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Abstract

Causal models are playing an increasingly important role in
machine learning, particularly in the realm of explainable AI.
We introduce a conceptualisation for generating argumenta-
tion frameworks (AFs) from causal models for the purpose
of forging explanations for the models’ outputs. The concep-
tualisation is based on reinterpreting desirable properties of
semantics of AFs as explanation moulds, which are means
for characterising the relations in the causal model argumen-
tatively. We demonstrate our methodology by reinterpreting
the property of bi-variate reinforcement as an explanation
mould to forge bipolar AFs as explanations for the outputs of
causal models. We perform a theoretical evaluation of these
argumentative explanations, examining whether they satisfy a
range of desirable explanatory and argumentative properties.

1 Introduction
The field of explainable AI (XAI) has in recent years be-
come a major focal point of the efforts of researchers, with
a wide variety of models for explanation being proposed
(see e.g. (Guidotti et al. 2019) for an overview). More re-
cently, incorporating a causal perspective into explanations
has been explored by some, e.g. (Schwab and Karlen 2019;
Madumal et al. 2020). The link between causes and expla-
nations has long been studied (Halpern and Pearl 2001); in-
deed, the two have even been equated (under a broad sense
of the concept of “cause”) (Woodward 1997). Causal rea-
soning is, in fact, how humans explain to one another (de
Graaf and Malle 2017), and so mimicking such a trend lends
credence to the hypothesis that machines should do like-
wise when their explanations target humans. Further, re-
search from the social sciences (Miller 2019) has indicated
the value of causal links, particularly in the form of coun-
terfactual reasoning, within explanations, and that the im-
portance of such information surpasses that of probabilities
or statistical relationships for users. In this paper we out-
line a methodology for obtaining explanations from causal
models (Pearl 1999), based on (computational) argumenta-
tion (see (Atkinson et al. 2017; Baroni et al. 2018) for recent
overviews).

Argumentation has received increasing attention in recent
years as a means for providing explanations of the outputs
of a number of AI models (see (Vassiliades, Bassiliades,
and Patkos 2021; Cyras et al. 2021) for recent overviews on

argumentative XAI), e.g. for recommender systems (Teze,
Godo, and Simari 2018), neural classifiers (Dejl et al. 2021),
Bayesian networks (Timmer et al. 2015) and PageRank (Al-
bini et al. 2020a). Argumentative explanations have also
been advocated in the social sciences (Antaki and Leudar
1992; Miller 2019), and several works focus on the power of
argumentation to provide a bridge between explained mod-
els and users, validated by user studies (Madumal et al.
2019; Rago et al. 2020). While argumentative explanations
are wide-ranging in their application, their links with causal
models have remained largely unexplored to date.

In this paper, we introduce a conceptualisation for gen-
erating argumentation frameworks (AFs) from causal mod-
els for the purpose of forging explanations for the models’
outputs. Like (Albini et al. 2020b; Albini et al. 2021), we
focus on explaining by relations – rather than by features,
as is more conventional (e.g. for feature attribution meth-
ods such as (Lundberg and Lee 2017)). Our method is based
on a reinterpretation of properties of argumentation seman-
tics from the literature as explanation moulds, i.e. means
for characterising argumentative relations (§3). Here, we
focus on reinterpreting the property of bi-variate reinforce-
ment (Amgoud and Ben-Naim 2018) as a basis for extract-
ing bipolar AFs (Cayrol and Lagasquie-Schiex 2005) which
may be used as explanations for the outputs of causal mod-
els. We provide a theoretical assessment of these explana-
tions (§4), demonstrating how they satisfy desirable proper-
ties from both explanatory and argumentative viewpoints.

2 Background
Here, we provide the core background on causal models and
computational argumentation, on which our method relies.
Causal models. A causal model (Pearl 1999) is a triple
⟨U, V,E⟩, where: U is a (finite) set of exogenous variables,
i.e. variables whose values are determined by external fac-
tors (outside the causal model); V is a (finite) set of en-
dogenous variables, i.e. variables whose values are deter-
mined by internal factors, namely by (the values of some
of the) variables in U ∪ V ; each variable may take any
value in its associated domain; we refer to the domain of
Wi ∈ U ∪ V as D(Wi); E is a (finite) set of structural
equations that, for each endogenous variable Vi ∈ V , de-
fine Vi’s values as a function fVi

of the values of Vi’s par-
ents PA(Vi) ⊆ U ∪ V \ {Vi}. We use the term binary
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causal model to refer to any causal model ⟨U, V,E⟩ such
that ∀Wi ∈ U ∪ V , D(Wi) = {0, 1} (where 0 stands for
“false” and 1 stands for “true”, where suitable), and the term
gradual causal model to refer to any causal model ⟨U, V,E⟩
such that ∀Wi ∈ U ∪ V , D(Wi) is equipped with a partial
order (we refer to this partial order as ≤; as usual, a < b
stands for a ≤ b and b ≰ a). Note that a binary causal
model is a gradual causal model (with 0 < 1).

Given a causal model ⟨U, V,E⟩ where U={U1, . . . , Ui},
we denote with U = D(U1) × . . . × D(Ui) the set of all
possible combinations of values of the exogenous variables
(called inputs). Abusing notation, we refer to the value of
any Wi ∈ U ∪ V given u ∈ U as fWi

[u]: if Wi is an exoge-
nous variable, fWi

[u] is its assigned value in u; if Wi is an
endogenous variable, it is the value dictated by the structural
equations in the causal model. We use the do operator (Pearl
2012) to indicate interventions, i.e., for any variable Vi ∈ V
and value thereof vi ∈ D(Vi), do(Vi = vi) implies that fVi

is replaced by the constant function vi. We use the notation
set(Wi=wi), for wi∈D(Wi), to indicate that do(Wi=wi)
if Wi ∈ V or that Wi is assigned wi if Wi ∈ U .
Argumentation. An argumentation framework (AF) is
any tuple ⟨A,R1,. . . ,Rl⟩ with A a set (of arguments), and
Ri⊆A×A, for i∈{1, . . . , l}, (binary and directed) dialecti-
cal relations between arguments (Gabbay 2016; Baroni et al.
2017). In the abstract argumentation (Dung 1995) tradition,
arguments in these AFs are unspecified abstract entities that
can correspond to different concrete instances in different
settings. Several specific choices of dialectical relations can
be made, giving rise to specific AFs, including bipolar AFs
(BFs, our focus in this paper) (Cayrol and Lagasquie-Schiex
2005), with l = 2 and R1 and R2 dialectical relations of
attack and support, respectively, referred to later as R− and
R+. Given a BF ⟨A,R−,R+⟩, for α1 ∈ A, we will use the
notation R−(α1) = {α2|(α2, α1) ∈ R−} and R+(α1) =
{α2|(α2, α1) ∈ R+}. The meaning of BFs (including the
intended dialectical role of the relations) may be given in
terms of gradual semantics (e.g. see (Baroni et al. 2017;
Baroni, Rago, and Toni 2018)), defined by means of map-
pings σ : A → V, with V a given set of values of interest for
evaluating arguments. The choice of gradual semantics for
BFs may be guided by properties that σ should satisfy (e.g.
as in (Baroni, Rago, and Toni 2018)). We will utilise, in
§3, a variant of the property of bi-variate reinforcement for
BFs from (Amgoud and Ben-Naim 2018). We will also use,
in §4, the following notions of coherence from (Cayrol and
Lagasquie-Schiex 2005). Let a path from αx ∈ A to αy ∈ A
via a relation R ⊆ R− ∪ R+ be a sequence of arguments
α1,. . . ,αn, n≥1, such that α1=αx, αn=αy , and for each
i, 1≤ i<n, (αn,αn+1)∈R. Then, a set of arguments S⊆A
is internally coherent iff ∀αx, αy ∈ S, ∄ a path α1,. . . ,αn

from αx to αy via R−∪R+ such that (αn−1, αn) ∈ R−
and for 1 ≤ i < n − 1, (αi, αi+1) ∈ R+, nor such that
(α1, α2)∈R− and for 2≤ i<n, (αi, αi+1)∈R+. S is said
to be externally coherent iff ∀αx, αy∈S, ∄αz ∈A such that
∃ a path from αx to αz via R+ and ∃ a path α1,. . . ,αn from
αy to αz via R−∪R+ such that (αn−1, αn) ∈ R− and for
1≤ i<n − 1, (αi, αi+1)∈R+, or such that (α1, α2)∈R−
and for 2≤ i<n, (αi, αi+1)∈R+.

Figure 1: Toy example. (i) Combinations of values (1 or 0) result-
ing from the structural equations (the assignment of 1 to U1 may
be read as “margherita” is spelt correctly on the menu – simply
given as ‘margherita’ in the table, the assignment of U2 to 0 may
be read as there is no pineapple on the pizzas – simply given as
‘∼pineapple’ in the table, etc.). (ii) Graphical representation of
the influence graph, with (exogenous/endogenous) variables in the
causal model indicated by (blue/red respectively) nodes and influ-
ences represented by dashed arrows. (iii) RX for u ∈ U such that
fU1 [u] = 1 and fU2 [u] = 0.

3 From Causal Models to Explanation
Moulds and Argumentative Explanations

We see the task of obtaining explanations for causal mod-
els’ assignments of values to variables as a two-step pro-
cess: first we define moulds characterising the core ingre-
dients of explanations; then we use these moulds to obtain,
automatically, (instances of) AFs as argumentative explana-
tions. Moulds and explanations are defined in terms of influ-
ences between variables in the causal model, in turn defined
in terms of the parent relation underpinning the model.
Definition 1. The influence graph corresponding to a causal
model ⟨U, V,E⟩ is the pair ⟨V , I⟩, where V = U ∪ V and
I ⊆ V × V such that I = {(W1,W2)|W1 ∈ PA(W2)}
(referred to as the set of influences).

Note that influence graphs are closely related to the notion
of causal diagrams (Pearl 1995). While straightforward,
they are useful as they underpin much of what follows.

Throughout, for illustration we will use a toy exam-
ple with a simple (binary) causal model ⟨U, V,E⟩ com-
prising U = {U1, U2}, V = {V1, V2} and ∀Wi∈U∪V ,
D(Wi) = {0, 1}. Figure 1i gives the combinations
of values for the variables resulting from the struc-
tural equations E (amounting to V1 = U1 ∧ ¬U2 and
V2 = V1) and Figure 1ii visualises the influence graph
⟨{U1,U2,V1,V2}, {(U1, V1), (U2, V1), (V1, V2)}⟩ (we ignore
Figure 1iii for the moment: this will be discussed later). This
causal model may represent a group’s decision on whether to
enter a restaurant, with variables U1: “margherita” is spelt
correctly on the menu, not like the drink; U2: there is pineap-
ple on the pizzas; V1: the pizzeria seems to be legitimately
Italian; and V2: the group chooses to enter the pizzeria.

Influence graphs synthetically express which variables af-
fect which others but do not give an account of how the influ-
ences actually occur in the context the user may be interested
in, as expressed by the given values to the exogenous vari-
ables. For example, the influence graph in Figure 1ii alone
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shows which variables affect other variables but provides lit-
tle intuition on how they do so. Thus, our standpoint is that
each influence can be assigned an explanatory role, indicat-
ing how that influence is actually working in that context.
We assume that each explanatory role is specified by a re-
lation characterisation, i.e. a Boolean logical requirement,
that is used as a mould to forge explanations to be presented
to users by indicating which relations play a role therein.
Definition 2. Given a causal model ⟨U, V,E⟩ with cor-
responding influence graph ⟨V , I⟩, an explanation mould
is a non-empty set {c1,. . . ,cm} where, ∀i ∈ {1, . . . ,m},
ci : U ×I → {true, false} is a relation characterisation, in
the form of a Boolean condition in some formal language.

Here, we do not prescribe any formal language for spec-
ifying relation characterisations: several may be suitable.
The use of this definition requires an up-front choice of the
number of relations and their characterisations. This choice
then applies to all inputs in need of explaining.

Given an input u, based on an explanation mould we can
obtain an AF including, as dialectical relations, the influ-
ences satisfying the (different) relation characterisations for
the given u. Thus, the choice of relation characterisations
is to a large extent dictated by the specific form of argu-
mentative explanation the intended users expect. In general,
argumentative explanations can be generated as follows.
Definition 3. Given a causal model ⟨U, V,E⟩, its corre-
sponding influence graph ⟨V , I⟩ and an explanation mould
{c1, . . . , cm}, an argumentative explanation for ⟨U, V,E⟩
and u ∈ U is an AF ⟨A,R1, . . .Rm⟩, where A ⊆ V , and
R1, . . . ,Rm ⊆ I ∩ (A×A) such that, for any i = 1 . . .m,
Ri = {(W1,W2) ∈ I∩(A×A)|ci(u, (W1,W2)) = true}.

Note that these argumentative explanations are local,
namely they focus on the causal model’s behaviour for (any)
input u. Thus, different argumentative explanations may be
obtained for different inputs. Note also that we have left
open the choice of A (as a generic, possibly non-strict sub-
set of V). In practice, A may be the full V , but we envisage
that users may prefer to restrict attention to some variables of
interest (for example, excluding variables not “involved” in
any influence satisfying the relation characterisations). For
example, an argumentative explanation of a counterfactual
nature for the causal model in Figure 1i and the input in the
first row may choose to neglect U1 since changing its value
in this case does not affect the other variables’ values.

The choice of (number and form of) relation character-
isations in explanation moulds is crucial for the genera-
tion of argumentative explanations. Here we demonstrate
a novel concept for utilising properties of gradual semantics
for AFs for this choice, based on “property inversion”. The
idea is to interpret the variable values in the causal model
as generated by a “hypothetical” gradual semantics embed-
ded in the model itself. This is similar, in spirit, to recent
work to extract (weighted) BFs from multi-layer perceptrons
(MLPs) (Potyka 2021), using the underlying computation of
the MLPs as a gradual semantics, and to proposals to explain
recommender systems via tripolar AFs (Rago, Cocarascu,
and Toni 2018) or BFs (Rago et al. 2020), using the under-
lying predicted ratings as a gradual semantics. A natural

semantic choice for causal models, given that we are trying
to explain why endogenous variables are assigned specific
values, given assignments to the exogenous variables, is to
use the assignments as a gradual semantics.

Then, the idea of inverting properties of semantics to ob-
tain dialectical relations in AFs can be recast to obtain re-
lation characterisations in explanation moulds as follows:
given an influence graph and a selected value assignment
to exogenous variables, if an influence satisfies a given, de-
sirable semantics property, then the influence can be cast
as part of a dialectical relation with explanatory purposes
in the resulting AF. We will illustrate this concept with the
property of bi-variate reinforcement for BFs (Amgoud and
Ben-Naim 2018), which we posit is intuitive in the realm
of explanations. In our formulation of this property, we re-
quire that increasing the value of variables which are attack-
ers (supporters) can only decrease (increase, respectively)
the values of variables they attack (support, respectively).

Definition 4. Given a gradual causal model ⟨U, V,E⟩ and
influence graph ⟨V , I⟩, a reinforcement explanation mould
is an explanation mould {cr−, cr+} such that, given some u ∈
U and (W1,W2) ∈ I:

• cr−(u, (W1,W2)) = true iff:
1. ∀w+ ∈ D(W1) such that w+ > fW1

[u], it holds that
fW2

[u, set(W1 = w+)] <∗ fW2
[u] with <∗=≤;

2. ∀w− ∈ D(W1) such that w− < fW1 [u], it holds that
fW2

[u, set(W1 = w−)] >∗ fW2
[u] with >∗=≥;

3. ∃≥1w+ ∈ D(W1) or ∃≥1w− ∈ D(W1) satisfying the
conditions at points 1 and 2 with <∗=< and >∗=>.

• cr+(u, (W1,W2)) = true iff:
1. ∀w+ ∈ D(W1) such that w+ > fW1

[u], it holds that
fW2 [u, set(W1 = w+)] >∗ fW2 [u] with >∗=≥;

2. ∀w− ∈ D(W1) such that w− < fW1
[u], it holds that

fW2
[u, set(W1 = w−)] <∗ fW2

[u] with <∗=≤;
3. ∃≥1w+ ∈ D(W1) or ∃≥1w− ∈ D(W1) satisfying the

conditions at points 1 and 2 with <∗=< and >∗=>.

We call any argumentative explanation for ⟨U,V,E⟩ and u,
given a reinforcement explanation mould {cr−,cr+}, a rein-
forcement explanation (RX) (for ⟨U, V,E⟩ and u).

For illustration, Figure 1iii shows the RX for the causal
model in Figure 1i and u as in the caption. Note that the
causal model can only be understood by inspection of the
structural equations; instead, the argumentative explanations
provide a qualitative characterisation of influences, without
requiring an understanding of the structural equations. Note
also that conditions 1 and 2 for the attack and support re-
lations in RXs correspond to a weak form of local mono-
tonicity of the model. For instance, since U2 attacks V1, the
user knows that, all else remaining the same, any increase in
the value of U2 cannot give rise to an increase of the value
of V1, while a decrease of U2 will not decrease the value of
V1. Condition 3 adds a guarantee of effectiveness: there is at
least one variation of U2, which, all else remaining the same,
enforces a variation of V1. Thus RXs have a counterfactual
nature, as they suggest to the user the kind of local changes
with respect to the current situation that could give rise to
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a desired change of outcome. In this respect, note that the
role assigned to variables refers to the selected value assign-
ment to exogenous variables. For example, in the RX for the
input in the first line of the table in Figure 1i, the fact that
“margherita” is spelt correctly on the menu does not play a
role in determining that the pizzeria is not legitimately Ital-
ian (indeed this is determined solely by pineapple being on
the pizza), thus the support (U1, V1) is not present in the RX
for this input. Such differences reflect the fact that only some
(or possibly none) of the individual changes of variables U1

and U2 are guaranteed to produce a change in V1’s value, de-
pending on the initial context. The local nature of RXs, cor-
responding to the local nature of bi-variate reinforcement,
ensures simplicity and a rather intuitive interpretation but
at the same time clearly limits expressiveness, in particular
RXs are not meant to cover cases where multiple variable
changes are needed to produce an effect. Other, explanation
moulds may be needed to satisfy differing users’ explana-
tory requirements. Note that some explanation moulds may
be unsuitable to some causal models, e.g. our reinforcement
explanation mould is not directly applicable to causal mod-
els with variables whose domains lack a partial order.

4 Properties
We perform a theoretical evaluation of RXs with regards to
their satisfaction of various properties (besides a variant of
bi-variate reinforcement, satisfied by design and easy to see
from Definition 4). Unless specified otherwise, we assume
some RX ⟨A,R−,R+⟩ for gradual causal model ⟨U, V,E⟩
and u∈U with influence graph ⟨V , I⟩.

The first result shows the deterministic nature of RXs.
Proposition 1 (Uniqueness). There is no ⟨A,R′

−,R′
+⟩ for

⟨U, V,E⟩ and u, such that ⟨A,R′
−,R′

+⟩ is different from
⟨A,R−,R+⟩ (i.e. such that R′

− ̸= R− or R′
+ ̸= R+).

This guarantees stability (e.g. as discussed in (Sokol and
Flach 2020)), i.e. a user would never be shown two different
explanations for the same causal model and input given the
choice of A. We posit that this is important to avoid possible
user uncertainty and confusion.

Further, RXs are acyclic when seen as graphs.
Proposition 2 (Acylicity). Let (n, e) be the graph with n =
A and e = R− ∪R+. Then, (n, e) is acyclic.

This follows directly from acyclicity of causal models. It
prevents potentially undesirable behaviour such as a self-
attacking or self-supporting variable assignments in RXs.

An argument in RXs may not both attack and support an-
other argument therein:
Proposition 3 (Unambiguity). ∀W1 ∈ A, R−(W1) ∩
R+(W1) = ∅, or, equivalently, R− ∩R+ = ∅.

Violation of this property would clearly provide contra-
dictory indications to the user.

The following proposition states that argumentative rela-
tions in RXs are derived from causal relationships.
Proposition 4 (Relevance). R− ∪R+ ⊆ I.

Note that, while straightforward for RXs, this property
may be violated by (model-agnostic) explanation methods

which do not leverage upon the underlying causal model.
This property is in the same spirit as other properties in the
XAI literature, e.g. Dummy (Sundararajan and Najmi 2020),
which states that a feature which does not affect a classifica-
tion is given a zero attribution value. This may be particu-
larly important in some cases, e.g. in the running example, it
may not be enough to use the absence of pineapple on pizza
(U2 = 0) as a reason for entering a restaurant (V2 = 1), and
V1 = 1 provides a useful intermediate justification that the
restaurant seems to be legitimately Italian.

The following requires that changing attackers or support-
ers in binary causal models necessitates a change in the value
of the argument they attack or support, respectively.
Proposition 5 (Bipolar Counterfactuality). If ⟨U, V,E⟩ is
binary, then ∀(W1,W2) ∈ I where (W1,W2) ∈ R− ∪R+,
for every w ̸= fW1 [u]: fW2 [u, set(W1 = w)] ̸= fW2 [u].

This is a powerful explanatory characteristic of RXs since
attacks and supports indicate counterfactuals (in the binary
case). For example, given the RX in Figure 1iii, a user
can immediately see that changing the value of V2 can be
achieved by changing the value of V1, which itself can be
achieved by changing the value of U1 or U2.

The next property shows that behaviour similar to at-
tacks and supports with discrete semantics (see (Cayrol and
Lagasquie-Schiex 2005)) arises in RXs for binary models.
Proposition 6 ((Dis)agreement). If ⟨U, V,E⟩ is binary,
then, ∀W1 ∈ A: if ∃W2 ∈ R−(W1) then fW2

[u] ̸= fW1
[u];

if ∃W3 ∈ R+(W1) then fW3
[u] = fW1

[u].
We thus observe that attacks indicate a contradiction be-

tween two arguments while supports indicate harmony be-
tween them. Clearly this is the case in Figure 1, where as-
signing U2 value 1 will reduce the value of V1 to 0: a con-
tradiction. Meanwhile, any input which changes V1’s value
to 0 will necessitate the same result in V2: a harmony.

The set of arguments assigned value 1 in an RX for a bi-
nary causal model satisfies coherence (see §2).
Proposition 7 ((Internal and External) Coherence). If
⟨U, V,E⟩ is binary, then the set of accepted arguments
Aa={W1∈A|fW1[u]=1}is internally and externally coherent.

This result indicates that the basic principles of argumen-
tation are upheld in RXs, which hence can support some
genuine forms of argumentative reasoning on the model by
the user. For example, if the RX in Figure 1iii were given
for an input u′ with fU2

[u′] = 1 and fV1
[u′] = 1, the set of

accepted arguments would contain a contradiction, which is
not intuitive since the accepted attacker has no effect.

5 Future Work
We believe that our approach provides the groundwork for
many future directions. The computational complexity of
RXs deserves attention. Moulds inspired by other proper-
ties, and resulting in other forms of AFs, could be devised.
A full empirical analysis of RXs, including user studies,
also seems worthwhile. Links between our work and exist-
ing XAI methods, particularly those utilising argumentation,
could be instructive, while counterfactuals and causality also
warrant investigation in our approach.
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