a com-
plete discussion.

Hereafter, in order to keep different sources of complex-
ity cleanly separated in the complexity analysis, we con-
sider (and extend) the restricted logic PL0 obtained from
PL by disallowing interval constraints – therefore, in PL0,
subsumptions are vacuously interval safe, and subsumption
checking is tractable. PL will be considered again in sec-
tion 6.

Next, let us define the greatest fixpoint operator ν that will
be used in section 3 to augment the query language. To this
aim, we consider a supplementary countably infinite set NV

of variables; similarly to an atomic concept, a variable X
is interpreted as a set of individuals, XI ⊆ ∆I . Let E be
a subset of ∆I ; by I[X → E] we mean the interpretation
such that X is interpreted as E , and all the other symbols are
interpreted as in I. Then, the semantics of a fixpoint concept
νX.C is the following:

(νX.C)I =
⋃
{E ⊆ ∆I | E ⊆ CI[X→E]} .

Finally, a pointed interpretation is a pair (I, d), where d ∈
∆I . We say that (I, d) satisfies a concept C (in symbols,
I, d |= C) iff d ∈ CI . We also say that (I, d) is a model of
a knowledge base KB if I |= KB.

3 PL with Fixpoints
Let PLν0 be the extension of PL0 where greatest fixpoints
may occur in subsumption queries. At a first glance, PLν0
constitutes a promising way of encoding sticky policies, due
to its similarity with ELwith greatest fixpoints, that has been
proved to be tractable in (Lutz, Piro, and Wolter 2010).

However, the interplay of greatest fixpoints with func-
tional roles (that are supported only in PL) makes subsump-
tion checking at least coNP-hard. This holds not only for

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

75

PL, but also for all the description logics that support u,
v, and func in knowledge base axioms, and u, ∃, and ν in
subsumption queries.

Theorem 2. LetDL be any description logics that supports
u, v, and func in knowledge base axioms, and u, ∃, and
ν in subsumption queries. Subsumption checking in DL is
coNP-hard.

Proof. The proof is by reduction of the validity problem
to subsumption checking. Let φ =

∨m
i=1 `i,1 ∧ `i,2 ∧ `i,3

be any propositional formula in 3-DNF, and let x1, . . . , xk
be the propositional variables occurring in φ. Introduce a
fresh concept name Ai for each xi and a fresh concept name
Āi for each negative literal ¬xi. For each propositional lit-
eral `, let ˜̀ denote the corresponding concept name. Infor-
mally speaking, the knowledge base KB encodes φ in such
a way that if an individual d satisfies φ (up to the correspon-
dence between literals and concepts), then d satisfies also a
distinguished atomic concept F that represents the truth of
φ. More formally, let KB consist of the following axioms,
where each concept Bi represents the truth of the i-th dis-
junct of φ:

˜̀
i,1 u ˜̀

i,2 u ˜̀
i,3 v Bi

Bi v F
func(R)

(where i = 1, . . . ,m). The use of role R will be explained
later.

Greatest fixpoints are used to create periodic chains of in-
stance types. To make this more precise, we need some aux-
iliary definitions. First, for all i = 1, . . . , k (where k is the
number of propositional variables in φ), define

C1
i = Ai u ∃R.X

Cj+1
i = Āi u ∃R.Cji

(where X is a concept variable). For example,

C2
i = Āi u ∃R.(Ai u ∃R.X)

C3
i = Āi u ∃R.(Āi u ∃R.(Ai u ∃R.X))

C4
i = Āi u ∃R.(Āi u ∃R.(Āi u ∃R.(Ai u ∃R.X)))

...

Note that the instances of any concept νX.Cji are the first
elements of infinite R-chains where Ai is satisfied (at least)
every j steps, while the other elements satisfy (at least) Āi.

Let p1 = 2, p2 = 3, p3 = 5, . . . , pk be the first k prime
numbers, and define:

C =
kl

i=1

νX.Cpii . (1)

Claim: φ is valid iff KB |= C v νX.(F u ∃R.X) .

First we prove the “only if” part of the claim. If φ is valid,
then for all models I of KB and all individuals d ∈ ∆I , the
following clearly holds: If d belongs to AIi or ĀIi for all
i = 1, . . . , k, then d ∈ F I . Note that C forces all the direct

and indirect R-successors of its instances to be in AIi or ĀIi ,
for all i = 1, . . . , k, so all such successors are in F I . It
follows, by definition of ν, that all the instances of C belong
to νX.(F u ∃R.X), which proves the “only if” part of the
claim.

To prove the “if” part of the claim, suppose that φ is not
valid, and construct a counterexample I to the subsumption
as follows. Let ∆I be an infinite set {di | i ∈ N}. LetRI =
{(di, di+1) | i ∈ N}. For all i ∈ N and j = 1, . . . , k, let
di ∈ AIj iff i mod pj = 0, and let ĀIj = ∆I \ AIj . Finally,
for all i = 1, . . . ,m, let BIi = (˜̀

i,1u ˜̀
i,2u ˜̀

i,3)I and F I =⋃m
i=1B

I
i . By construction, we have both that I satisfies

KB, and d1 ∈ CI . Moreover, since the numbers p1, . . . , pk
that determine the periodic behavior of C’s fixpoints are dis-
tinct prime numbers, the individuals d1, d2, . . . , di, . . . col-
lectively satisfy all possible combinations of literal encod-
ings that contain no pair of complementary concepts Aj and
Āj (j = 1, . . . , k). So the concepts satisfied by I’s elements
represent all possible truth assignments to x1, . . . , xk.5 One
of this truth assignments falsifies φ, by assumption, so – by
construction – there exists dj ∈ ∆I such that dj 6∈ F I .
As a consequence, d1 6∈ νX.(F u ∃R.X). This proves that
CI 6⊆ νX.(F u ∃R.X)I , which completes the proof of the
claim.

The reduction is correct by the claim; we are only left to
show that it can be computed in polynomial time. The size
of the knowledge base and the size of the concept νX.(F u
∃R.X) are obviously polynomial in the size of φ, so we only
have to provide a polynomial bound on the size of C. In
order to see this, we use a results by Rosser (Rosser 1941).
The kth prime number pk is bounded by

pk < k(log k + log log k + 2)

so, for sufficiently large k, pk < 2k2. It follows that the
length of each concept νX.Cpii in (1) isO(k2) and the entire
concept C is O(k3), so the reduction can be computed in
polynomial time.6

As a corollary, subsumption checking in PLν0 is coNP-
hard, even if neither disjointness axioms nor range axioms
are used, and only one functional role is used.

4 PL with Universal Restrictions and
Transitive Role Closure

Transitive role closure provides an alternative way of ex-
pressing sticky policies. Transitive closure can be regarded
as a restricted form of fixpoint: every concept of the form
∀R+.C can be expressed with ν as νX.∀R.(C u X) . So,
reasoning in PL0 with transitive role closure might turn out
to be less complex than reasoning in PL0 with greatest fix-
points. Unfortunately, tractability is not preserved, due to
the interplay of ∀ and ∃. We are going to prove that the
NP-complete EXACT COVER (XC) problem can be reduced

5In particular, each propositional interpretation {xi1 , . . . , xin}
corresponds to the element dh with h =

∏n
l=1 pil .

6It is not hard to see that it can even be computed in logarithmic
space.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

76

to subsumption in two extensions of PL0 that employ the
operators ∀ and ·+ needed to encode sticky policies.

We prove these results by adapting a reduction of XC to
concept (un)satisfiability in ALE , extensively illustrated in
(Donini 2003, Sec. 3.3.1). Let us first recall the definition of
the problem:
Definition 3 (EXACT COVER, XC). Given a finite set U =
{u1, . . . , un} and a familyM = {M1, . . . ,Mm} of subsets
of U , decide whether there exist an exact cover of U , that is,
a family of mutually disjoint setsMi1 , . . . ,Miq whose union
equals U .

The following lemma introduces the reduction and states
its correctness :
Lemma 4. (Donini 2003) An instance of XC has an exact
cover if, and only if, the concept CM defined below is unsat-
isfiable:

CM = C1
1 u . . . u Cm1 uD

where each Cjl is inductively defined as

Cj2n+1 = > (base case)

Cjl =

∃R.Cjl+1 either l ≤ n ∧ ul ∈ Mj or

n < l ≤ 2n ∧ ul−n ∈Mj

∀R.Cjl+1 either l ≤ n ∧ ul 6∈ Mj or
n < l ≤ 2n ∧ ul−n 6∈Mj

and D = ∀R.∀R. . . . ∀R︸ ︷︷ ︸
2n

.⊥ .

Example 5. Let U = {u1, u2} andM = {M1,M2}, where
M1 = {u1} and M2 = {u2}. Concept CM is

∃R.∀R.∃R.∀R.> u (C1
1)

∀R.∃R.∀R.∃R.> u (C2
1)

∀R.∀R.∀R.∀R.⊥ (D)

Note that this instance of XC has an exact cover (M itself)
and CM is indeed inconsistent.

Lemma 4 was proved by showing that an exact cover ex-
ists iff the tableaux for CM has a clash, caused by a node
labelled with both > and ⊥, where > has been introduced
by some of the concepts Cj1 and ⊥ has been introduced by
D. Clearly, the same result can be obtained by replacing >
(that is not supported in PL) with a concept name A. So,
from Lemma 4, we get:
Corollary 6. Let CAM be the concept resulting from CM by
replacing each occurrence of > with concept name A. An
instance of XC has an exact cover if, and only if, the concept
CAM is unsatisfiable.

It follows that subsumption is intractable in the extension
of PL0 with ∀, that will be denoted by PL∀0 .

Corollary 7. Subsumption checking in PL∀0 is NP-hard,
even if the knowledge base is empty.

Proof. The exact cover problem is reduced to subsumption
as follows: let A and B two distinct concept names. For a
given instance of XC, the corresponding concept CAM and B
have no symbols in common, therefore CAM v B is valid
iff CAM is unsatisfiable. Then this corollary immediately fol-
lows from Corollary 6.

As a last attempt to restore tractability, one may consider
another extension of PL0 where the problematic quantifier
∀ can be used only in conjunction with transitive role clo-
sure (as required by sticky policy modeling), and viceversa.
In other words, expressions like ∀R+.C and ∃R.C are per-
mitted, while ∀R.C and ∃R+.C are disallowed. This logic
will be denoted with PL∀+0 . This attempt is motivated by
the observation that if ∀R were replaced with ∀R+ in CAM,
then the resulting concept would not capture exact covers
anymore.
Example 8. Let U = {u1, u2, u3} and M = {M1,M2},
where M1 = {u1} and M2 = {u2}. The replacement of ∀R
with ∀R+ in CAM yields:

∃R.∀R+.∀R+.∃R.∀R+.∀R+.A u
∀R+.∃R.∀R+.∀R+.∃R.∀R+.A u
∀R+.∀R+.∀R+.∀R+.∀R+.∀R+.⊥

The concepts in the first two lines create an infinite sequence
of R-successors that clashes with the concept in the third
line. So the above concept is inconsistent although this in-
stance of XC has no exact covers.

Unfortunately, the restriction on ∀ and ·+ does not yield a
tractable logic, either. First note that the reduction reported
in Lemma 4 works equally well if different roles are used at
each level, as in the following example.
Example 9. The conceptCM illustrated in Example 5 could
be equivalently replaced with

∃R1.∀R2.∃R3.∀R4.> u
∀R1.∃R2.∀R3.∃R4.> u
∀R1.∀R2.∀R3.∀R4.⊥ .

This version preserves the correspondence with XC stated
in Lemma 4, because the tableaux produced by the two re-
ductions have the same structure and differ only in the role
names. Now each ∀Ri can be equivalently replaced with
∀R+

i ; more precisely, it is easy to verify that also this sec-
ond change preserves the structure of the tableaux for CM,
and that the only difference is that ∀Ri is replaced by ∀R+

i
in node labels.

As a consequence of the above discussion, subsumption
checking in PL∀+0 is intractable due to the following reduc-
tion from XC:
Lemma 10. An instance of XC has an exact cover if, and
only if, the concept C ′AM defined below is unsatisfiable:

C ′AM = C ′1
1 u . . . u C ′1m uD′

where each C ′l
j is inductively defined as

C ′2n+1
j = A (base case)

C ′l
j =

∃Rl.C ′l+1

j either l ≤ n ∧ ul ∈ Mj or
n < l ≤ 2n ∧ ul−n ∈Mj

∀R+
l .C

′
l+1

j either l ≤ n ∧ ul 6∈ Mj or
n < l ≤ 2n ∧ ul−n 6∈Mj

and D′ = ∀R+
1 .∀R

+
2 ∀R

+
2n.⊥ .

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

77

The lower complexity bound (next theorem) can be proved
by analogy with the proof of Corollary 7, using C ′AM and
Lemma 10 in place of CAM and Corollary 6.

Theorem 11. Subsumption checking in PL∀+0 is NP-hard.

5 Towards A Tractable Approach
Here we introduce a language tailored to the encoding of
sticky policies. Such a specialized approach is motivated
by the intractability results proved in the previous sections.
The complexity caused by the interactions between ν and
∃ identified in section 3 will be avoided by restricting the
language so as to allow only simple, linear recursions whose
cyclic behavior has period 1.

Definition 12 (Pol,PLsticky
0). Let Pol be the least language

containing:
• all the simple concepts of PL0 with no occurrence of
sticky (called sticky-free concepts);

• all the conceptsCu∃sticky.D such thatC is a sticky-free
PL0 concept and D a ν-free concept in Pol;

• all the concepts CuνX.∃(sticky.DuX) such that C and
D are sticky-free PL0 concepts.

PLsticky
0 knowledge bases are PL knowledge bases con-

taining only axioms from Table 2, and at least the axiom
func(sticky), that must also be the unique axiom where
sticky occurs. PLsticky

0 subsumption queries are expressions
C v D where C and D are in Pol.
Example 13. The following policies are in Pol and can be
used in PLsticky

0 subsumption queries:

∃has data.Contact u
∃has processing.Transfer u
∃has purpose.Marketing u
∃sticky.(
∃has data.Contact u
∃has processing.Transfer u
∃has purpose.Marketing u
∃sticky.(
∃has data.Contact u
∃has processing.DirectUse u
∃has purpose.Marketing)) .

∃has data.Contact u
∃has processing.Transfer u
∃has purpose.Marketing u
νX.∃sticky.(
∃has data.Contact u
∃has processing.SomeProcessing u
∃has purpose.Marketing uX) .

PLsticky
0 subsumption checking can be reduced to the same

problem in PL0. To see this, we first prove a lemma
that considers the four possible cases in which the given
PLsticky

0 subsumption contains the fixpoint operator ν (the
other PLsticky

0 subsumptions are just classic PL0 subsump-
tions). Each case is reduced to a small number of PL0 sub-
sumptions.

Lemma 14. Let KB be a PLsticky
0 knowledge base, and let

C, D, E, and F be sticky-free Pol concepts.

1. KB |= C uνX.∃sticky.(DuX) v EuνX.∃sticky.(F u
X) iff some of the following conditions hold:
• KB |= C v ⊥,
• KB |= D v ⊥,
• both KB |= C v E and KB |= D v F hold;

2. if G is ν-free, then KB |= G v C u νX.∃sticky.(D uX)
iff KB |= G v ⊥;

3. if E is both ν-free and sticky-free, then KB |= C u
νX.∃sticky.(D u X) v E iff either KB |= C v E or
KB |= D v ⊥;

4. if G is ν-free but not sticky-free, that is,

G = G0 u∃sticky.(G1 u∃sticky.(...∃sticky.Gn...)) (2)

(where G0, . . . , Gn are sticky-free PL0 concepts), then
KB |= C u νX.∃sticky.(D u X) v G iff some of the
following conditions hold:
• KB |= C v ⊥,
• KB |= D v ⊥,
• both KB |= C v G0 and KB |= D v G1 u . . . u Gn

hold;

Proof. We start by proving statement 2. Since G is ν-free,
it belongs to PL0, therefore – if consistent w.r.t. KB– it has
a finite tree-shaped model that satisfies KB (Bonatti et al.
2020). In such models, the concept on the right-hand side
(that has only infinite models) is empty, so the subsump-
tion is false. It follows easily that the subsumption holds iff
KB |= G v ⊥. This proves 2.

Proof of 3, “if”. If KB |= C v E, then the sub-
sumption holds because its left-hand side is subsumed by
C and v is transitive. If KB |= D v ⊥, then also
KB |= νX.∃sticky.(DuX) v ⊥, so the subsumption holds
because its left-hand side is subsumed by ⊥.

Proof of 3, “only if”. By contraposition, assume that
KB 6|= C v E and KB 6|= D v ⊥. Then there exist
two pointed interpretations (I1, d1) and (I2, d2), that are
models of KB, and satisfy the sticky-free concepts C u ¬E
and D, respectively. We may assume w.l.o.g. that I1 and
I2 are disjoint. Define an interpretation J as the union of
I1 and I2 extended with the following definition of sticky:
stickyJ = {(d1, d2), (d2, d2)}. By construction, J satis-
fies KB: indeed, the union of I1 and I2 satisfies KB by the
disjoint model union property (Bonatti et al. 2020), and the
definition of sticky satisfies func(sticky), that is the unique
axiom involving sticky in KB. Moreover, by construction,
(J , d1) satisfies the left-hand side of the subsumption but
not E. Then J witnesses that the subsumption does not
hold.

Proof of 1. The “if” part is straightforward and left to
the reader. The “only if” part is proved similarly to the pre-
vious case. More precisely, by contraposition, assume that
KB 6|= C v ⊥, KB 6|= D v ⊥, and either KB 6|= C v E
or KB 6|= D v F holds. In the former case, construct a
counterexample (J , d1) to the subsumption by composing
two models of C u ¬E and D, respectively, as shown in the

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

78

proof of statement 3. Similarly, in the latter case, construct
a counterexample (J , d1) to the subsumption by composing
two models of C and D u ¬F , respectively.

Proof of 4, “if”. Let FP denote the fixpoint expression
in the left-hand side of the subsumption, and note that the
left-hand side is equivalent to:

C u ∃sticky.(D u ∃sticky.(. . . ∃sticky.(D︸ ︷︷ ︸
ntimes

uFP) . . .))

This makes the left-hand side directly comparable with (2).
Now the “if” part is straightforward and left to the reader.

Proof of 4, “only if”. By contraposition, assume that
KB 6|= C v ⊥, KB 6|= D v ⊥, and either KB 6|= C v G0

or KB 6|= D v G1 u . . . u Gn holds. In the former case,
obtain a counterexample to the subsumption by composing
two models of Cu¬G0 andD, respectively, as shown in the
proof of 3. In the latter case, there exists i (1 ≤ i ≤ n) such
that KB 6|= D v Di. Then obtain a counterexample to the
subsumption by composing two models of C and D u ¬Gi,
respectively, using the same approach as in 3.

As a consequence of the above lemma, we get:

Theorem 15. Subsumption checking in PLsticky
0 can be

done in polynomial time.

Proof. PLsticky
0 subsumption checking can always be re-

duced to subsumption checking in PL0. In particular, for
all given PLsticky

0 subsumptions C v D, either C and D
are ν-free (so C v D is a PL0 subsumption), or C v D
falls in one of the four cases covered by Theorem 14. For
each of these cases, Theorem 14 provides an equivalent set
of subsumption checks that involve PL0 concepts only (as
ν-free PLsticky

0 concepts are PL0 concepts). Since sub-
sumption checking in PL0 is in PTIME, the same holds for
PLsticky

0 .

Note that, in the worst case, a subsumption check in
PLsticky

0 is reduced to four subsumption checks in PL0,
therefore PLsticky

0 preserves the asymptotic complexity of
compliance checking in PL0.

6 Discussion and Related Work
The approach to sticky policies outlined in the previous sec-
tion is only a first step towards a complete tractable solu-
tion. The language PLsticky

0 does not yet support some of
the features of PL, such as intervals and unions. These two
features are related, because the normalization of intervals
that makes PL subsumption queries interval-safe (hence
tractable) introduces unions. Some of these unions may oc-
cur within the range of ν, and it is not possible – in general
– to move them to the top level to reduce general policies
to mere unions of Pol concepts. Therefore, it is necessary
to investigate the interplay of fixpoints and unions, and its
potential impact on complexity. We conjecture that – with
a careful definition of PLsticky – interval safety can still be
obtained efficiently (given the natural restrictions satified by

policies), and that the proof of Theorem 14 can be general-
ized to prove that tractability is preserved also in the pres-
ence of intervals and unions. Of course, the theoretical com-
plexity analysis shall be complemented by an experimental
performance evaluation to see if the ad hoc framework meets
the scalability requirements of use cases.

Another limitation of the current version of PLsticky
0 is

that a single consent policy cannot permit both finite and in-
finite data transfer chains at the same time (cf. Theorem 14,
point 2), while in some cases it may be useful to state that
any number of transfers is permitted. Thus, PLsticky

0 should
be extended to support classes that may contain both finite
and infinite chains, such as:

νX.
(
(∃sticky.(C uX)) tD

)
,

where C is a policy that admits transfers and D a policy
that does not admit transfers. This provides an independent
motivation for introducing unions within the scope of ν.

It is not easy to turn the lower complexity bounds pre-
sented in this paper into exact characterizations. On the one
hand, the extensions of PL that we considered make it pos-
sible to axiomatize complex, exponentially large structures,
like those used in some proofs of PSPACE-hardness; on the
other hand, the limited expressiveness of PL (and in partic-
ular the restrictions on union and negation) makes it difficult
to use those structures to reconstruct the complexity results
that have been proved for DLs that (unlike PL) support a
full set of boolean concept operators. An additional diffi-
culty stems from the fact that, in PL’s extensions, fixpoints
and transitive role closures may occur only in the queries
and cannot be used inside axioms.

The logicPL∀0 investigated in Section 4 is similar toFL0,
in some respects. It has been proved in (Nebel 1990) that
subsumption checking in FL0 is coNP-complete for acyclic
TBoxes.

Fixpoints have been extensively investigated in the con-
text of description logics, see for example (Calvanese, Gi-
acomo, and Lenzerini 1999; Bonatti and Peron 2004; Bon-
atti et al. 2008; Lutz, Piro, and Wolter 2010; Franconi and
Toman 2011). Most of these papers deal with expressive
logics whose reasoning tasks are at least EXPTIME-hard
(sometimes even undecidable). The only exception is (Lutz,
Piro, and Wolter 2010), that proves the tractability of EL
with greatest fixpoints. This logic and PLν0 have several
traits in common. The intractability of PLν0 is due to the in-
terplay of functionality axioms (not supported by EL) with
the fixpoints occurring in the queries.

The seminal work that started the investigation of transi-
tive role closures is (Sattler 1996). One of its results is the
proof that extendingALC with transitive role closure makes
concept satisfiability EXPTIME-complete. Subsumption
checking has the same complexity because, in ALC and its
extensions, concept satisfiability and subsumption checking
are mutually reducible to each other. The complexity of tran-
sitive role closure in EL has been studied in (Haase and Lutz
2008). It is proved that subsumption checking is complete
for coNP, PSPACE, and EXPTIME if TBoxes are empty,
acyclic, and cyclic, respectively.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

79

It may be interesting to investigate whether regular path
queries can be used to model sticky policies. A rich set of
results on nested regular path queries and low-complexity
DLs can be found in (Bienvenu et al. 2014). However, this
paper deals with query evaluation, while the counterpart of
compliance checking (i.e. subsumption checking) is query
containment.

We conclude by pointing out that the same approach
adopted for data usage policies works out of the box for li-
censes in financial data markets, an area that has similar re-
quirements (i.e. support to data transfers, and need for mas-
sive and reliable compliance checking, in order to reduce
the risks of sanctions due to license violations). Moreover,
the “Share Alike” Creative Commons licence has a transi-
tive nature, much like sticky policies. These observations
open up a brand new range of applications for PL and its
extensions.

Acknowledgments
This work is funded by the European Union with grant
n. 883464. The autors are grateful to the anonymous re-
viewers for their insightful and constructive comments.

References
Baader, F.; Calvanese, D.; McGuinness, D. L.; Nardi, D.;
and Patel-Schneider, P. F., eds. 2003. The Description
Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press.
Bienvenu, M.; Calvanese, D.; Ortiz, M.; and Simkus, M.
2014. Nested regular path queries in description logics. In
Baral, C.; Giacomo, G. D.; and Eiter, T., eds., Principles of
Knowledge Representation and Reasoning: Proceedings of
the Fourteenth International Conference, KR 2014, Vienna,
Austria, July 20-24, 2014. AAAI Press.
Bonatti, P. A., and Peron, A. 2004. On the undecidability
of logics with converse, nominals, recursion and counting.
Artif. Intell. 158(1):75–96.
Bonatti, P. A.; Lutz, C.; Murano, A.; and Vardi, M. Y. 2008.
The complexity of enriched mu-calculi. Log. Methods Com-
put. Sci. 4(3).
Bonatti, P. A.; Ioffredo, L.; Petrova, I. M.; Sauro, L.; and
Siahaan, I. S. R. 2020. Real-time reasoning in OWL2 for
GDPR compliance. Artif. Intell. 289:103389.
Bonatti, P. A.; De Capitani di Vimercati, S.; and Samarati,
P. 2002. An algebra for composing access control policies.
ACM Trans. Inf. Syst. Secur. 5(1):1–35.
Bonatti, P. A.; Sauro, L.; and Langens, J. 2021. Repre-
senting consent and policies for compliance. In IEEE Eu-
ropean Symposium on Security and Privacy Workshops, Eu-
roS&P 2021, Vienna, Austria, September 6-10, 2021, 283–
291. IEEE.
Calvanese, D.; Giacomo, G. D.; and Lenzerini, M. 1999.
Reasoning in expressive description logics with fixpoints
based on automata on infinite trees. In Dean, T., ed., Pro-
ceedings of the Sixteenth International Joint Conference on

Artificial Intelligence, IJCAI 99, Stockholm, Sweden, July
31 - August 6, 1999. 2 Volumes, 1450 pages, 84–89. Morgan
Kaufmann.
Donini, F. M. 2003. Complexity of reasoning. In Baader
et al. (2003). 96–136.
Franconi, E., and Toman, D. 2011. Fixpoints in temporal
description logics. In Walsh, T., ed., IJCAI 2011, Proceed-
ings of the 22nd International Joint Conference on Artificial
Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011,
875–880. IJCAI/AAAI.
Haase, C., and Lutz, C. 2008. Complexity of subsump-
tion in the family of description logics: Acyclic and cyclic
tboxes. In Ghallab, M.; Spyropoulos, C. D.; Fakotakis, N.;
and Avouris, N. M., eds., ECAI 2008 - 18th European Con-
ference on Artificial Intelligence, Patras, Greece, July 21-25,
2008, Proceedings, volume 178 of Frontiers in Artificial In-
telligence and Applications, 25–29. IOS Press.
Lutz, C.; Piro, R.; and Wolter, F. 2010. Enriching EL-
concepts with greatest fixpoints. In Coelho, H.; Studer, R.;
and Wooldridge, M. J., eds., ECAI 2010 - 19th European
Conference on Artificial Intelligence, Lisbon, Portugal, Au-
gust 16-20, 2010, Proceedings, volume 215 of Frontiers in
Artificial Intelligence and Applications, 41–46. IOS Press.
Nebel, B. 1990. Terminological reasoning is inherently in-
tractable. Artif. Intell. 43(2):235–249.
Rosser, B. 1941. Explicit bounds for some functions
of prime numbers. American Journal of Mathematics
63(1):211–232.
Sattler, U. 1996. A concept language extended with differ-
ent kinds of transitive roles. In Görz, G., and Hölldobler,
S., eds., KI-96: Advances in Artificial Intelligence, 20th An-
nual German Conference on Artificial Intelligence, Dres-
den, Germany, September 17-19, 1996, Proceedings, vol-
ume 1137 of Lecture Notes in Computer Science, 333–345.
Springer.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

80

	Introduction
	Preliminary Definitions
	PL with Fixpoints
	PL with Universal Restrictions and Transitive Role Closure
	Towards A Tractable Approach
	Discussion and Related Work

