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Abstract

We present the system ALASPO which implements Adaptive
Large-neighbourhood search for Answer Set Programming
(ASP) Optimisation. Large-neighbourhood search (LNS) is
a meta-heuristic where parts of a solution are destroyed and
reconstructed in an attempt to improve an overall objective.
ALASPO currently supports the ASP solver clingo, as well
as its extensions clingo-dl and clingcon for difference and
full integer constraints, and multi-shot solving for an efficient
implementation of the LNS loop. Neighbourhoods can be
defined in code or declaratively as part of the ASP encoding.
While the method underlying ALASPO has been described in
previous work, ALASPO also incorporates portfolios for the
LNS operators along with self-adaptive selection strategies as
a technical novelty. This improves usability considerably at
no loss of solution quality, but on the contrary often yields
benefits. To demonstrate this, we evaluate ALASPO on dif-
ferent optimisation benchmarks.

1 Introduction

Answer-set programming (ASP) (Brewka, Eiter, and
Truszezynski 2011; Lifschitz 2019; Gebser et al. 2012) is a
declarative KR paradigm that is increasingly used to solve
challenging optimisation problems. We present the sys-
tem ALASPO (Adaptive Large-neighbourhood search for
ASP Optimisation) that leverages ASP optimisation with
large-neighbourhood search (LNS) (Shaw 1998; Pisinger
and Ropke 2010), a powerful meta-heuristic where parts of
a solution are destroyed and reconstructed in an attempt to
improve an overall objective.

LNS is commonly used for MIP (Danna, Rothberg, and
Pape 2005; Rothberg 2007) and CP (Shaw 1998; Perron,
Shaw, and Furnon 2004; Berthold et al. 2011; Bjordal et al.
2020), but for ASP it has only recently been exploited (Eiter
et al. 2022; Geibinger, Mischek, and Musliu 2021). The
method starts by obtaining a first solution for an optimisation
problem encoded in ASP (either with a construction heuris-
tic or from an ASP solver). Then, a neighbourhood, i.e., a
part of the solution, is relaxed, i.e., deleted from the answer
set. Next, an ASP solver is used to reconstruct a solution
with a better overall objective value. Relaxation and recon-
struction steps proceed until a global time limit is reached.

The system currently supports the ASP solver
clingo (Gebser et al. 2019; Gebser et al. 2016), as
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well as its extensions clingo-dl (Janhunen et al. 2017) and
clingcon (Banbara et al. 2017) for difference and full integer
constraints, respectively. For an efficient implementation
of the LNS loop, it exploits multi-shot solving to preserve
the solver state and avoid unnecessary grounding between
solver calls. The system features pre-defined neighbour-
hood definitions that can be used out-of-the-box, but also
supports custom neighbourhoods provided by the user.
They can be given either in code or, more conveniently,
declaratively as part of the ASP encoding.

The method underlying ALASPO is described and eval-
uated in recent work (Eiter et al. 2022). As a major techni-
cal novelty, ALASPO allows to bundle neighbourhoods and
search configurations into portfolios. Switching between op-
erators can be done on the fly during search, but the system
also provides full self-adaptive modes where no user inter-
vention is required. In previous work (Eiter et al. 2022),
one could only use a single neighbourhood operator. With
ALASPO, the user can select a set of operators, and the tool
self-adapts to use effective ones through selection strategies.
Therefore, the solver requires less tuning which improves
usability We evaluate the adaptive modes introduced in this
paper on different optimisation benchmarks.

The system is publicly available under the MIT licence:
https://gitlab.tuwien.ac.at/kbs/BAl/alaspo.

2 Architecture & Functionality

ALASPO is a system for ASP optimisation with support for
different ASP solvers, search configurations, and neighbour-
hood definitions. Figure 1 gives on overview of how its com-
ponents play together to realise the system’s functionality.

The LNS loop. At the heart of ALASPO lies an LNS loop,
where an incumbent solution is repeatedly relaxed and re-
constructed by an ASP solver to continuously obtain better
objective values for the optimisation problem at hand.

An initial solution is generated by the ASP solver as ei-
ther the first solution without optimisation or after letting
the solver pre-optimise the problem for a specified amount
of time. Alternatively, it can be obtained by a custom proce-
dure using a construction heuristic, which however is prob-
lem specific and must be provided by the user as an imple-
mentation of an abstract class in Python 3.


https://gitlab.tuwien.ac.at/kbs/BAI/alaspo
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JSON Configuration File
{

"strategy": "uniform-roulette-wheel",

ALASPO

"relaxOperators": [

>
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Search

Neighbourhood

“rates™ [ 0.2, 0.4, 0.6, 0.8, player(1..g"p). group(1..g). week(1..w).

"searchOperators": [

meets(P1,P2,W):- plays(P1,W,G),
"timeouts": [ 5, 15, 30 ], plays(P2,W,G), P1<P2.

"solverArguments": ""
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{ plays(P,W,G) : group(G) } = 1 :- player(P), week(W).
{ plays(P,W,G) : player(P) } = p :- week(W), group(G).

-~ #count { W : meets(P1,P2,W) } > 1, player(P1),

_Ins_select(W) :- week(W).
_Ins_fix(plays(P,W,G),W) :- _Ins_select(W), plays(P,W,G).
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Figure 1: Adaptive LNS for ASP in the system ALASPO.

In each iteration of the LNS loop, the currently best solu-
tion [ is relaxed using a neighbourhood operator N, which
is a procedure to select a subset of the atoms in /. For in-
stance, N could pick 20% of the visible atoms at random.
Then, the resulting partial solution is reconstructed using
the ASP solver with a constraint to obtain a better objec-
tive value than I. This reconstruction step depends on a
search configuration S which defines solver options and a
time limit. If a better solution is found within the time limit,
it becomes the new incumbent solution, otherwise (i.e., the
solver runs into a timeout or yields unsatisfiability), the old
solution I remains the best known one.

The optimisation problem is formulated in ASP and
stored in one or multiple input files. The currently supported
ASP solvers are clingo, clingo-dl, and clingcon from the
Potassco family.! All solvers feature multi-shot solving and
solving under assumptions (Gebser et al. 2019). The former
is used to keep learned heuristics and constraints between
solver calls and to avoid unnecessary grounding, the latter is
used to technically realise the relaxation step by fixing the
parts of the solution that are not relaxed with assumptions
prior to the next solver call.

Search and neighbourhood portfolios. The effectiveness
of LNS is predicated upon suitable choices for search and
neighbourhood operators. Different such operators can be
bundled together into portfolios to choose from. A search
configuration typically involves different time limits used in
the reconstruction step. Likewise, a neighbourhood operator
specifies the type of the neighbourhood, which corresponds
to the structure and selection strategy of atoms, as well as
different rates to control the size of the selection. The port-
folios contain some pre-defined neighbourhoods, but custom
ones can be added.

The tool provides two problem independent pre-defined
neighbourhood types: random-atoms and random-constants.
Random-atoms relaxes a random sample of the visible atoms
of an answer set. Although quite simple, this method is often

"https://potassco.org/.
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surprisingly effective (Eiter et al. 2022). Random-constants
selects a random sample from all constant symbols from the
visible atoms, and relaxes all atoms that contain any con-
stants from that selection. The idea is that often atoms are
not independent and shared constants help to relax groups of
related atoms together. Relaxation rates refer to the size of
the random sample for both types.

Neighbourhood types can also be defined declaratively
as part of the ASP encoding using dedicated predicates
_Ins_select/1 and _1lns_fix/2. An example ap-
pears in Fig. 1 for the Social Golfer problem; details are
discussed in (Eiter et al. 2022). Roughly, _1ns_select
defines a set of terms from which a sample is selected. The
size of that sample, as for the pre-defined types, is controlled
using a respective relaxation rate. Predicate _lns_fix
defines a mapping from terms of the sample to atoms that
should not be relaxed between solver calls.

Neighbourhood operators can also be defined in code
which can be useful for highly customised applications. An
advanced example for a parallel machine scheduling prob-
lem is discussed by Eiter et al. (2022).

Strategies for adaptive LNS. While the system performs
well with the right choice of search and neighbourhood oper-
ators, it is often better to make changes when the search gets
stuck. ALASPO can be run in interactive mode, where the
user can interrupt search when intervention seems necessary.
Before search is resumed, a better fitting configuration from
the portfolios can be selected. We also provide several selec-
tion strategies that do not require any user intervention. Af-
ter each iteration of the LNS loop, they take information like
change in objective value, elapsed time, and whether a new
solution was found, and then select from the portfolio po-
tentially more suitable LNS operators for the next iteration.
A JSON file can be used to select a strategy and to specify
neighbourhood operators with types and relaxation rates and
search configurations with different time limits. This is then
internally used to set up respective portfolios in ALASPO.
The first strategy implemented in ALASPO is a self-
adaptive roulette-wheel strategy from the literature (Laborie


https://potassco.org/
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and Godard 2007; Pisinger and Ropke 2007): each pair
(S, N) of search and neighbourhood operators gets an ini-
tial weight. After each iteration of the LNS loop, the weight
of the currently used pair (S, N) is updated according to
the reinforcement learning formula weight,,.,, = (1 — «) -
weight ,;; + o - v where r is the effectiveness score of the
operator defined as the ratio of cost improvement over time
needed, and « is the learning rate. Then, a new pair of oper-
ators is selected with probability proportional to the weights.

The system implements also a simple non-adaptive ver-
sion of the first strategy, uniform roulette-wheel strategy,
where all pairs of operators have equal weight, and are thus
selected with equal probability in each iteration.

The third strategy, which we call dynamic strategy, at-
tempts to escape a stuck search by varying relaxation rates
and time limits. Operators as well as neighborhoods are
not changed as long as they give some improvement. If
the solver reports unsatisfiability three times in a row, we
increase the relaxation rate of the currently used neighbour-
hood to the next largest rate; after the largest one is reached,
new operators are randomly selected and search is resumed
with the smallest relaxation rate for the new neighbourhood.
If the solver times out however, it decides by coin flip to ei-
ther decrease the relaxation rate to its lowest setting or to
increase the time limit of the search operator; if this is not
possible, new operators are randomly chosen.

3 Usage

ALASPO can be used out-of-the-box with little or no config-
uration. If needed, it can also be customised through either
the command-line or an additional JSON configuration file.

Invocation. The tool is called in standard configuration for
a problem stored in program. 1p:

> python alaspo —-i program.lp

where it runs the system with its default portfolio which uses
neighborhood relax-atoms with relaxation rates 0.1, 0.2, 0.4,
0.6, and 0.8, neighbourhood relax-constants with rates 0.1,
0.2,0.3, 0.4, 0.5, time limits of 5, 15, 30, and 60 seconds for
the search configurations, and the dynamic selection strat-
egy. During execution, the solver will continuously report
when new solutions are found.

Further command-line arguments and neighbourhoods.
Additional command-line arguments can be used to change
the global time limit, and to select an ASP solver other than
clingo (clingo-dl and clingcon are currently supported as
well). Sometimes, it is beneficial to let the ASP solver opti-
mise the problem for some time before the LNS loop starts;
to this end, a time limit for pre-optimisation can be specified.

Instead of the default portfolio, the user can select a sin-
gle neighbourhood type from the pre-defined ones (random-
atoms or random constants), or specify that declaratively de-
fined one from the ASP program should be used instead. A
relaxation rate, an argument list that is passed to the ASP
solver, and a time limit for reconstruction steps can be set
in the command-line as well. In the mode where single
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search and neighbourhood operators are used, a new neigh-
bourhood in the LNS loop is only selected if the current one
stops to yield improvements and is fully exploited. Option
—--help gives a complete description of the command-line.

Portfolios and search strategies. The features described
so far allow one to run the tool with a simple default port-
folio or with single LNS operators. With a good relaxation
rate and time limit for LNS steps, better solutions can in-
deed be found starting from the relaxed solution while the
search space is small enough for the solver to actually suc-
ceed within the time limit. Such calibration needs in general
some trials; alternatively user-defined portfolios with differ-
ent selection strategies can be employed.

A novel feature is that several declarative neighbourhoods
can be specified for use in the operator portfolio of the
system. Alternative definitions are disambiguated in the
encoding by giving them a name as additional first argu-
ment of Ins_select and 1lns_fix. Examples of how
to define neighbourhoods in ASP can be found in previous
work (Eiter et al. 2022), one of which is shown in Fig. 1.

Portfolios can be specified in an additional JSON file as
depicted in Fig. 1. There, the user lists all LNS operators that
should be used. For each neighbourhood, a type (random-
atoms, random-constants, or declarative), an optional name
in case there are several declarative neighbourhoods in the
encoding, and a list of relaxation rates for instances of the
operator are given. Search configurations can be defined
with a list of time limits on LNS iterations.

The selection strategy for the portfolio (roulette-wheel or
dynamic) can be specified in the JSON file. Alternatively,
the user can select the interactive mode from the command
line and interrupt the solver during search to switch to other
operators when search gets stuck.

Custom applications. We mention in passing that the sys-
tem can be extended for custom applications by defining
new neighbourhood types in code. Furthermore, if an ASP
solver cannot produce a good first solution, construction
heuristics, e.g., a simple greedy procedure, can be specified
by instantiating a respective abstract class. An example de-
veloped for a challenging parallel machine scheduling prob-
lem can be found in previous work (Eiter et al. 2022).

4 Experiments

An evaluation of ASP with LNS was given in the companion
paper (Eiter et al. 2022). We revisit some of the benchmarks
from there to evaluate how the new self-adaptive modes per-
form in comparison with hand-selected search and neigh-
bourhood operators used previously.

All experiments were run on a cluster of 13 nodes with
2 Intel Xeon CPUs E5-2650 v4 (max. 2.90GHz, 12 physi-
cal cores, no hyperthreading) per node and a memory limit
of 20GB for each process. Encodings, instances, logs, and
random seeds are available at www.kr.tuwien.ac.at/research/
projects/bai/kr22.zip.


www.kr.tuwien.ac.at/research/projects/bai/kr22.zip
www.kr.tuwien.ac.at/research/projects/bai/kr22.zip
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single LNS operators

portfolio with selection strategy

(Eiter et al. 2022) uniform self-adaptive dynamic
a=0.2 a=04 a=0.6 a=08

SG 15.91 +£2.05 17.144+245 1836+£3.20 20.00£2.79 17144+1.73 1836+2.79 19.18+2.19

TSP 35.85 £+ 0.60 19.65 +£3.61 20.75+3.13 20.54+246 20.74+2.72 21.17+2.55 29.03+2.32

SPG 3.33 £ 0.00 0.47+0.52  0.00 £0.00 2384+052 190£0.80 —-0.95+£0.80 3.33+0.43

WSC 39.70 £0.77 39.83 £0.52 40.01 £0.41 40.17£1.25 39.96£0.79 40.25+1.27 39.44+1.71

SD 7.29 +2.22 12.14+1.66 11.47+£0.56 11.22+1.24 10.95+2.12 10.61+1.69 6.61£2.02

Table 1: Average percentual improvement and standard deviation over plain clingo for ASP with (adaptive) LNS.

Benchmark problems and setup. In our previous experi-
ments, LNS was used with a single search configuration and
single hand-selected neighbourhood for each benchmark.
We used clingo (v. 5.5.1) with the same search configuration
(the default configuration if not stated otherwise) as the LN'S
approach to establish a baseline. The benchmark problems
and settings are as follows:

Social Golfer (SG) is an NP-hard scheduling problem where
golfers must be grouped in a weekly schedule such that indi-
viduals meet again as little as possible. The global time limit
is 1800s per instance, and we use a declaratively specified
neighbourhood (shown in Fig. 1 with the problem encoding)
to relax entire weeks per iteration, a relaxation rate of 20%,
and a time limit of 20s for the LNS reconstruction step.

Travelling Salesman Problem (TSP) is the problem of find-
ing a round trip with minimal costs in a graph. The global
time limit is 300s, and we use random-atoms with a time
limit of 5s and a relaxation rate of 30% for LNS.

Sudoku Puzzle Generation (SPG) requests to generate a Su-
doku puzzle with a minimal number of hints such that the
solution is unique. The global time limit is 600s, and we use
“—-many -t4” for clingo (the default portfolio for multi-
treading with 4 threads). For LNS, we use random-atoms
with a rate of 20% and time limit of 20s.

Weighted Strategic Companies (WSC) is a version of the
Y2 -hard Strategic Companies Problem (Cadoli, Eiter, and
Gottlob 1997) with additional weights for companies and
the objective to find strategic sets with minimal total weight.
Here, the global time limit is 1800s, and we use random-
atoms with a rate of 20% and a time limit of 30s for LNS.

Shift Design (SD) requires to align shifts such that over-
and understaffing is avoided (Abseher et al. 2016). The
global time limit is 3600s and the search configuration is
“——opt-strategy=usc,3 —-configuration=handy”

which selects unsat-core based optimisation and defaults for
large problems. For LNS, we use random-atoms with a rate
of 70% and a time limit of 30s. Also, pre-optimisation for
50 minutes is used to initialise search.

For our comparisons with the adaptive modes of
ALASPO with portfolios, we used the solver settings de-
scribed above and time limits from the default portfolio (cf.
Section 3). For the neighbourhood operators, we included
both random-atoms and random-constants with relaxation
rates from the default portfolio. For Social Golfer, we used
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all the declarative neighbourhoods for that problem from
previous work together in a portfolio.

Results. The results of our experiments are summarised in
Table 1. For all problems, we report the relative improve-
ment in objective value for ASP with LNS in comparison
with plain clingo averaged over 5 runs. The first column
gives the results for LNS with single hand-selected LNS op-
erators that fit the problem best as described above. The
remaining columns show results obtained with the portfolio
described above for different selection strategies.

Overall, clingo with LNS is able to produce better results
than plain clingo on all benchmarks. The only case where
the baseline is not reached is Sudoku Puzzle Generation with
roulette-wheel selection and a high learning rate where sub-
optimal operators become preferred ones. The setting with
single hand-selected LNS operators is the sole winner in per-
formance gain for the Travelling Salesperson Problem only,
while it is outperformed by the portfolio approaches in three
out of the four remaining problems. Notably, putting LNS
operators into a portfolio is less effort for a user than deter-
mining manually which ones work best. The self-adaptive
roulette-wheel strategy performs better than the uniform one
in most of the cases, at least with the right learning rate,
except for Shift Design, where uniform roulette works best
overall. The dynamic strategy gives most consistently excel-
lent improvements though not in all cases the best ones.

5 Discussion

The experiments show that our method of combining ASP
with LNS is quite effective even with a single neighbour-
hood operator and a fixed relaxation rate. Often better re-
sults are achieved however with more customised configura-
tions. Portfolios, as implemented in ALASPO in contrast to
previous work where only single LNS operators were sup-
ported (Eiter et al. 2022), ease the burden on the user to find
such configurations. Our experiments confirm that the inves-
tigated adaptive strategies with reasonable portfolios achieve
very good results most of the time. Adaptive LNS has thus
indeed the potential to enhance ASP optimisation in many
applications; for some, this has already been demonstrated,
others are planned.

For future work, we want to extend ALASPO to support
further ASP systems like WASP (Alviano et al. 2015), add
more pre-defined neighbourhoods, and to continue research
on new self-adaptive strategies.
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