
Stream Reasoning with Cycles

Periklis Mantenoglou2,1 , Manolis Pitsikalis3 , Alexander Artikis4,1
1NCSR Demokritos, Athens, Greece

2National and Kapodistrian University of Athens, Greece
3University of Liverpool, UK
4University of Piraeus, Greece

periklismant@di.uoa.gr, E.Pitsikalis@liverpool.ac.uk, a.artikis@iit.demokritos.gr

Abstract

Temporal specifications, such as those of multi-agent sys-
tems, often include cyclic dependencies. Moreover, there is
an increasing need to evaluate such specifications in an on-
line manner, upon streaming data. Consider, e.g., the online
computation of the normative positions of the agents engag-
ing in an e-commerce protocol. We present a formal compu-
tational framework that deals with cyclic dependencies in an
efficient way. Moreover, we demonstrate the effectiveness of
our framework on large synthetic and real data streams, from
multi-agent systems and composite event recognition.

1 Introduction
The temporal specifications of many contemporary appli-
cations include cyclic dependencies. In multi-agent e-
commerce protocols, e.g., a contract may be awarded to an
agent that has not been suspended, while an agent may be
suspended when not fulfilling the terms of a(nother) con-
tract. As another example, consider the recognition of the
different stages of a fishing trip, which is important for man-
aging fishing activity and port traffic. For instance, a fishing
vessel is said to be: (a) approaching a fishing area if it has
ended another trip and goes in motion, i.e., ‘under way’; (b)
trawling when it stops the approach, i.e., it has reached the
fishing area, and starts making consecutive turns; (c) return-
ing when it stops trawling and goes under way; moreover, a
vessel is said to have (d) ended its trip when it completes its
return by becoming anchored or moored.

Contemporary applications also require the processing of
large, evolving streams of data. Stream reasoning systems
process such data streams by continuously applying tempo-
ral queries/patterns on incoming data and reporting instances
of pattern satisfaction. Examples of stream reasoning sys-
tems may be found in various fields (Dell’Aglio et al. 2019).
Consider, e.g., the recognition of (illegal) fishing on streams
of vessel position signals. Furthermore, consider the on-
line computation of the normative positions (Sergot 2001) of
agents negotiating about a contract, given the messages ex-
changed between them. In all these cases, complex temporal
specifications need to be evaluated with minimal latency in
order to support real-time decision-making.

To deal efficiently with cyclic dependencies in temporal
specifications, we present an extension of the ‘Event Cal-
culus for Run-Time reasoning’ (RTEC), i.e., a logic pro-

gramming implementation of the Event Calculus (Kowal-
ski and Sergot 1986), designed to handle high-velocity data
streams (Artikis, Sergot, and Paliouras 2015). The specifi-
cations in our proposed extension, RTEC◦, are locally strati-
fied logic programs. Furthermore, RTEC◦ includes an algo-
rithm for incremental caching, designed to avoid unneces-
sary re-computations when evaluating cyclic dependencies.

The contributions of the paper may be summarised as fol-
lows. First, we present RTEC◦, an open-source formal com-
putational framework1 for reasoning over real-world data
streams and temporal specifications with cyclic dependen-
cies. Second, we evaluate RTEC◦ by means of a complex-
ity analysis and identify the benefits of incremental caching.
Third, we present an extensive, reproducible empirical eval-
uation on large synthetic and real data streams. Moreover,
we present an empirical comparison of RTEC◦ with a re-
lated computational framework and demonstrate the benefits
of our approach.

We employ a voting procedure from multi-agent systems
to illustrate RTEC◦. We follow the formalisation of Pitt et
al. (2006), which may be summarised as follows: a commit-
tee sits and the chair opens the meeting; a member proposes
a motion; another member seconds the motion; the members
debate the motion; the chair calls for those in favour/against
to cast their vote; finally, the motion is carried, or not, ac-
cording to the standing rules of the committee.

2 Event Calculus for Run-Time Reasoning
The Event Calculus for Run-Time reasoning (RTEC) (Ar-
tikis, Sergot, and Paliouras 2015) is a logic programming
implementation of the Event Calculus (Kowalski and Sergot
1986), designed for reasoning over data streams. We sum-
marise the language of RTEC and its reasoning algorithms.

Representation. The time model is linear and includes
integer time-points. Variables start with an upper-case letter,
while predicates and constants start with a lower-case letter.
A fluent is a property that is allowed to have different val-
ues at different points in time. The term F=V denotes that
fluent F has value V . Boolean fluents are a special case in
which the possible values are true and false. The application-

1RTEC◦ is written in Prolog and the code is available at: https:
//github.com/aartikis/RTEC

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Applications and Systems

544

https://github.com/aartikis/RTEC
https://github.com/aartikis/RTEC

specific part of a formalisation in RTEC is called event de-
scription.
Definition 1 (Event Description). An event description is a
set of:
1. Ground happensAt facts, expressing a stream of event in-

stances. happensAt(E , T) denotes that event E occurs at
time-point T .

2. Rules with head initiatedAt or terminatedAt, ex-
pressing the effects of events on fluents.
initiatedAt(F =V , T ′, T , T ′′) (respectively
terminatedAt(F =V , T ′, T , T ′′)) denotes that a
time period during which a fluent F has value V is
initiated (resp. terminated) at a time-point T , such that
T ′ ≤ T < T ′′. �

Definition 2 (Syntax). The rules defining initiatedAt predi-
cates in RTEC have the following syntax:

initiatedAt(F =V , T ′, T , T ′′)←
happensAt(E1 , T), T ′ ≤ T < T ′′,
[[[not] happensAt(E2 , T), . . . ,
[not] happensAt(Ei , T),
[not] holdsAt(F1 =V1 , T), . . . ,
[not] holdsAt(Fk =Vk, T).]]

(1)

The first body literal of an initiatedAt rule is a positive
happensAt predicate; this is followed by a possibly empty
set of positive/negative happensAt and holdsAt predicates de-
noted by ‘[[]]’. holdsAt(F =V, T) expresses that fluent F
has value V at a given time-point T . The evaluation of
holdsAt predicates will be discussed shortly. ‘not’ expresses
negation-by-failure (Clark 1978), while ‘[not]’ denotes that
‘not’ is optional. All (head and body) predicates are evalu-
ated on the same time-point T . T ′ and T ′′, which are added
at compile-time in a process transparent to the user, spec-
ify the temporal range of T . T ′ and T ′′ are always ground
in queries, allowing search optimisations through indexing.
terminatedAt rules have the same form. �

According to the common-sense law of inertia, F=V
holds at a particular time-point T , i.e., holdsAt(F =V , T),
if F=V has been initiated by an event at some earlier time-
point, and not terminated by another event in the meantime.
Example 1. Consider the following rule from voting:

initiatedAt(voted(Ag ,M)=Vote, T ′, T , T ′′)←
happensAt(vote(Ag ,M ,Vote), T), T ′ ≤ T < T ′′,
holdsAt(status(M)= voting , T).

voted(Ag ,M)=Vote is a fluent-value pair (FVP) record-
ing the Vote , i.e., aye/nay , of agent Ag on motion
M . vote(Ag ,M ,Vote) expresses the act of voting, while
status(M) is a fluent recording the status of motion M , i.e.,
proposed , voting , voted or null . The above rule expresses
the effects of casting a ‘valid’ vote, i.e., the vote for a motion
M is recorded if the status of M is voting . �

Semantics. An event description in RTEC defines a de-
pendency graph expressing the relationships between the
FVPs of the event description.
Definition 3 (Dependency Graph). The dependency graph
of an event description is a directed graph such that:

1. Each vertex denotes a FVP F =V ;
2. There exists an edge (Fj =Vj , Fi =Vi) iff there is an

initiatedAt or terminatedAt rule for Fi =Vi having
holdsAt(Fj =Vj , T) as one of its conditions. �

RTEC restricts attention to event descriptions defining
acyclic dependency graphs whereby it is possible to define a
function level that maps all FVPs F=V to the non-negative
integers according to the following definition.
Definition 4 (FVP Level in RTEC). Given a dependency
graph in RTEC, the level of a FVP F=V is:
1. 1, if the vertex of F=V has no incoming edges. In other

words, F=V is defined only in terms of events.
2. n > 1 , if the vertex of F=V has at least one incom-

ing edge from a vertex of a FVP of level n−1 , and zero
or more incoming edges from vertices of FVPs of levels
lower than n−1 . �

Proposition 1 (Semantics of RTEC). An event description
in RTEC is a locally stratified logic program (Przymusinski
1987). ♦

A stratification of an event description may be constructed
as follows. The first stratum contains all groundings of hap-
pensAt. The remaining strata are formed by following, in a
bottom-up fashion, the FVP levels of the dependency graph.

Reasoning. The key reasoning task of RTEC is the com-
putation of the maximal intervals during which a fluent-
value pair (FVP) of an event description holds continuously.
To achieve this, RTEC computes the initiation points of
F=V by evaluating the initiatedAt rules for F=V . If there is
at least one initiation point, then RTEC computes all time-
points T at which F=V is ‘broken’. F=V is said to be
‘broken’ at time-point T if F=V is terminated or F is ini-
tiated with a value V ′ 6=V at T . These are the termina-
tion points of F=V . Subsequently, RTEC constructs the
list of maximal intervals of F=V by matching each ini-
tiation point Ti of F=V with the first termination point
Tb after Ti , ignoring every intermediate initiation point be-
tween Ti and Tb . holdsFor(F =V , I) denotes that F=V
holds continuously in the maximal intervals of the list I .
holdsAt(F =V , T) is then evaluated by checking whether
T belongs to one of the maximal intervals of list I for which
holdsFor(F =V , I).

RTEC employs a simple caching mechanism to avoid un-
necessary re-computations, according to which the FVPs of
an event description are processed in an order specified by
its dependency graph. RTEC processes FVPs in a bottom-
up manner, computing and caching their intervals level-by-
level. This way, the intervals of the FVPs that are required
for the processing of a FVP of level n are fetched from the
cache without the need for re-computation.

RTEC performs continuous query processing to compute
the maximal intervals of FVPs. At each query time qi, the
events that fall within a specified sliding window ω are taken
into consideration. All events that took place before or at
qi−ω are discarded/‘forgotten’. This way, the cost of rea-
soning depends on the size of ω and not on the complete
stream. The size of ω and the temporal distance between two
consecutive query times, i.e., the ‘step’ qi−qi−1, are param-
eters that may be manually chosen or optimised to meet the

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Applications and Systems

545

requirements of a given application. In the case that events
arrive at RTEC with delays, e.g., due to network delays, it
is preferable to make ω longer than the step. This way, we
may compute, at qi, the effects of events that took place in
(qi−ω, qi−1], but arrived after qi−1.

3 Cyclic Dependencies
Temporal specifications, such as those found in composite
event recognition (Giatrakos et al. 2020) and multi-agent
systems, often include cyclic dependencies.
Example 2. Consider, e.g., the specification of the status of
a motion in voting:

initiatedAt(status(M)= proposed , T ′, T , T ′′)←
happensAt(propose(P ,M), T), T ′ ≤ T < T ′′,
holdsAt(status(M)=null , T).

(2)

initiatedAt(status(M)= voting , T ′, T , T ′′)←
happensAt(second(S ,M), T), T ′ ≤ T < T ′′,
holdsAt(status(M)= proposed ,T).

(3)

initiatedAt(status(M)= voted , T ′, T , T ′′)←
happensAt(close ballot(C ,M),T),T ′ ≤ T < T ′′,
holdsAt(status(M)= voting , T).

(4)

initiatedAt(status(M)=null , T ′, T , T ′′)←
happensAt(declare(C ,M ,R), T), T ′ ≤ T < T ′′,
holdsAt(status(M)= voted , T).

(5)

The first condition of each rule expresses an agent action;
declare(C ,M ,R), e.g., expresses that agent C declared the
outcome R of voting on motion M . In all actions, the
first argument denotes the agent that performed the action,
while the second argument denotes the motion. The formal-
isation above expresses the various stages of a motion M :
proposed (the motion needs to be seconded before voting
may start), voting (voters may cast their votes), voted (vot-
ing has ended and the chair may declare the outcome) and
null . The effects of an agent message on status(M) depend
on the value of this fluent at the time of issuing the message.
A message propose(P ,M), e.g., from a proposer P results
in status(M)= proposed provided that status(M)=null
at the time of sending propose(P ,M). Performing this ac-
tion when status(M) 6= null has no effect on status(M).
The effects of the remaining actions are formalised similarly.
The specification of status includes an initial value for this
fluent — this is omitted to simplify the presentation. �

The top part of Figure 1 displays the dependency graph
defined by the event description of a voting protocol. This
graph contains a cycle which is formed by rules (2)–(5). As
another example, the bottom part of Figure 1 displays a de-
pendency graph of NetBill, a protocol for exchanging en-
crypted digital goods (Sirbu 1997; Artikis and Sergot 2010),
also including a cycle. In this specification, a contract con-
cerning digital goods may be awarded to an agent that has
not been suspended, while an agent may be (temporarily)
suspended when not fulfilling the obligations of some other
contract. The complete formalisations of voting and NetBill
are publicly available1.

RTEC cannot handle cyclic dependencies. When comput-
ing the initiation points of, e.g., status(M)= proposed we

permission
=false

quote=true

suspended
=true

contract
=true

power
=true

obligation
=true

status
=proposed

status
=voting

status
=voted

status=null

auxPer
=true

outcome
=carried

power
=true

voted
=aye/nay

voted
=null

permission
=true

obligation
=true

sanctioned
=true

Figure 1: Dependency Graphs: Voting (top) and NetBill (bottom).
We omit the arguments of fluents, and group FVPs with the same
conditions into a single node, to simplify the presentation. Cycles
are coloured red. Apart from the basic features of these protocols,
e.g., motions in voting and quotes for digital goods in NetBill, the
specifications express the normative positions of the agents, such as
institutionalised power, permission and obligation, as well as sanc-
tions/suspensions for handling non-conformance with obligations
and the performance of forbidden actions.

cannot assume, as RTEC does, that the FVPs appearing in
the body of rule (2) have been processed and thus their inter-
vals can be fetched from the cache. status(M)= proposed
depends on status(M)=null which in turn depends on
status(M)= proposed .

This is not an issue, however, for other Event Calculus
dialects, which can process FVPs with cyclic dependencies.
Consider, e.g., the formalisation below:

holdsAt(F =V , T)←
initiatedAt(F =V , qi−ω, Ti , T),
not brokenBetween(F =V , Ti , T).

(6)

brokenBetween(F =V , Ti , T)←
terminatedAt(F =V , Ti , Tb , T).

(7)

brokenBetween(F =V , Ti , T)←
initiatedAt(F =V ′, Ti , Tb , T), V 6=V ′.

(8)

Rule (6) specifies that F=V holds at time-point T if it was
initiated at some time-point Ti between the beginning of the
current window qi−ω and T , and has not been ‘broken’ be-
tween Ti and T . F=V is broken between Ti and T if it
is terminated in that interval (see rule (7)). A fluent cannot
have more than one value at any time. Rule (8) captures
this feature: if F =V ′ is initiated at time Tb ∈ [Ti ,T) then
F=V is said to be broken in [Ti ,T), for all possible values
V , other than V ′, of F .

Example 3. Assume that the current window (qi−ω, qi]

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Applications and Systems

546

Predicate Rule
1 initiatedAt(s(m)= proposed , qi−ω, T , qi) ? (2)
2 happensAt(propose(agp,m), t4) X (2), (9)
3 holdsAt(s(m)= null , t4) ? (2), (6)
4 initiatedAt(s(m)= null , qi−ω, Ti , t4) ? (6), (5)
5 happensAt(declare(agc,m, not carried), t3) X (5), (9)
6 holdsAt(s(m)= voted , t3) ? (5), (6)
7 initiatedAt(s(m)= voted , qi−ω, T ′i , t3) ? (6), (4)
8 happensAt(close ballot(agc,m), t2) X (4), (9)
9 holdsAt(s(m)= voting , t2) ? (4), (6)

10 initiatedAt(s(m)= voting , qi−ω, T ′′i , t2) ? (6), (3)
11 happensAt(second(ags ,m), t1) X (3), (9)
12 holdsAt(s(m)= proposed , t1) ? (3), (6)
13 initiatedAt(s(m)= proposed , qi−ω,T ′′′i , t1) ? (6)

14 initiatedAt(s(m)= proposed , qi−ω, qi−ω, t1) X (10)
15 brokenBetween(s(m)= proposed , qi−ω, t1) ? (6), (8)
16 initiatedAt(s(m)= voting , qi−ω, Tb, t1) × (8), (3)
17 initiatedAt(s(m)= voted , qi−ω, Tb, t1) × (8), (4)
18 initiatedAt(s(m)= null , qi−ω, Tb, t1) × (8), (5)
19 brokenBetween(s(m)= proposed , qi−ω, t1) × (8), (6)

20 holdsAt(s(m)= proposed , t1) X (6), (3)
21 initiatedAt(s(m)= voting , qi−ω, t1 , t2) X (3), (6)
22 brokenBetween(s(m)= voting , t1 , t2) × (6), (8)
23 holdsAt(s(m)= voting , t2) X (6), (4)
24 initiatedAt(s(m)= voted , qi−ω, t2 , t3) X (4), (6)
25 brokenBetween(s(m)= voted , t2 , t3) × (6), (8)
26 holdsAt(s(m)= voted , t3) X (6), (5)
27 initiatedAt(s(m)= null , qi−ω, t3 , t4) X (5), (6)
28 brokenBetween(s(m)= null , t3 , t4) × (6), (8)
29 holdsAt(s(m)= null , t4) X (6), (2)
30 initiatedAt(s(m)= proposed , qi−ω, t4 , qi) X (2)

Table 1: Narrative assimilation in the Event Calculus. ‘status(m)’
is abbreviated as ‘s(m)’ to fit the column margins. The second col-
umn shows the evaluated predicates and the third column refers to
the rules used in their evaluation. We use ‘?’ to indicate that we will
illustrate predicate evaluation, ‘X’ to express a successful evalua-
tion, and ‘×’ to denote an unsuccessful evaluation. The predicates
in the second column are indented to distinguish between the head
and body atoms of a rule.

consists of the following event narrative/stream:

happensAt(second(ags ,m), t1).
happensAt(close ballot(agc ,m), t2).
happensAt(declare(agc ,m,not carried), t3).
happensAt(propose(agp ,m), t4).
where qi−ω < t1 < t2 < t3 < t4 < qi

(9)

Moreover, the initial value of status(M), in the current win-
dow, is set to proposed :

initiatedAt(status(M)= proposed , qi−ω, qi−ω, T)←
T > qi−ω.

(10)

To compute the maximal intervals for which
status(m)= proposed holds continuously, we first need to
compute the initiation points of this FVP. Table 1 illustrates
this process. To save space, we omit from this table the
evaluation of the second condition (double inequality) of the
initiatedAt and terminatedAt rules (see e.g. rule (2)); moreover,
in the middle part of the table (see lines 14–19) we omit the

presentation of the happensAt calls, while in the lower part
of the table (see lines 20–30) we do not show the proof of
brokenBetween. A solution to the initiatedAt call of line 1, i.e.,
a initiation point of status(m)= proposed in [qi−ω, qi), is
shown in line 30 (initiation point: t4). �

Rule-set (6)–(8) constitutes a very inefficient implementa-
tion, leading to numerous unnecessary re-computations. As-
sume, e.g., that the event stream (9) includes an additional
event:

happensAt(propose(agp ,m), t5).
where t4 < t5 < qi

(11)

In this case, most predicate calls presented in Table
1 would have to be repeated, in order to determine
whether the above event creates new initiation points
for status(m)= proposed . More precisely, the predi-
cate calls presented in lines 1–27 of Table 1 would be
repeated, with the exception that time-point t4 is re-
placed by t5 , i.e., the time-point of the propose event
of expression (11). Subsequently, the call to broken-
Between(status(m)=null , t3 , t5) would succeed, since
status(m)=null is broken at t4, thus leading to no new
initiation points for status(m)= proposed . Similarly, addi-
tional messages in the event stream, such as several agents
proposing or seconding a motion, would increase signifi-
cantly the number of unnecessary re-computations.

Furthermore, consider, e.g., the computation of the max-
imal intervals for which status(M)= voting holds con-
tinuously, that could follow the computation of the max-
imal intervals for which status(M)= proposed . First,
we would have to compute the initiation points of
status(M)= voting , i.e.:

initiatedAt(status(M)= voting , qi−ω, T , qi).

To calculate these initiation points, we would have
to repeat the computations presented in lines 10–21
of Table 1, i.e., we would have to prove again that
holdsAt(status(M)= proposed , t1). Similarly, to calculate
the maximal intervals for which status(M)= voted , we
would have to repeat the computations presented in lines
7–24 of Table 1, for computing the initiation points of this
FVP, while to calculate the maximal intervals for which
status(M)=null , we would have to repeat the computa-
tions presented in lines 4–27 of Table 1.

4 Efficient Treatment of Cyclic Dependencies
To address these issues, we propose RTEC◦, an extension of
RTEC that computes, in an efficient way, the maximal in-
tervals during which a FVP with cyclic dependencies holds
continuously. To achieve this, RTEC◦ performs incremen-
tal caching when processing FVPs in a cycle. Below we
present the semantics, reasoning algorithms and complexity
of RTEC◦. The syntax of the rules in RTEC◦ is the same as
that of RTEC.

Semantics. In RTEC◦, the dependency graph of an event
description may include cycles. Thus, we need to modify
Definition 4 of FVP level to cater for cyclic dependency
graphs. The strongly connected components (SCCs) of a

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Applications and Systems

547

cyclic dependency graph include either a single vertex of a
FVP with no cyclic dependencies or a set of vertices of FVPs
among which there are cyclic dependencies. A dependency
graph becomes acyclic by contracting its SCCs into single
vertices.
Definition 5 (SCC Contracted Graph). Given a directed
graph G, its set of vertices V , its set of edges E and its SCCs
S1 ,S2 , . . . , Sn , the SCC contracted graph G ′=(V ′, E ′) of
G is defined as follows:
1. V ′=

⋃
1≤i≤n{vSi}.

2. e =(vSi
, vSj

) ∈ E ′ iff ∃vi , vj ∈ V , such that vi ∈ Si ,
vj ∈ Sj and e =(vi , vj) ∈ E . �

By construction, G′ is acyclic. To construct the SCC con-
tracted graph of voting (resp. NetBill), for example, we must
merge the red nodes of the top (bottom) dependency graph
shown in Figure 1 into a single node.
Definition 6 (FVP Level in RTEC◦). Given a dependency
graph G in RTEC◦ and the SCC contracted graph G′ of G,
the level of a FVP F=V included in the SCC Si of G is
equal to the level of the vertex vSi

of G′, which is derived
by following Definition 4. �

According to Definition 6, all FVPs whose vertices are in
the same cycle, and thus in the same SCC of the dependency
graph, have the same level.
Proposition 2 (Semantics of RTEC◦). An event description
in RTEC◦ is a locally stratified logic program. ♦

Unlike RTEC, a local stratification of an event descrip-
tion in RTEC◦ cannot be derived solely by partitioning the
groundings of its predicates in terms of the level of the FVP
they concern. The ground predicates for FVPs with cyclic
dependencies have to be stratified further in terms of their
time-stamp. At each FVP level (with cyclic dependencies),
additional strata may be introduced for each time-point of
the window ω.

Reasoning. Similar to RTEC, RTEC◦ computes and
caches the maximal intervals of FVPs in a bottom-
up manner, following their level in the dependency
graph, while the intervals of FVPs in the same level
may be computed and cached in any order. In contrast
to RTEC, RTEC◦ supports cyclic dependencies, and
employs Algorithms 1 and 2 to evaluate the holdsAt
predicates found in the bodies of initiatedAt and
terminatedAt rules defining FVPs in a cycle. Algorithms 1
and 2 are an efficient implementation of rules (6)–(8), i.e.,
they incorporate an incremental caching technique to avoid
unnecessary re-computations, such as those mentioned in
Section 3.

To compute holdsAt(F =V , T), RTEC◦ first checks
whether F=V has been processed at the current query-time
qi (see line 1 of Algorithm 1), i.e., whether the maximal in-
tervals for which F=V holds continuously have been com-
puted. If they have been computed, then RTEC◦ fetches
them from the cache (line 2) and checks whether T be-
longs in these intervals (line 3). If the intervals have not
been computed yet, then RTEC◦ checks whether some time-
points, before or at T , for which F=V holds or not have
already been cached (see cachedLEQ in line 4). If that is the

Algorithm 1 holdsAt(F =V , T)

1: if processed(F =V) then
2: holdsFor(F =V, I)
3: if T ∈ I then return true
4: else if cachedLEQ(T , F =V) 6= [] then
5: last(cachedLEQ(T , F =V), (TlCP , TvallCP))
6: if T ==TlCP then
7: if TvallCP ==+ then return true
8: else if holdsAtEC(F =V , TlCP , T , TvallCP) then
9: updateCache(F =V , T , +)

10: return true
11: else updateCache(F =V , T , −)
12: else
13: if holdsAtEC(F =V , qi−ω, T , −) then
14: updateCache(F =V , T , +)
15: return true
16: else updateCache(F =V , T , −)
17: return false

Algorithm 2 holdsAtEC(F =V , TlCP , T , TvallCP)

1: if TlCP < T then
2: if TvallCP ==+ then
3: if brokenAt(F =V , TlCP , Tb , T) then
4: if holdsAtEC(F =V , Tb+1 , T , −) then
5: return true
6: else return true
7: else
8: if initiatedAt(F =V , TlCP , Ti , T) then
9: if holdsAtEC(F =V , Ti+1 , T , +) then

10: return true
11: return false

case (lines 4–11), then RTEC◦ retrieves the cached time-
point TlCP closer to T along with the truth value TvallCP

of F=V at TlCP (line 5). If TlCP coincides with T (line
6), then its truth value is returned; ‘+’ denotes that F=V
holds and ‘−’ that it does not. Otherwise, i.e., if TlCP does
not coincide with T (lines 8–11), RTEC◦ computes whether
F=V holds at T restricting the evaluation in [TlCP , T); the
evaluation is performed by means of holdsAtEC, which is pre-
sented in Algorithm 2. Moreover, the outcome of the evalua-
tion is cached (lines 9 and 11). Finally, if no time-points for
F=V have been cached (lines 12–16), then RTEC◦ com-
putes whether F=V holds at T performing the evaluation
in [qi−ω, T) (line 13) and caching the outcome.

Algorithm 2 presents the steps for evaluating
holdsAtEC(F =V , TlCP , T , TvallCP), i.e., calculat-
ing whether F=V holds at T restricting the search in
[TlCP , T) and taking into consideration TvallCP , i.e., the
truth value of F=V at TlCP . All arguments of holdsAtEC
are ground. First, if F=V holds at TlCP (see lines 2–6 of
Algorithm 2), then we check whether F=V is broken at
some time Tb ∈ [TlCP , T). brokenAt is a simple variation
of brokenBetween (see rules (7) and (8)) returning the
time-point at which a FVP is broken. If F=V is not broken
in [TlCP , T), then RTEC◦ returns that F=V holds at T .
Otherwise, i.e., if F=V is broken at some Tb ∈ [TlCP , T),
RTEC◦ calls recursively holdsAtEC, this time restricting the

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Applications and Systems

548

Predicate Rule/Alg.

1 initiatedAt(s(m)= proposed , qi−ω, T , qi) ? (2)
2 happensAt(propose(agp ,m), t5) X (2), (11)
3 holdsAt(s(m)=null , t5) ? (2), a1
4 processed(s(m)=null) × a1
5 last(cachedLEQ(t5 , s(m)=null), (t4 ,+)) X a1, (12)
6 holdsAtEC(s(m)=null , t4 , t5 , +) ? a1, a2
7 brokenAt(s(m)=null , t4 , t4 , t5) X a2
8 holdsAtEC(s(m)=null , t4+1 , t5 , −) × a2
9 holdsAtEC(s(m)=null , t4 , t5 , +) × a2, a1

10 updateCache(s(m)=null , t5 , −) X a1
11 holdsAt(s(m)=null , t5) × a1, (2)
12 initiatedAt(s(m)= proposed , qi−ω, T , qi) × (2)

13 initiatedAt(s(m)= voting , qi−ω, T , qi) ? (3)
14 happensAt(second(ags ,m), t1) X (3), (9)
15 holdsAt(s(m)= proposed , t1) ? (3), a1
16 processed(s(m)= proposed) X a1
17 holdsFor(s(m)= proposed , I), t1 ∈ I X a1
18 holdsAt(s(m)= proposed , t1) X a1, (3)
19 initiatedAt(s(m)= voting , qi−ω, t1 , qi) X (3)

20 initiatedAt(s(m)=null , qi−ω, T , qi) ? (5)
21 happensAt(declare(agc ,m), t3) X (5), (9)
22 holdsAt(s(m)= voted , t3) ? (5), a1
23 processed(s(m)= voted) × a1
24 last(cachedLEQ(t3 , s(m)= voted), (t3 ,+)) X a1, (12)
25 holdsAt(s(m)= proposed , t3) X a1, (5′)
26 initiatedAt(s(m)=null , qi−ω, t3 , qi) X (5)

Table 2: Stream reasoning with RTEC◦. ‘status(m)’ is abbrevi-
ated as ‘s(m)’. a1–a2 refer to Algorithms 1–2.

evaluation interval to [Tb+1 , T), where Tb+1 denotes
the next time-point of Tb , and starting from the negative
truth value of F=V at Tb . Second, if F=V does not hold
at TlCP (see lines 7–10), then RTEC◦ determines whether
F=V is initiated at some Ti ∈ [TlCP , T). If F=V is
initiated in this interval, RTEC◦ calls holdsAtEC with the
evaluation interval [Ti+1 , T) and the initial truth value
of F=V being positive. The example below illustrates the
incremental caching of RTEC◦.
Example 4. Consider the stream consisting of events (9)
and (11), while the initial value of status(m) in the current
window is proposed (see formula (10)). The computation of
the initiation points of status(m)= proposed commences
with the evaluation presented in Table 1, with some addi-
tional calls, e.g., to processed (see Algorithm 1), to check
for cached intervals and time-points. Furthermore, RTEC◦
caches all computed time-points for which a FVP holds. In
this example, RTEC◦ caches the following:

holdsAt(status(m)= proposed , t1).
holdsAt(status(m)= voting , t2).
holdsAt(status(m)= voted , t3).
holdsAt(status(m)=null , t4).

(12)

The top part of Table 2 (lines 1–12) shows the re-
maining evaluation concerning the initiation points of
status(m)= proposed , and, in particular, the processing of
the event propose(agp ,m) at t5. As in Table 1, we show
a subset of the predicate calls to simplify the presentation.
To prove whether status(m)=null holds at t5, as required
by rule (2), RTEC◦ follows Algorithm 1 and consults the

cache, first by determining if the intervals of this FVP have
already been computed—at this stage they have not—and
then by looking for cached time-points. The closest cached
time-point to t5 is t4, while status(m)=null holds at t4
(see cache (12)). Subsequently, RTEC◦ follows Algorithm
2 to prove whether status(m)=null still holds at t5. This
is not the case, since status(m)=null is broken at t4 (by
the occurrence of a propose event at that time) and not re-
initiated in the meantime. Consequently, no new initiation
points are computed for status(m)= proposed .

With the use of caching, RTEC◦ can restrict attention
to the events that have not been processed so far, avoiding
unnecessary re-computations. In this example, without the
cached time-points of status we would have to repeat most
of the steps presented in Example 3, only to compute again
the values of status before t5.

The middle part of Table 2 (lines 13–19) shows the com-
putation of the initiation points of status(m)= voting . At
this stage, the intervals I for which status(m)= proposed
holds continuously have been computed and cached, and
are (qi−ω, t1] and (t4 , ∞). In other words, m is
said to be ‘proposed’ from the beginning of the cur-
rent window until t1, and since t4. As can be seen
from Table 2, the computation of the initiation points of
status(m)= voting is very efficient. RTEC◦ quickly com-
putes that status(m)= proposed holds at t1, as required by
rule (3), since the intervals of this FVP may be fetched from
the cache. This way, the unnecessary re-computations dis-
cussed after Example 3 are avoided.

The bottom part of Table 2 (lines 20–26) presents another
illustration of the effects of incremental caching, by showing
the computation of the initiation points of status(m)=null .
Again, reasoning is very efficient: we fetch from the cache
(12) time-point t3 for which status(m)= voted holds, and
directly prove rule (5) expressing the conditions in which
status(m)=null is initiated. �

Complexity. We present the worst-case complexity of
Algorithms 1 and 2, and compare it against the complex-
ity of reasoning with cycles in the absence of incremental
caching. According to Algorithms 1 and 2, RTEC◦ consults
its cache to evaluate holdsAt(F =V , T), and when reason-
ing is necessary, it is restricted to intervals that have not
been explored so far. Moreover, after the end of the eval-
uation of holdsAt(F =V , T) the cache is updated. There-
fore, in the worst-case, RTEC◦ will have to evaluate each
initiatedAt/terminatedAt rule for F=V at every-time point of
ω, but no more than that. In other words, the worst-case
complexity is

O(ωk), (13)

where ω denotes the window size and k is the cost of com-
puting whether a FVP is initiated or terminated at a given
time-point (see (Artikis, Sergot, and Paliouras 2015) for an
estimation of k).

In the absence of incremental caching, we do not mark the
intervals that have been explored so far, and thus we may re-
peat evaluations that have already been performed. In the
worst-case, the evaluation of all earlier initiation and termi-
nation points of FVPs in a cycle has to repeated ω times.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Applications and Systems

549

Thus, the worst-case complexity is
O(ω2 rk), (14)

where r is the number of FVPs in a cycle.
In real-world applications, ω, i.e., the window size, can

be large. Therefore, the use of the caching mechanism of
RTEC◦ leads to significant performance gains (compare ex-
pressions (13) and (14)). This is key difference of our pro-
posed computational framework from related work.

5 Experimental Analysis
5.1 Experimental Setup
We evaluated RTEC◦ on two multi-agent systems (MAS)
protocols, formalising a voting procedure and NetBill, an e-
commerce procedure, as well as on composite event recogni-
tion for maritime situational awareness. The complete event
descriptions of all applications, including the corresponding
datasets, are available with the code of RTEC◦1, allowing
the reproducibility of our empirical analysis.

Voting & NetBill. The voting protocol is our running ex-
ample (Pitt et al. 2006). Agents occupy the roles of proposer,
seconder, voter and/or chair, and deliberate over various mo-
tions over time. NetBill includes consumers and merchants
negotiating over digital goods (Sirbu 1997). Consumers re-
quest quotes for goods and the interested merchants reply
with the quotes, or even proactively advertise their goods.
A timely acceptance of a quote leads to a contract, which
defines the processes of sending the digital goods and pay-
ment (Artikis and Sergot 2010). In both protocols, a set of
normative positions, such as institutionalised power, permis-
sion and obligation, guide the behaviour of the agents (Ser-
got 2001). Moreover, sanctions deal with the performance
of forbidden actions and non-compliance with obligations.
Figure 1 displays the dependency graphs of these protocols.

Synthetic data generators produced the event streams of
the two protocols. In the case of voting, multiple agents and
motions were generated, and the agents were assigned roles.
Then, agents proposed motions, some of which were sub-
sequently seconded and voted for. In the case of NetBill,
quotes were progressively requested, presented, accepted
and sometimes fulfilled. To simulate realistic MAS, the data
generators produced events which do not comply with the
rules, e.g. closing the ballot before all votes are cast, and not
complying with the terms of a contract in NetBill. RTEC◦
was instructed to compute, in an online fashion, the maxi-
mal intervals of the FVPs presented in Figure 1, e.g., com-
pute the maximal intervals in which an agent is permitted to
perform an action.

Maritime Situational Awareness. In this application, the
input events are Automatic Identification System (AIS) posi-
tion signals emitted by vessels, including information about
their heading, speed and navigational status. FVPs express
various types of dangerous, suspicious and illegal vessel ac-
tivity, such as ship-to-ship transfer of goods in the open sea,
that must be detected in real-time. We extended the event
description of Pitsikalis et al. (2019) with cyclic dependen-
cies among FVPs, as required by domain experts, in order
to capture more accurately the maritime behaviours of in-
terest, such as fishing. We evaluated RTEC◦ on a publicly

available dataset2 of 18M AIS position signals, emitted from
5K vessels sailing in the Atlantic Ocean around the port of
Brest, France, between October 2015–March 2016. More-
over, we employed a much larger dataset, made available to
us by IMIS Global3, containing 55M position signals from
34K vessels sailing in the European seas between January
1-30, 2016. A description of both datasets may be found
in (Pitsikalis et al. 2019).

RTEC◦ is written in Prolog1. Our experiments were con-
ducted using YAP-6.3 Prolog, on a single node of a desktop
PC running Ubuntu 20.04, with Intel Core i7-4770 CPU @
3.40GHz and 16GB RAM.

5.2 Experimental Results
We begin with a set of experiments which demonstrate the
benefits of our caching mechanism for processing FVPs
with cyclic dependencies. For this purpose, we employed a
downgraded version of RTEC◦, named RTEC◦-naive, which
processes FVPs with cyclic dependencies without a caching
mechanism. Figure 2a shows the experimental results in vot-
ing and NetBill. The presented reasoning times are an aver-
age of 100 windows, while RTEC◦ and RTEC◦-naive always
produced the same FVP intervals. We used a maximum re-
sponse time of 10 seconds per window, i.e., when the reason-
ing time exceeded this threshold, then we stopped the execu-
tion. The reasoning times of RTEC◦-naive, using windows
of 80 time-points, exceeded this threshold for both MAS
protocols and, therefore, are not presented in Figure 2a. Our
experimental results show that, as we increase the window
size, the reasoning times of RTEC◦-naive increase expo-
nentially, while RTEC◦ scales much better. These results
are consistent with our complexity analysis, which indicated
that the absence of the caching mechanism of RTEC◦ results
in unnecessary re-computations, that increase with the win-
dow size.

In the next set of experiments, we compared RTEC◦
against jREC, a Java-Prolog implementation of the ‘Reac-
tive Event Calculus’ (Chesani et al. 2010; Montali et al.
2013). jREC has been evaluated in several application do-
mains (Bragaglia et al. 2012; Chesani et al. 2013; Loreti
et al. 2019). Moreover, it is an open-source implementa-
tion4, which facilitates the comparison against RTEC◦. Fig-
ure 2b shows the results of the comparison. Both systems
were evaluated on a fragment of the event description of
the voting protocol. We restricted attention to the status
fluent, the specification of which creates a cycle in the de-
pendency graph (see Figure 1). The task, therefore, was to
compute the maximal intervals for which status has some
value (proposed , voting , voted , null) continuously. We
used a window size of 10 time-points for RTEC◦ and in-
structed jREC to evaluate the trace of input events every 10
time-points. We performed experiments for windows with
800–6,400 events, and made sure that both systems com-
puted the same FVP intervals. Figure 2b shows that the use
of RTEC◦ leads to significant performance gain. Moving

2https://zenodo.org/record/1167595
3https://imisglobal.com/
4https://www.inf.unibz.it/∼montali/tools.html

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Applications and Systems

550

https://zenodo.org/record/1167595
https://imisglobal.com/
https://www.inf.unibz.it/~montali/tools.html

(a) Multi-Agent Systems: Voting & NetBill

10
500
108

20
1K
132

40
2K
232

80
4K
464

0

2

4

6

8

10
A
v
g
re
a
so

n
in
g
ti
m
e
(s
e
c) RTECo

RTECo-naive

10
13K
5K

20
27K
6K

40
53K
12K

80
106K
24K

Window size

(b) RTEC◦ vs jREC

800 1.6K 3.2K 6.4K
0

2

4

6

8

10

12

Window size
(avg number of input events)

A
v
g
re
a
so

n
in
g
ti
m
e
(m

in
)

RTECo

jREC

(c) Streams with Delays

2 4 8 16
0.2

0.4

0.6

0.8

1

Window size (hours)

f1
-s
co

re

Delay: 5%
Delay: 10%
Delay: 20%
Delay: 40%
Delay: 80%

(d) Maritime Situational Awareness: Brest & all European seas

2h
4K
5K

4h
8K
5K

8h
18K
7K

16h
42K
12K

0

0.5

1

1.5

2

Window size

A
v
g
re
a
so

n
in
g
ti
m
e
(s
e
c)

2h
180K
104K

4h
360K
157K

8h
718K
264K

16h
1431K
479K

0

1

2

3

Window size

A
v
g
re
a
so

n
in
g
ti
m
e
(m

in
)

(e) Acyclic Dependency Graphs: Human Activity
Recognition & City Transport Management

17K 35K 53K
0

100

200

300

400

A
v
g
re
a
so

n
in
g
ti
m
e
(m

s)

RTECo

RTEC

6K 13K 19K
Window size (avg number of input events)

Figure 2: (a) The reasoning times of RTEC◦ and RTEC◦-naive in voting (left) and NetBill (right). The horizontal axis denotes window size
in terms of time-points (top), average number of input entities (middle) and average number of computed FVP intervals (bottom) per window.
(b) RTEC◦ and jREC computing the maximal intervals of the status fluent of the voting protocol. (c) The predictive accuracy of RTEC◦
in the presence of delayed events on the dataset of Brest. (d) RTEC◦ for maritime situational awareness on the datasets of Brest (left) and
Europe (right). The window size is presented as in figure (a). (e) The reasoning times of RTEC◦ and RTEC in temporal specifications without
cyclic dependencies: human activity recognition (left) and city transport management (right).

from 800 events to 6,400 events barely affects the perfor-
mance of RTEC◦. In contrast, jREC requires considerably
more time to process the increasing number of input events.

In addition to MAS, we evaluated RTEC◦ on composite
event recognition for maritime situational awareness. We re-
lied on real data, i.e., position signals from thousands of ves-
sels, producing millions of input events. Real data streams
often include delayed events. In the maritime domain, vessel
position signals may arrive with a delay that exceeds 6 hours,
especially when such signals are relayed through satellites.
This issue may be addressed by longer, overlapping win-
dows (see Section 2). To simulate realistic scenarios, we
introduced delays into the maritime datasets. The tempo-
ral extent of the delay was set using a Gamma distribution.
The percentage of delayed events, which were chosen uni-
formly, ranges from 5% to 80%. Figure 2c shows the predic-
tive accuracy of RTEC◦ when processing data streams with
delayed events. The step, i.e., the temporal distance between
two consecutive query times, was set to 2 hours. We varied
the size of the windows from 2 hours to 16 hours. The f1-
scores were derived by comparing the intervals computed by
RTEC◦ on data streams with delayed events to the intervals
computed by RTEC◦ on the respective data streams with-
out delayed events. Figure 2c demonstrates the necessity of

longer windows in the maritime domain.
Figure 2d displays the average reasoning times of RTEC◦

per window size when processing real maritime data. In the
dataset of Brest, the 2-hour window includes on average 4K
events/vessel position signals, while the 16-hour window in-
cludes approximately 42K events. The computed FVP in-
tervals range from 5K, in the 2-hour window, to 12K in the
16-hour window. In the significantly larger dataset concern-
ing all European seas, the windows include 180K–1,431K
events, while the computed FVP intervals range between
104K and 479K. We introduced delays to 40% of the inputs
events in the data streams. Figure 2d shows that RTEC◦ is
capable of real-time stream reasoning in real-world applica-
tions. In the dataset of Brest, e.g., RTEC◦ reasons about the
events of a 16-hour window in just over 1.5 seconds, in order
to recognise a wide range of maritime activities of interest,
such as fishing, tugging, etc., while in the dataset of all Eu-
ropean seas, RTEC◦ requires just below 3 minutes to reason
about a 16-hour window.

For completeness, we compared RTEC◦ and RTEC in
temporal specifications without cyclic dependencies, i.e.,
the specifications used for human activity recognition and
city transport management in (Artikis, Sergot, and Paliouras
2015). Figure 2e displays the average reasoning times. In

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Applications and Systems

551

both applications, the reasoning times of RTEC◦ are com-
parable to those of RTEC. In other words, the mechanism
of RTEC◦ for handling FVPs with cyclic dependencies does
not impose a computational overhead in applications with-
out such dependencies.

6 Related Work
Numerous computational frameworks based on the Event
Calculus have been proposed in the literature. The ‘Macro-
Event Calculus’ (Cervesato and Montanari 2000), e.g.,
leverages the concept of ‘macro-event’ to support compos-
ite/macro event operators such as sequence, disjunction, par-
allelism and iteration. The ‘Interval-based Event Calcu-
lus’ (Paschke and Bichler 2008) supports the representation
of durative events and includes various event operators, such
as sequence, concurrency and negation. The F2LP system
translates a reformulation of the Event Calculus into answer
set programs, so that the efficient answer set programming
solvers may be used for reasoning (Lee and Palla 2012). The
‘Reactive Event Calculus’ (REC) (Chesani et al. 2010; Mon-
tali et al. 2013) adopts a lightweight version of the update-
time reasoning of the ‘Cached Event Calculus’ (Chittaro and
Montanari 1996), which retrieves and revises the necessary
fluent intervals upon the arrival of (delayed) events.

None of these frameworks handles effectively cyclic
dependencies. RTEC◦ includes an incremental caching
technique for dealing with such dependencies efficiently,
and consequently may scale to high-velocity data streams.
Our complexity analysis showed the performance gains of
RTEC◦. Furthermore, our extensive empirical analysis, and
comparison with jREC, i.e., the Java-Prolog implementation
of REC, demonstrated the effectiveness of our approach.

Various frameworks for reasoning over streams have been
proposed in the literature (Dell’Aglio et al. 2017; Dell’Aglio
et al. 2019). Ronca (2020), e.g., provides tight complexity
bounds for a temporal extension of negation-free Datalog.
LARS is a well-known stream reasoning language featur-
ing built-in window constructs (Beck, Dao-Tran, and Eiter
2018). Laser (Bazoobandi, Beck, and Urbani 2017) is a
reasoner that employs a fixed-point materialisation of re-
stricted LARS formulas to handle data streams. The empir-
ical analysis of Beck et al. (2018) showed that Laser outper-
forms other related reasoners (Beck, Eiter, and Folie 2017;
Le-Phuoc et al. 2011; Barbieri et al. 2010). Laser, however,
cannot express the event descriptions of RTEC◦ since it is
restricted to stratified negation.

Eiter et al. (2019) presented a distributed architecture us-
ing ‘stream stratification’ (Beck, Dao-Tran, and Eiter 2018)
in order to decompose LARS programs into sub-programs
that may be evaluated in parallel, while Dodaro et al. (2020)
presented an approach handling constraint satisfaction prob-
lems in a streaming setting by means of reinforcement learn-
ing. These issues are orthogonal to our work; e.g., we aim
to develop distributed reasoning techniques (Giatrakos et al.
2020) for RTEC◦ as part of our future work.

In the field of composite event recognition, one of the
best known logic-based stream reasoning systems is the
Chronicle Recognition System (Dousson and Maigat 2007).

TESLA (Cugola and Margara 2010) is an event pattern lan-
guage that supports content and temporal filters, negation,
timers, aggregates and customisable selection and consump-
tion policies. Neither of these frameworks supports cyclic
dependencies. ETALIS (Anicic et al. 2012) is a logic pro-
gramming framework that aims to support event recogni-
tion by combining reasoning over streams and background
knowledge. ETALIS does not allow for the explicit repre-
sentation of time, complicating the specification of fluent
value changes, including the formalisation of the common-
sense law of inertia. Moreover, it is unclear how one may
model cyclic dependencies, such as those of the applications
presented in this paper, in the language of ETALIS.

A key difference between our work and the aforemen-
tioned stream reasoning frameworks lies in the use of the
Event Calculus, which allows us to develop expressive tem-
poral specifications for a wide range of applications, such as
MAS and composite event recognition. At the same time,
the built-in representation of inertia allows us to develop
succinct specifications, supporting code maintenance and
reasoning efficiency. With the use of the Event Calculus,
one may develop intuitive specifications, facilitating the in-
teraction between data scientist and domain (e.g. maritime)
expert, and pave the way for explainability. Furthermore, we
may develop custom optimisation techniques, such as those
presented in this paper, to meet the requirements of contem-
porary applications concerning latency.

Wan (2009) presented a framework for belief logic pro-
gramming that eliminates cyclic dependencies by introduc-
ing auxiliary rules and atoms representing intermediate re-
sults. The number of these auxiliary clauses increases with
the length of the cycle. On the contrary, RTEC◦ handles cy-
cles by utilising the Event Calculus, e.g., the formalisation
of the law of inertia, and does not require auxiliary clauses.
Moura and Damásio (2015) presented an approach for mod-
ular logic programming that supports positive cycles, i.e.,
cycles without negation. In contrast, RTEC◦ is not restricted
to positive cycles. Moreover, we presented reasoning algo-
rithms for handling cycles in an efficient manner.

7 Summary & Further Work

We presented RTEC◦, a formal computational framework
for reasoning over real-world streams and temporal spec-
ifications including cyclic dependencies. The event de-
scriptions in RTEC◦ are locally stratified logic programs.
RTEC◦ includes a novel incremental caching mechanism,
which avoids unnecessary re-computations and thus opti-
mises stream reasoning. We evaluated RTEC◦ by means of
a complexity analysis and showed its benefits. Furthermore,
we presented an extensive, reproducible empirical evalua-
tion, on both synthetic and real data streams, including mil-
lions of events. For further work, we will investigate the use
of distributed reasoning techniques in RTEC◦ (Eiter, Ogris,
and Schekotihin 2019; Giatrakos et al. 2020).

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Applications and Systems

552

Acknowledgements
This work was supported by the INFORE project, which has
received funding from the European Union’s Horizon 2020
research and innovation programme, under grant agreement
No 825070.

References
Anicic, D.; Rudolph, S.; Fodor, P.; and Stojanovic, N. 2012.
Real-time complex event recognition and reasoning-a logic
programming approach. Applied Artificial Intelligence 26(1-
2):6–57.
Artikis, A., and Sergot, M. 2010. Executable specification
of open multi-agent systems. Logic Journal of the IGPL
18(1):31–65.
Artikis, A.; Sergot, M.; and Paliouras, G. 2015. An event
calculus for event recognition. IEEE TKDE 27(4):895–908.
Barbieri, D. F.; Braga, D.; Ceri, S.; Valle, E. D.; and Gross-
niklaus, M. 2010. C-SPARQL: a continuous query language
for RDF data streams. Int. J. Semantic Comput. 4(1):3–25.
Bazoobandi, H. R.; Beck, H.; and Urbani, J. 2017. Expres-
sive stream reasoning with laser. In ISWC, volume 10587,
87–103.
Beck, H.; Dao-Tran, M.; and Eiter, T. 2018. LARS: A logic-
based framework for analytic reasoning over streams. Artif.
Intell. 261:16–70.
Beck, H.; Eiter, T.; and Folie, C. 2017. Ticker: A system
for incremental asp-based stream reasoning. Theory Pract.
Log. Program. 17(5-6):744–763.
Bragaglia, S.; Chesani, F.; Mello, P.; Montali, M.; and Tor-
roni, P. 2012. Reactive event calculus for monitoring global
computing applications. In Logic Programs, Norms and Ac-
tion, volume 7360, 123–146.
Cervesato, I., and Montanari, A. 2000. A calculus of macro-
events: Progress report. In TIME, 47–58.
Chesani, F.; Mello, P.; Montali, M.; and Torroni, P. 2010. A
logic-based, reactive calculus of events. Fundam. Informat-
icae 105(1-2):135–161.
Chesani, F.; Mello, P.; Montali, M.; and Torroni, P. 2013.
Representing and monitoring social commitments using the
event calculus. Auton. Agents Multi Agent Syst. 27(1):85–
130.
Chittaro, L., and Montanari, A. 1996. Efficient temporal
reasoning in the cached event calculus. Computational In-
telligence 12(3):359–382.
Clark, K. 1978. Negation as failure. In Gallaire, H., and
Minker, J., eds., Logic and Databases. 293–322.
Cugola, G., and Margara, A. 2010. Tesla: a formally defined
event specification language. In DEBS, 50.
Dell’Aglio, D.; Valle, E. D.; van Harmelen, F.; and Bern-
stein, A. 2017. Stream reasoning: A survey and outlook.
Data Sci. 1(1-2):59–83.
Dell’Aglio, D.; Eiter, T.; Heintz, F.; and Phuoc, D. L. 2019.
Special issue on stream reasoning. Semantic Web 10(3):453–
455.

Dodaro, C.; Eiter, T.; Ogris, P.; and Schekotihin, K. 2020.
Managing caching strategies for stream reasoning with rein-
forcement learning. TPLP 20(5):625–640.
Dousson, C., and Maigat, P. L. 2007. Chronicle recognition
improvement using temporal focusing and hierarchisation.
In IJCAI, 324–329.
Eiter, T.; Ogris, P.; and Schekotihin, K. 2019. A distributed
approach to LARS stream reasoning (system paper). TPLP
19(5-6):974–989.
Giatrakos, N.; Alevizos, E.; Artikis, A.; Deligiannakis, A.;
and Garofalakis, M. N. 2020. Complex event recognition in
the big data era: a survey. VLDB J. 29(1):313–352.
Kowalski, R., and Sergot, M. 1986. A logic-based calculus
of events. New Generation Computing 4(1):67–96.
Le-Phuoc, D.; Dao-Tran, M.; Xavier Parreira, J.; and
Hauswirth, M. 2011. A native and adaptive approach for
unified processing of linked streams and linked data. In The
Semantic Web – ISWC, 370–388.
Lee, J., and Palla, R. 2012. Reformulating the situation
calculus and the event calculus in the general theory of stable
models and in answer set programming. J. Artif. Intell. Res.
43:571–620.
Loreti, D.; Chesani, F.; Mello, P.; Roffia, L.; Antoniazzi,
F.; Cinotti, T. S.; Paolini, G.; Masotti, D.; and Costanzo,
A. 2019. Complex reactive event processing for assisted
living: The habitat project case study. Expert Systems with
Applications 126:200–217.
Montali, M.; Maggi, F. M.; Chesani, F.; Mello, P.; and
van der Aalst, W. M. P. 2013. Monitoring business con-
straints with the event calculus. ACM Trans. Intell. Syst.
Technol. 5(1):17:1–17:30.
Moura, J., and Damásio, C. V. 2015. Allowing cyclic de-
pendencies in modular logic programming. In Progress in
Artificial Intelligence, 363–375.
Paschke, A., and Bichler, M. 2008. Knowledge representa-
tion concepts for automated SLA management. Decis. Sup-
port Syst. 46(1):187–205.
Pitsikalis, M.; Artikis, A.; Dreo, R.; Ray, C.; Camossi, E.;
and Jousselme, A. 2019. Composite event recognition for
maritime monitoring. In DEBS, 163–174.
Pitt, J.; Kamara, L.; Sergot, M.; and Artikis, A. 2006. Voting
in multi-agent systems. Computer Journal 49(2):156–170.
Przymusinski, T. 1987. On the declarate semantics of strati-
fied deductive databases and logic programs. In Foundations
of Deductive Databases and Logic Programming.
Ronca, A. 2020. Rule-based stream reasoning. Ph.D. Dis-
sertation, University of Oxford, UK.
Sergot, M. 2001. A computational theory of normative posi-
tions. ACM Transactions on Computational Logic 2(4):522–
581.
Sirbu, M. 1997. Credits and debits on the Internet. IEEE
Spectrum 34(2):23–29.
Wan, H. 2009. Belief logic programming with cyclic depen-
dencies. In Web Reasoning and Rule Systems, volume 5837,
150–165.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Applications and Systems

553

	Introduction
	Event Calculus for Run-Time Reasoning
	Cyclic Dependencies
	Efficient Treatment of Cyclic Dependencies
	Experimental Analysis
	Experimental Setup
	Experimental Results

	Related Work
	Summary & Further Work

