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Abstract

Rule learning involves developing machine learning models
that can be applied to a set of logical facts to predict additional
facts, as well as providing methods for extracting from the
learned model a set of logical rules that explain symbolically
the model’s predictions. Existing such approaches, however,
do not describe formally the relationship between the model’s
predictions and the derivations of the extracted rules; rather,
it is often claimed without justification that the extracted rules
‘approximate’ or ‘explain’ the model, and rule quality is eval-
uated by manual inspection. In this paper, we study the for-
mal properties of Neural-LP—a prominent rule learning ap-
proach. We show that the rules extracted from Neural-LP
models can be both unsound and incomplete: on the same in-
put dataset, the extracted rules can derive facts not predicted
by the model, and the model can make predictions not derived
by the extracted rules. We also propose a modification to the
Neural-LP model that ensures that the extracted rules are al-
ways sound and complete. Finally, we show that, on several
prominent benchmarks, the classification performance of our
modified model is comparable to that of the standard Neural-
LP model. Thus, faithful learning of rules is feasible from
both a theoretical and practical point of view.

1 Introduction
Datalog (Abiteboul, Hull, and Vianu 1995) is a widely-
used formalism that can represent ‘if-then’ rules. Data-
log rules are iteratively applied to a set of facts to derive
fresh facts until a fixpoint is reached, allowing Datalog to
express important second-order properties such as transi-
tive closure. Due to its expressive power, Datalog is of-
ten used as a knowledge representation formalism in the AI
community (Eisner and Filardo 2010), and it is seen as the
quintessential recursive query language in the database com-
munity (Arni et al. 2003; Green et al. 2013).

As with most logic-based KR languages, a key hindrance
in practice is that Datalog rules typically need to be con-
structed manually by experts familiar with both the applica-
tion domain and the principles of logical deduction. Such
expertise is often scarce, and the rule construction process is
laborious and costly. Thus, numerous approaches have been
proposed with the aim of automating rule construction.

Rule mining approaches analyse a set of facts to identify
patterns (e.g., paths of connected facts) and generalise them
to rules (Galárraga et al. 2015; Meilicke et al. 2019; Ahmadi

et al. 2020). They are typically based on heuristics and do
not provide any formal guarantees about their output.

Inductive Logic Programming (ILP) techniques take as in-
put positive and negative examples of inferences, and output
a set of rules that can reproduce all such inferences (Mug-
gleton 1991; Cropper et al. 2021). Standard ILP techniques,
however, satisfy all examples exactly and, as a result, are
intolerant to noise: small inconsistencies in the input exam-
ples can significantly affect the quality of the produced rules
(Evans and Grefenstette 2018).

The approaches in the next group define a transformation
TM of datasets by introducing an ML model M, showing
how to encode a set of facts so thatM can be applied, and
describing how the model’s output is decoded back into a set
of facts. The objective is to learnM so that transformation
TM satisfies the training examples optimally (rather than ex-
actly) and thus increase resilience to noise in the training
data. Model M is usually designed to simulate aspects of
logical reasoning. For example, the immediate consequence
operator of certain classes of logic programs can be approx-
imated by recurrent (Hölldobler, Kalinke, and Störr 1999),
fibring (Bader, d’Avila Garcez, and Hitzler 2005), and feed-
forward networks (Bader et al. 2007). Also, certain neural-
symbolic architectures can simulate the intuition of forward
(Dong et al. 2019; Campero et al. 2018) and backwards
chaining (Rocktäschel and Riedel 2017) of Horn clauses.
Although these techniques are sometimes described as rule
learning approaches, they do not provide a way to extract
rules from the model M. Thus, operator TM is a ‘black
box’ that aims to mimic Datalog reasoning, but whose infer-
ences cannot be explained symbolically.

Finally, rule learning approaches follow the principles
outlined in the previous paragraph, but they also specify how
to extract a set of Datalog rules RM from M. Neural-LP
(Yang, Yang, and Cohen 2017) is a prominent example that
has been very influential in the field, and it has spurred the
development of several refinements (Sadeghian et al. 2019)
and extensions to more complex rules (Wang et al. 2020).
The ∂ILP (Evans and Grefenstette 2018) and RNNLogic
(Qu et al. 2021) frameworks follow the same principle, but
use a different kind of ML model.

The rule learning approaches mentioned in the previous
paragraph promise to deliver the best of both symbolic rea-
soning and machine learning. To the best of our knowledge,
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however, these approaches do not provide any formal guar-
antees on the relationship between RM and TM. In partic-
ular, RM should at least be a sound approximation of TM,
in the sense that, for an arbitrary set of facts D, all the facts
obtained by applying RM to D should be contained in the
result of applying TM toD. Without this property, the extent
to which the extracted rules explain the model’s predictions
is inherently unclear. Ideally, though, RM should represent
M faithfully: applying either TM orRM to an arbitrary set
of facts should produce exactly the same results. Surpris-
ingly, this issue has been overlooked in the literature: it is
often claimed without justification that the extracted rules
‘approximate’ or ‘explain’ the model, and rule quality is
usually evaluated just by manual inspection.

In this paper, we make the first steps towards studying for-
mally the rule extraction procedures proposed in the litera-
ture. We focus on Neural-LP since, on the one hand, Yang,
Yang, and Cohen (2017) present explicitly the rule extrac-
tion algorithm for their approach, and, on the other hand,
Neural-LP has been successfully trained on large inputs and
has inspired many other approaches (Sadeghian et al. 2019;
Wang et al. 2020). While our results (naturally) depend on
the specifics of the Neural-LP model, we believe they can be
adapted to other rule learning approaches.

After recapitulating the definitions of Neural-LP in Sec-
tion 2, we analyse the formal properties of Neural-LP mod-
els and the rule extraction algorithm in Section 3. To this
end, we first reformulate the definitions of Neural-LP and
discuss the underlying intuitions. The extraction procedure
takes as input a threshold parameter. We then show that, for
arbitrary thresholds, the extracted rules can be unsound (i.e.,
on some datasets, the rules can derive facts not predicted
by the model); however, we can always ensure soundness
by selecting the threshold in a specific way. In contrast, we
prove that it is impossible to devise a procedure that takes
an arbitrary Neural-LP model and produces rules that faith-
fully represent the model’s predictions. Intuitively, predic-
tions of Neural-LP models can depend on how many times a
rule body matches the data, whereas inferences in standard
Datalog can only depend on whether there is at least one way
to match a rule body to the data.

As a possible remedy, in Section 4 we propose a new fam-
ily of max-Neural-LP models for which the rule extraction
procedure by Yang, Yang, and Cohen (2017) always pro-
duces faithful rules. Intuitively, our proposal prevents mod-
els from making predictions based on the number of matches
of a rule body, which in turn reduces the expressive power of
models to fit within that of standard Datalog and thus makes
the extraction of faithful rules theoretically feasible.

Rule learning approaches have commonly been evaluated
on knowledge graph completion tasks in the literature (Rossi
et al. 2021; Bordes et al. 2013; Teru, Denis, and Hamilton
2020). Following this practice, we evaluated our techniques
using several benchmarks in this area, and we present our re-
sults in Section 5. We first show that the rules extracted from
Neural-LP models do not accurately approximate the mod-
els in practice: on our benchmarks, the extracted rules derive
only a fraction of the facts predicted by the trained mod-
els. Thus, the extracted rules are insufficient to explain or

characterise the transformation induced by the models. We
then compare the classification performance of Neural-LP
and our max-Neural-LP models. Our results show that the
proposed modifications do not impact the model’s practical
ability to make useful predictions: on all benchmarks, max-
Neural-LP models can be effectively trained in practice to
achieve performance similar to that of standard Neural-LP.
We thus show that effective rule learning can be realised in
practice without sacrificing faithfulness of rule extraction.

2 Background
We now recapitulate the definitions of Datalog, introduce the
Neural-LP model, and discuss its rule extraction algorithm.

Datalog assumes a signature consisting of constants and
predicates, where each predicate is associated with a non-
negative integer arity. A term is a variable or a constant; an
atom is an expression of the form R(t1, . . . , tn) where R is
an n-ary predicate and each ti, 1 ≤ i ≤ n, is a term; a fact is
a variable-free atom; and a dataset is a finite set of facts. A
(Datalog) rule is an expression of form (1), where n ≥ 0, H
is a head atom, and each Bi with 1 ≤ i ≤ n is a body atom.

H ← B1 ∧ · · · ∧Bn (1)

A (Datalog) program is a finite set of rules. We use (possibly
indexed) letters a, b, c . . . for constants, letters x, y, z . . . for
variables, and letters R,S, T, . . . for predicates.

A substitution σ is a partial mapping of variables to con-
stants with a finite domain. For α a term, atom, rule, or a set
of rules, ασ is the result of replacing each occurrence of a
variable x in α with σ(x), provided that σ is defined on x.

Each rule r of the form (1) gives rise to the immediate
consequence operator Tr, whose application to a dataset D
is defined as the smallest dataset Tr(D) containing Hσ for
each substitution σ of the variables of r to constants of D
that satisfies {B1σ, . . . , Bnσ} ⊆ D. For R a program, let
TR(D) =

⋃
r∈R Tr(D). Operator TR is monotonic: for all

datasets D1 and D2, if D1 ⊆ D2, then TR(D1) ⊆ TR(D2).
Thus, for each datasetD, operator TR has a unique least fix-
point T∞R (D); this set, as well as the process of computing
it, are often called the materialisation ofR on D.

In our work, we allow rules to be unsafe (i.e., variables
may occur in the rule head without also occurring in the rule
body), and we allow rule bodies to be empty. These assump-
tions allow us to present the definitions of Neural-LP more
seamlessly, but they do not affect the fundamental nature of
Datalog. In particular, operator Tr remains well defined; for
example, if r is R(x, y)← and D = {S1(a), S2(b)}, then
Tr(D) = {R(a, a), R(a, b), R(b, a), R(b, b)}.

For µ a mapping of constants to constants andD a dataset,
µ(D) is the dataset obtained from D by replacing each oc-
currence of a constant c inD with µ(c) (and eliminating any
duplicate facts so that µ(D) is a set). It is well known that
each Datalog programR is invariant under any µ that maps
each constant occurring in R to itself—that is, for any such
µ, we have µ(TR(D)) ⊆ TR(µ(D)) for each dataset D.

Vectors, Matrices, and Tensors. We use tensors over the
set R of real numbers. For A a tensor with n dimensions,
ai1,i2,...,in is its element in position i1 of the first dimension,
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position i2 of the second dimension, etc. We consider vec-
tors and matrices as tensors with one and two dimensions,
respectively. Finally, vᵀ is the transpose of a vector v.

Neural-LP assumes a signature consisting of a finite num-
ber δ of binary predicates arranged in an arbitrary (but fixed)
sequenceR1, . . . , Rδ . Each dataset or rule can mention only
the predicates given in the signature, so fixing an enumer-
ation of the predicates allows us to represent an arbitrary
dataset as an adjacency tensor.

The objective of Neural-LP is to learn an operator TM
that mimics the immediate consequence operator of a set of
chain rules of the form (2), where n ≥ 0.

Rh(xn, x0)← Rkn(xn, xn−1) ∧ · · · ∧Rk1(x1, x0) (2)

For n = 0, rule (2) reduces to Rh(x0, x0)←; when applied
to a dataset D, this rule derives Rh(a, a) for each constant a
inD. Instead of listing the rules explicitly, TM is defined by
a machine learning modelM. We next defineM and TM,
and we leave the analysis of the model’s properties and the
discussion of the intuitions behind it to Section 3.

A Neural-LP model M is a triple (A,B, β) where, for
a positive integer L called the depth of the model, A is a
tensor of dimension δ × δ × L, B is a tensor of dimension
δ × (L+ 1)× (L+ 1), and β ∈ R. The elements of tensors
A and B are learnable, whereas β is a classification thresh-
old that is typically given explicitly. The formal description
of Neural-LP does not impose any restriction on the range of
the components of A and B; however, the Neural-LP imple-
mentation computes A and B using the softmax function,
so their elements have values between zero and one.

We next discuss how to compute TM(D) for a dataset D.
First, we identify the number ε of distinct constants inD, we
order all constants into an arbitrary sequence c1, . . . , cε, and
we construct an adjacency tensor M of dimension δ × ε× ε
such that mk,i,j is set to 1 if Rk(ci, cj) ∈ D and to 0 oth-
erwise. For k with 1 ≤ k ≤ δ, we let Mk be the ma-
trix of dimension ε× ε where (mk)i,j = mk,i,j . Second,
for each fact of the form Rh(ci, cj) with 1 ≤ h ≤ δ and
1 ≤ i, j ≤ ε, we determine whether Rh(ci, cj) should be
added to TM(D) as follows.
• We define a vector u0 of dimension ε such that u0j = 1

and all other components are zero.
• For each ` ∈ {1, . . . , L}, we inductively compute vectors

u` using the following formula:

u` =
δ∑

k=1

ah,k,` ·Mk ×

(
`−1∑
`′=0

bh,`,`′+1 · (u`
′
)ᵀ

)
. (3)

• We compute vector uL+1 as follows:

uL+1 =
L∑
`=0

bh,L+1,`+1 · u`. (4)

• We add Rh(ci, cj) to TM(D) if and only if uL+1
i > β.

Neural-LP also provides a procedure for extracting a set
of rules from a modelM, which we show in Algorithm 1.
The procedure is parameterised by a threshold γ (which can

Algorithm 1 Neural-LP’s Rule Extraction Algorithm
Inputs: a Neural-LP modelM = (A,B, β) of depth L,

a threshold γ ∈ R
Output: a Datalog program

1: R := ∅
2: for h ∈ {1, . . . , δ} do
3: R0 := {〈1, []〉}
4: for ` ∈ {1, . . . , L+ 1} do
5: R̂` := ∅
6: for `′ ∈ {1, . . . , `} and 〈s, ρ〉 ∈ R`′−1 do
7: add 〈s · bh,`,`′ , ρ〉 to R̂`
8: if ` ≤ L then
9: R` := ∅

10: for 〈s, ρ〉 ∈ R̂` and k ∈ {1, . . . , δ} do
11: add 〈s · ah,k,` , [ρ|Rk]〉 toR`
12: else
13: R` := R̂`
14: for 〈s, [Rkn , . . . , Rk1 ]〉 ∈ RL+1 such that s > γ do
15: add rule (2) toR
16: return R

be different from the model’s classification threshold β).
Since the aim is to learn only chain rules, the body of each
such rule is represented in the extraction algorithm as a pos-
sibly empty sequence of predicates [Rk` , . . . , Rk1 ]; we use
[] as the empty sequence and [ρ|R] as the concatenation of
sequence ρ with predicate R. The algorithm considers each
predicate Rh in the signature and produces in lines 2–15 all
chain rules of depth up to LwithRh in the head. To this end,
the algorithm computes a sequence R0, . . . ,RL+1 of pairs
of the form 〈s, ρ〉, where ρ is a sequence corresponding to a
subset of the rule body and s is a real-valued confidence fac-
tor; we explain the intuition behind this step in more detail
in Section 3. Finally, the algorithm selects each rule body
whose confidence exceeds the threshold γ in line 14, and it
converts it into a rule with Rh in the head in line 15.

3 Analysing the Neural-LP Model
In this section we investigate the formal properties of the
Neural-LP approach. In particular, in Section 3.1 we de-
scribe intuitively the inferences that a Neural-LP model can
make, and we reformulate equations (3) and (4) in a way that
allows us to draw additional insights and prove our techni-
cal results more easily. In Section 3.2, we present a succinct
characterisation of the Datalog programs produced by Algo-
rithm 1. Finally, in Section 3.3 we discuss how the predic-
tions of a Neural-LP model and the derivations of the rules
extracted from the model relate on arbitrary datasets.

3.1 Analysing the Neural-LP Model
Yang, Yang, and Cohen (2017) motivate their formulation
of Neural-LP by the desire to obtain a trainable model that
mimics the application of chain rules of varying length. The
definitions of Neural-LP can perhaps be better understood if
we observe that the model does not simulate chain rules di-
rectly; rather, it simulates a nonstandard application of rules
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of the form (5)–(7) instantiated for all h, k, `, and `′ satisfy-
ing 1 ≤ h, k ≤ δ and 0 ≤ `′ < ` ≤ L.

Uh,0(x, x)← (5)
Uh,`(x, z)← Rk(x, y) ∧ Uh,`′(y, z) (6)

Uh,L+1(x, y)← Uh,`(x, y). (7)

Here, Uh,` are auxiliary binary predicates distinct from the
signature predicatesR1, . . . , Rδ; we assume thatUh,` do not
occur in any input dataset, so we consider them to be ‘inter-
nal’ to the model. A modelM = (A,B, β) assigns a weight
to each body atom in the aforementioned rules:
• in each rule (6), element ah,k,` of A determines the

weight of atom Rk(x, y), and element bh,`,`′+1 of B de-
termines the weight of atom Uh,`′(x, z); and

• in each rule (7), element bh,L+1,`+1 of B determines the
weight of atom Uh,`(x, y).

Note that elements bh,`,`′+1 of B with `′ ≥ ` are not used in
the predictions made byM.

The application of modelM to a dataset can then be seen
as applying rules (5)–(7) in the following nonstandard way.
Assume that each fact in the dataset is annotated with a con-
fidence value; for uniformity, we define the confidence value
of all facts not contained in the dataset as zero. An applica-
tion of a rule increases the confidence value of the derived
fact by the product of the weights of all body atoms and the
confidence values of the matched facts; for rules with empty
bodies, we define this product to be one.

We can now reinterpret equations (3) and (4) as applying
rules (5)–(7) with weighted atoms. In particular, let D be an
arbitrary dataset and let D′ be obtained by applying rules
(5)–(7) as outlined in the previous paragraph, but where
atoms Rk(x, y) are only matched to facts in D with con-
fidence value of one. Finally, assume that, to check whether
Rh(ci, cj) should be added to TM(D), we compute vectors
u` as specified in Section 2. Then, for each 0 ≤ ` ≤ L+ 1
and 1 ≤ p ≤ ε, the confidence of fact Uh,`(cp, cj) in D′ is
equal to u`p; moreover, Rh(ci, cj) ∈ TM(D) if and only if
the confidence of Uh,L+1(ci, cj) is larger than β. Indeed, for
` = 0, facts of the form Uh,0(cp, cj) are derived only by (5),
so the confidence of each fact is u0p = 1 if p = j and u0p = 0
if p 6= j. For 1 ≤ ` ≤ L, equation (3) can be rewritten as

u` =
δ∑

k=1

`−1∑
`′=0

ah,k,` · bh,`,`′+1 ·Mk × (u`
′
)ᵀ, (8)

which clearly corresponds to the computations of rules (6).
Finally, equation (4) corresponds to applying rules (7).

Chain rules of varying length can be obtained by unfold-
ing the auxiliary predicates. For example, we can eliminate
predicate Uh,1 in rules Uh,2(x, z)← R2(x, y) ∧ Uh,1(y, z)
and Uh,1(x, z)← R3(x, y) ∧ Uh,0(y, z) by unifying and
then resolving away the atoms containing Uh,1; we thus ob-
tain Uh,2(x, z)← R2(x, y) ∧R3(y, w) ∧ Uh,0(w, z) where
w is a fresh variable. It is straightforward to see that, if we
extend rules (5)–(7) with rules

Rh(x, y)← Uh,L+1(x, y) for h ∈ {1, . . . , δ} (9)

and then unfold all auxiliary predicates, we obtain all chain
rules of the form (2) with 0 ≤ n ≤ L.

We next formalise the intuitions of such unfolding in a
way that will facilitate the proofs of our main results. Our
reformulation uses (possibly empty) sequences of integers
that we will use as indexes into the model’s tensors.

• For each s ∈ {0, . . . , L}, let Ls be the set of all nonempty
integer sequences [`0, . . . , `n] such that 0 ≤ n ≤ s and
0 = `0 < `1 < · · · < `n = s. Note that L0 = {[0]}.
• Let L =

⋃
0≤s≤L Ls.

• For λ = [`0, . . . , `n] ∈ L, let Kλ be the set of all se-
quences [k1, . . . , kn] where each kp satisfies 1 ≤ kp ≤ δ.

• For λ = [`0, . . . , `n] ∈ L and i, j ∈ {1, . . . , ε}, let Tλ,i,j
be the set of all sequences [t0, . . . , tn] where t0 = j,
tn = i, and each tp satisfies 1 ≤ tp ≤ ε.

Note that all sequences are nonempty apart from the only se-
quence in K[0] = {[]}. Furthermore, for h ∈ {1, . . . , δ} and
λ = [`0, . . . , `n], κ = [k1, . . . , kn], and τ = [t0, . . . , tn], let

ϕ(h, κ, λ) =

n∏
i=1

ah,ki,`i · bh,`i,`i−1+1,

ψ(κ, τ) =
n∏
i=1

mki,ti,ti−1
, and

θ(h, κ, λ) = bh,L+1,`n+1 · ϕ(h, κ, λ).

With these definitions in place, we can now show that equa-
tions (3) and (4) are equivalent to (10) and (11), respectively.

Proposition 1. LetM = (A,B, β) be a Neural-LP model,
letD be a dataset, and let u0, . . . ,uL+1 be the vectors com-
puted by equations (3) and (4) when checking whether fact
Rh(ci, cj) should be added to TM(D). Then, (10) and (11)
hold for each 0 ≤ ` ≤ L and each 1 ≤ p ≤ ε.

u`p =
∑
λ∈L`

∑
κ∈Kλ

ϕ(h, κ, λ)
∑

τ∈Tλ,p,j

ψ(κ, τ) (10)

uL+1
p =

∑
λ∈L

∑
κ∈Kλ

θ(h, κ, λ)
∑

τ∈Tλ,p,j

ψ(κ, τ) (11)

Proof. We prove (10) by induction on `. Consider ` = 0.
Then, we have L0 = {λ} for λ = [0], and Kλ = {κ} where
κ = []; in addition, ϕ(h, κ, λ) = 1. Furthermore, if p 6= j,
then Tλ,p,j = ∅ and so u`p = 0. Otherwise, Tλ,j,j = {[j]},
so
∑
τ∈Tλ,j,j ψ(κ, τ) = 1 and we have u`j = 1.

Now assume that (10) holds for `− 1 and consider some
u`p computed by (8). The formula for u`p can be rewritten as
in Figure 1 using the distributive properties of multiplication
and summation. In the last step, note that λ ∈ L`′ extended
with ` produces a sequence λ′ ∈ L`, extending κwith k pro-
duces κ′, and extending τ with t produces τ ′. The proof of
formula (11) is analogous and is omitted for brevity.

Intuitively, these formulas correspond to the ‘unfolding’
of rules (5)–(7). Each sequence λ ∈ L determines a path
through the auxiliary body predicates, and each sequence
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u`p =
δ∑

k=1

`−1∑
`′=0

ah,k,` · bh,`,`′+1

(
ε∑
t=1

mk,p,t · u`
′

t

)
=

=
`−1∑
`′=0

δ∑
k=1

ah,k,` · bh,`,`′+1

 ε∑
t=1

mk,p,t

∑
λ∈L`′

∑
κ∈Kλ

ϕ(κ, λ)
∑

τ∈Tλ,p,j

ψ(κ, τ)

 =

=
`−1∑
`′=0

δ∑
k=1

ah,k,` · bh,`,`′+1

 ∑
λ∈L`′

∑
κ∈Kλ

ϕ(κ, λ)
ε∑
b=1

∑
τ∈Tλ,p,j

mk,p,t · ψ(κ, τ)

 =

=
`−1∑
`′=0

∑
λ∈L`′

δ∑
k=1

∑
κ∈Kλ

ah,k,` · bh,`,`′+1 · ϕ(κ, λ)
ε∑
t=1

∑
τ∈Tλ,p,j

mk,p,t · ψ(κ, τ) =
∑
λ′∈L`

∑
κ′∈Kλ′

ϕ(κ′, λ′)
∑

τ ′∈Tλ′,p,j

ψ(κ′, τ ′)

Figure 1: Equivalences in the Proof of Proposition 1

κ ∈ Kλ identifies the body predicates associated to this path.
In particular, each `i in λ and ki in κ together identify a rule
of the form (6) for which ` = `i, `′ = `i−1, and k = ki. Fi-
nally, each sequence τ ∈ Tλ,p,j identifies a possible set of
facts Rki(cti , cti−1

) that can potentially be matched to the
body atoms of the unfolded rule, and elements mki,ti,ti−1

determine whether these facts are contained in D. Thus,
equations (10) and (11) can indeed be understood as appli-
cations of the unfolding of rules (5)–(7) to D.

3.2 Characterisation of Rule Extraction
This idea of unfolding is also reflected in the rule extrac-
tion procedure shown in Algorithm 1. In particular, when
the loop in lines 2–15 completes for some h, all unfoldings
having predicate Uh,`, 0 ≤ ` ≤ L, in the head are described
by R`, and all unfoldings having predicate Rh in the head
are described by RL+1. Specifically, for each 〈s, ρ〉 in one
of these sets, s corresponds to the product of the weights of
all body atoms in the unfolding, and ρ describes the body of
the unfolding. This claim can be easily proved by induction
on `. For ` = 0, the only unfolding with Uh,0 in the head
is Uh,0(x, x)← and the product of all body weights is 1,
which matches the definition ofR0 in line 3. For 1 ≤ ` ≤ L,
the induction hypothesis and lines 5–7 ensure that, for each
〈s, ρ〉 ∈ R̂`, sequence ρ describes the body of an unfolding
with some Uh,`′ in the head, where 0 ≤ `′ < `, and s is the
product of the body weights of that unfolding and the weight
of atom Uh,`′(y, z) in a rule of form (6); but then, lines 9–
11 clearly extend each such 〈s, ρ〉 to the relevant unfoldings
with Uh,` in the head. Finally, line 13 ensures that RL+1

captures the unfoldings generated from rules of form (7).
Rules (5)–(7) can often be unfolded in different ways to

the same rule. For example, rule R5(x, y)← R7(x, y) can
be obtained by unfolding (7) for ` = 3, (6) for k = 7, ` = 3,
and `′ = 1, and (5), as well as by unfolding (7) for ` = 2, (6)
for k = 7, ` = 2, and `′ = 1, and (5). Each such unfolding
can derive facts with different confidence factors.

Before proceeding, we present a more direct characteri-
sation of the output of Algorithm 1, which will allow us to
formalise other statements about Neural-LP more easily.

Definition 1. ForM = (A,B, β) a Neural-LP model and
γ ∈ R, programRγM contains a rule of the form (2) for each
index h ∈ {1, . . . , δ}, each sequence λ ∈ L, and each se-
quence κ = [k1, . . . , kn] ∈ Kλ such that θ(h, κ, λ) > γ.

Proposition 2. For each Neural-LP model M and each
γ ∈ R, Algorithm 1 outputsRγM.

Proof. Consider an arbitrary index h ∈ {1, . . . , δ} and let
R0, . . . ,RL+1 be the sets computed by Algorithm 1 when
the iteration of the loop in lines 2–15 finishes for h. We
show that, for each ` ∈ {0, . . . , L}, each sequence of pred-
icates ρ = [Rkn , . . . , Rk1 ] with 0 ≤ n ≤ `, and each s ∈ R,
we have 〈s, ρ〉 ∈ R` if and only if there exists a sequence
λ ∈ L` such that ϕ(h, κ, λ) = s where κ = [k1, . . . , kn].
The proof is by an easy induction on ` and is omitted. Then,
lines 6–7 and line 13 forL+1, and the way in which the rules
are produced in lines 14–15 ensures the claim for h.

3.3 Relating Model to Extracted Rules
The rule extraction algorithm of Neural-LP is intuitive, but
Yang, Yang, and Cohen (2017) never discussed the extent
to which the extracted rules characterise the model’s infer-
ences. We study this question in the rest of this section. As
we mentioned in Section 2, the Neural-LP implementation
uses the softmax function to compute A and B so the ele-
ments of these tensors are nonnegative; but then, it is also
reasonable to require the classification threshold to be non-
negative too. Consequently, we shall restrict our attention to
models that are regular as per the following definition.

Definition 2. A Neural-LP modelM = (A,B, β) is regular
if β ≥ 0 and no element of tensor A or B is negative.

Before proceeding with our analysis, we introduce several
notions that capture possible relationships between a model
and the extracted rules.

Definition 3. Let M be a Neural-LP model, and let R
be a Datalog program. Then, program R is sound (resp.
complete) forM if, for each dataset D, TR(D) ⊆ TM(D)
(resp. TR(D) ⊇ TM(D)). Moreover, R is faithful toM if
R is both sound and complete forM.
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In other words, a sound program R can derive only con-
sequences also derived by M, but it may not necessarily
derive all consequences ofM; in contrast, a complete pro-
gram derives all consequences ofM, but it may also derive
consequences that are ‘incorrect’ according toM. Ideally,
we would like R to be faithful toM since program R then
provides an exact symbolic account of all inferences thatM
can make on an arbitrary dataset.

We are now ready to present two results that relate a reg-
ular Neural-LP model M and the corresponding program
RγM. We show that RγM is sound for M if we choose
γ ≥ β, but otherwiseRγM can be unsound forM.
Theorem 1.

1. For each regular Neural-LP model M = (A,B, β) and
each γ ≥ β, programRγM is sound for TM.

2. There exists a regular Neural-LP modelM = (A,B, β)
such that, for γ < β, programRγM is unsound forM.

Proof of Claim 1. Fix an arbitrary regular Neural-LP model
M = (A,B, β), real number γ ≥ β, dataset D, and fact
Rh(ci, cj) ∈ TRγM(D). Then, there exists a rule r ∈ RγM
of the form (2) and facts

{Rkn(ctn , ctn−1
), . . . , Rk1(ct1 , ct0)} ⊆ D

such that applying r to these facts derives Rh(ci, cj). Now
let κ = [k1, . . . , kn] and τ = [t0, . . . , tn]. By Definition 1,
there exists a sequence λ ∈ L such that θ(h, κ, λ) > γ. Note
that κ ∈ Kλ and τ ∈ Tλ,i,j ; moreover, mj,ti,ti−1

= 1 for
each 1 ≤ i ≤ n, so ψ(κ, τ) = 1. Now let u0, . . . ,uL+1 be
the vectors computed as specified in equations (3) and (4) for
checking whether Rh(ci, cj) should be added to TM(D).
By Proposition 1, the value of uL+1

i is given by equation
(11); all numbers in this equation are nonnegative because
modelM is regular, so ψ(κ, τ) = 1 and θ(h, κ, λ) > γ ≥ β
clearly imply uL+1

i > β. Therefore, Rh(ci, cj) is added to
TM(D), and our claim holds.

Proof of Claim 2. Let δ = 2, but note that we can handle
larger signatures by padding tensors A and B with zeros
if needed. Now let M = (A,B, β) be the regular Neural-
LP model of depth L = 1 where β = 0.5 and tensors A
and B contain zeros everywhere apart from a1,2,1 = 0.5 and
b1,1,1 = b1,2,2 = 1. Moreover, let D = {R2(a, a)}; one can
easily check that TM(D) = ∅. However, for each γ < β, by
Definition 1 programRγM contains rule (12).

R1(x, y)← R2(x, y) (12)

One can easily check that TRγM(D) = {R1(a, a)}; hence,
programRγM is unsound forM.

Theorem 1 is quite intuitive. In particular, note that each
rule extracted fromM corresponds to an element of the sum
in equation (11). Thus, by selecting γ such that γ ≥ β, we
make sure that the consequences of each extracted rule are
also consequences of M. In contrast, if we select γ such
that γ < β, then the confidence factors of the facts derived
by (5)–(7) may not exceed the threshold β and we run the
risk of extracting unsound rules.

Along these lines, one might hope that we can ensure
completeness by selecting γ = β; however, we next show
that this is not the case. In fact, our result is much stronger:
we show that there exists a Neural-LP model whose infer-
ences do not correspond to inferences of any Datalog pro-
gram. As a result, no algorithm can extract a sound and com-
plete program given an arbitrary regular Neural-LP model.
Theorem 2. There exists a regular Neural-LP model M
such that no Datalog programR is faithful toM.

Proof. Let δ = 2, but note that we can handle larger sig-
natures by padding tensors A and B with zeros. Now let
M = (A,B, β) be the regular Neural-LP model of depth
L = 2 where β = 0.75 and tensors A and B contain zeros
everywhere apart from

a1,2,1 =0.5 and
a1,2,2 =b1,1,1 = b1,2,2 = b1,3,3 = 1.

Now assume that there exists a Datalog program R that is
faithful toM, and let D1 and D2 be the following datasets,
where constant c does not appear inR.

D1 ={R2(a, b), R2(b, d)} (13)
D2 =D1 ∪ {R2(a, c), R2(c, d)} (14)

It is straightforward to check using the definitions of Neural-
LP that TM(D1) = ∅ and TM(D2) = {R1(a, d)}. Since
R is complete for M, we have TR(D2) = {R1(a, d)}.
Now let µ be the mapping of constants to constants that
is the identity everywhere apart from µ(c) = b. Note that
µ(D2) = D1 and µ(TR(D2)) = {R1(a, d)}. Now constant
c does not occur in R and µ is the identity on all other con-
stants, so programR is invariant under µ and

{R1(a, d)} = µ(TR(D2)) ⊆ TR(µ(D2)) = TR(D1)

holds. But then, R1(a, d) ∈ TR(D1) implies that R is un-
sound forM, which is a contradiction.

Theorem 2 can be understood as follows. ModelM used
in the proof describes rules whose unfolding corresponds to

R1(x, z)← R2(x, y) ∧R2(y, z) (15)

where the weights of atoms R2(x, y) and R2(y, z) are 1 and
0.5, respectively. Now the body of rule (15) can be matched
just once in dataset D1, so R1(a, d) is derived with confi-
dence factor 0.5, which does not exceed the classification
threshold β = 0.75. In contrast, the body of (15) matches
twice in dataset D2, so R1(a, d) is derived with confidence
factor 1. In other words, the derivations of Neural-LP can
count how many times a rule body matches to a dataset. In-
deed, this is shown in equation (11): each κ corresponds
to a chain rule of the form (2), and ψ(κ, τ) = 1 if the rule
matches to the facts identified by the sequence τ ; thus,∑
τ∈Tλ,p,j ψ(κ, τ) gives us the number of body matches.

Counting the matches of a rule body is not possible in stan-
dard Datalog: each Datalog rule can only determine whether
the rule body matches or not. Such inferences can be cap-
tured only using nonstandard extensions of Datalog such
as arithmetic and aggregate functions, but these drastically
change the computational properties of Datalog.
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4 Ensuring Faithfulness of Rule Extraction
Theorems 1 and 2 suggest that any rule extraction procedure
for Neural-LP faces fundamental limitations: the best we
can hope for is soundness. One may also wonder whether
program RβM is ‘sufficiently complete’ in practice in the
sense that it derives most consequences of a modelM. We
show empirically in Section 5 that this is not the case: the
number of facts derived by RβM and TM can be different
by several orders of magnitude on commonly used bench-
marks. These observations motivate the question of whether
the Neural-LP model can be modified in a way that makes
extracting faithful Datalog programs possible.

We answer this question positively: we propose a new
family of max-Neural-LP models for which Algorithm 1 al-
ways produces faithful Datalog programs. Intuitively, our
modification allows us to replace the sums in equations (10)
and (11) with maximum operators. This prevents the model
from making predictions based on how many times a rule
body matches to the data, which in turn reduces the expres-
sive power of the model to fit that of standard Datalog.

Towards this goal, we note that the sum over sequences τ
in equations (10) and (11) actually originates from the ma-
trix product in equation (3). To replace this sum with a max-
imum, we define a max-product ⊗ of matrices as follows.

Definition 4. Let M and N be matrices of dimensionm×n
and n×p, respectively. The max-product of M and N, writ-
ten M⊗N, is a matrix of dimension m× p whose element
at position i and j is equal to

max
1≤k≤n

ai,k · bk,j .

It is straightforward to see that the max-product has the
same properties as the standard matrix product, such as as-
sociativity and distributivity with respect to the sum. How-
ever, sum and maximum do not commute, so we cannot just
replace×with⊗ in equation (3) and hope to reformulate the
model’s equations analogously to Proposition 1. To facilitate
such a reformulation, we also replace alls sums in equations
(3) and (4) with maximums too. Thus, for matrices M and
N of equal dimensions, we let max{M,N} be the matrix
obtained by taking the element-wise maximum—that is, its
element at position i and j is equal to max{mi,j , ni,j}. We
are now ready to define our max-Neural-LP model.

Definition 5. A max-Neural-LP model is defined as the stan-
dard Neural-LP model, but equations (3) and (4) are re-
placed with equations (16) and (17), respectively.

u` = max
1≤k≤δ

max
0≤`′<`

ah,k,` · bh,`,`′+1 ·Mk ⊗ (u`
′
)ᵀ (16)

uL+1 = max
0≤`≤L

bh,L+1,`+1 · u` (17)

Just like a standard Neural-LP model, each max-Neural-
LP modelM defines an operator TM on datasets, so we can
straightforwardly apply the notions of soundness, complete-
ness, and faithfulness to max-Neural-LP models. Moreover,
a max-Neural-LP model is regular if all of its components
are nonnegative. We are now ready to show that Algo-
rithm 1 produces programs that are both sound and complete

for each max-Neural-LP model provided we use the same
threshold for fact classification and rule extraction. Towards
this goal, we first adapt Proposition 1 to max-Neural-LP.
Proposition 3. Let M = (A,B, β) be a regular max-
Neural-LP model, let D be a dataset, and let u0, . . . ,uL+1

be the vectors computed by (16) and (17) when checking
whether Rh(ci, cj) should be added to TM(D). Then, (18)
and (19) hold for each 0 ≤ ` ≤ L and each 1 ≤ p ≤ ε.

u`p = max
λ∈L`

max
κ∈Kλ

ϕ(h, κ, λ) max
τ∈Tλ,p,j

ψ(κ, τ) (18)

uL+1
p = max

λ∈L
max
κ∈Kλ

θ(h, κ, λ) max
τ∈Tλ,p,j

ψ(κ, τ) (19)

Proof. The following identities clearly hold for each set of
numbers bi, each set of numbers ci,j , and each α ≥ 0:

αmax i bi = max i α · bi,
max imax j ci,j = max j max i ci,j .

Thus, since M is regular, equations (16) and (17) can be
rewritten to (18) and (19) in the same way as in Figure 1,
but while using max instead of

∑
.

Intuitively, Proposition 3 suggests that each rule corre-
sponding to the unfolding of rules (5)–(7) is applied in a
max-Neural-LP model in isolation, and the confidence of the
resulting fact is the maximum derived by one unfolding. The
rule application now matches the rule extraction procedure,
so we can show that, for γ = β, Algorithm 1 produces a pro-
gram that is faithful to the model.
Theorem 3. ForM = (A,B, β) a regular max-Neural-LP
model, programRβM is faithful toM.

Proof. The poof thatRβM is sound is analogous to the proof
of the first claim of Theorem 1 so we omit it for the sake
of brevity. To show that RβM is complete for M, con-
sider an arbitrary dataset D and fact Rh(ci, cj) ∈ TM(D),
and let u0, . . . ,uL+1 be the vectors computed by (16) and
(17) when checking whether Rh(ci, cj) should be added to
TM(D). Also, choose arbitrary sequences λ ∈ L, κ ∈ Kλ,
and τ ∈ Tλ,i,j that maximise θ(h, κ, λ) · ψ(κ, τ). Then, we
have uL+1

i = θ(h, κ, λ) · ψ(κ, τ) > β, where the equality
holds by Proposition 3, and the inequality holds because
Rh(ci, cj) ∈ TM(D). Now β ≥ 0 ensures ψ(κ, τ) = 1; but
then, for κ = [k1, . . . , kn] and τ = [t0, . . . , tn], we have

{Rkn(ctn , ctn−1), . . . , Rk1(ct1 , ct0)} ⊆ D. (20)

Finally, we have θ(h, κ, λ) > β, so Definition 1 ensures that
RβM contains the chain rule (2). This rule clearly derives
Rh(ci, cj) on the facts from equation (20), as required.

5 Evaluation
To evaluate our approach, we ported the code of Neural-
LP to TensorFlow 2.7.0 and extended it with the ability to
learn max-Neural-LP models. To reduce memory consump-
tion, Neural-LP uses a sparse representation of adjacency
tensors, and and it relies on TensorFlow’s highly optimised
implementation of multiplication of a sparse matrix by a
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dense one. To use the same approach in max-Neural-LP, we
extended TensorFlow with a custom implementation of the
max-product of a sparse matrix by a dense one. We ran our
experiments on a laptop running macOS 12.2 and Python
3.8.5 with 8 GB of RAM and an Intel Core i5 2.30 GHz
CPU. We evaluated the two versions of Neural-LP on several
well-known benchmarks. All systems, scripts, and datasets
used in the experiments are available online.1

5.1 Benchmarks and Training
We evaluate our models on knowledge graph (KG) comple-
tion tasks, where the aim is to extend an incomplete KG rep-
resented as a dataset D to its complete version D′ by adding
missing facts. When seen as a classification problem, the
objective of KG completion is to learn a Boolean function
that takes as input a dataset D and a fact α over a fixed set
of binary predicates and returns true if and only if α ∈ D′.

We used the 12 benchmark datasets by Teru, Denis,
and Hamilton (2020) based on FB15K-237 by Bordes et
al. (2013), NELL-995 by Xiong, Hoang, and Wang (2017),
and WN18RR by Dettmers et al. (2018). Each benchmark
provides disjoint datasets T , V , and S for training, valida-
tion, and testing, respectively; relevant statistics are shown
in Table 1. The benchmarks also provide means for splitting
the test dataset S into disjoint subsets SI and SM , where the
former plays the role of the incomplete test KG and the latter
contains the missing facts.

We trained both versions of Neural-LP as denoising au-
toencoders (Vincent et al. 2010). We split the training
dataset T with a 3:1 ratio into an incomplete training KG
TI and a set TM of missing facts, and we used (TI , α) for
each fact α ∈ TM as a positive example. We trained models
of depth L = 3 using Adam optimisation with the standard
learning rate 0.001, a batch size of 64, and a maximum of 10
epochs. Following Yang, Yang, and Cohen (2017) in their
evaluation of Neural-LP, we used log-likelihood loss with
sum reduction, minimum probability threshold of 10−20,
and target value 1. We trained both versions of Neural-LP
using an RNN neural controller system by Yang, Yang, and
Cohen (2017). For each system and benchmark, the training
process yields a pair of tensors A and B whose elements are
computed using the softmax function and are thus between
zero and one. We then combine these tensors with differ-
ent nonnegative classification thresholds β to obtain models
M = (A,B, β) that are regular according to Definition 2.

5.2 Rule Extraction Completeness for Neural-LP
As discussed in Section 3.3, Algorithm 1 produces sound
programs for Neural-LP models if the rule extraction thresh-
old γ is greater or equal to the model’s classification thresh-
old β. Using γ = β clearly produces the largest such pro-
gram, and one may wonder whether this program is ‘suffi-
ciently complete’ in practice.

To answer this question, for each benchmark, we trained
tensors A and B as described. Then, for each value of β
shown in Table 2, we used Neural-LP’s implementation of
Algorithm 1 to extract the program RβM from the model

1http://krr-nas.cs.ox.ac.uk/2022/max-Neural-LP/

M = (A,B, β); we computed the sets of facts TRβM(SI)
and TM(SI) that the program and the model produce on the
incomplete test dataset SI ; and we calculated the percentage
ratio of the sizes of these two sets. This provided us with a
‘measure of completeness’ of the extracted programs on the
test datasets. Our results are shown in Table 2.

For benchmarks based on FB15K and NELL-995, the ex-
tracted rules often derive less than 3% of the facts predicted
by the model; for benchmarks based on WN18RR, the rules
typically derive 5%–30% of the predicted facts. We take
this as empirical evidence that the extracted rules do not suf-
ficiently explain the predictions of Neural-LP models. We
observe also that the extracted rules provide a better approx-
imation for smaller thresholds. This is because the number
of extracted rules decreases quickly when γ rises to 0.01
and above: for models of depth 3, the values θ(h, κ, λ) are a
product of 7 elements of A and B; now these elements are
typically smaller than 0.5, and 0.57 ≈ 0.008.

5.3 Knowledge Graph Completion Performance
We next compared the performance of Neural-LP and max-
Neural-LP models on KG completion. For each benchmark,
we proceeded as follows. For each fact α ∈ SM , we took
(SI , α) as a positive testing example. We generated nega-
tive testing examples by uniformly sampling at random |SM |
facts from the set of all facts R(a, b) 6∈ S where predicate R
is used in the benchmark, and constants a and b are at dis-
tance at most 3 in SI—that is, either a = b, or there exist
facts {R1(a, c1), . . . , Rn(cn−1, b)} ⊆ SI for n ∈ {1, 2, 3}.
We used this negative sampling strategy because a model’s
depth fundamentally limits the type of inferences the model
can make: a fact of the form R(a, b) can be derived on a
dataset D only if the distance of constants a and b in D
is at most the model’s depth. For each system and bench-
mark, we computed the F1 score on the validation dataset
for a range of classification thresholds β between 0 and 1,
and we selected the threshold that maximised this score. For
Neural-LP models, this threshold was between 0.001 and 1
for most benchmarks, whereas for max-Neural-LP models,
the threshold was typically around 10−5. For the selected
threshold, we classified the positive and negative testing ex-
amples, and we computed precision, recall, accuracy, and
F1 score as usual. Finally, we computed the area under the
precision-recall curve (AUC) using the thresholds consid-
ered during validation. Our results are shown in Table 3.

The performance of max-Neural-LP models is on a par
with that of Neural-LP models. Recall values of both sys-
tems are generally low in all benchmarks; this can be ex-
plained by the fact that many positive examples involve con-
stants separated by more than three steps in SI , so they can-
not be predicted by either approach. The benchmarks based
on WN18RR were difficult for both systems: the systems
produced many false positives, which led to lower precision
scores. Finally, the training times of Neural-LP and max-
Neural-LP models were comparable.

Our results confirm that max-Neural-LP models can be ef-
fectively trained in practice to achieve performance compa-
rable to Neural-LP models. Yang, Yang, and Cohen (2017)
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FB15K-237 NELL-995 WN18RR

v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

# Facts for Training 4,245 9,739 17,986 27,203 4,687 8,219 16,393 7,546 5,410 15,262 25,901 7,940

# Facts for Validation 489 1,166 2,194 3,352 414 922 1,851 876 630 1,838 3,097 934

# Facts for Testing 2,198 4,623 8,271 13,138 933 5,062 8,857 7,804 1,806 4,452 6,932 13,763

# Predicates 180 200 215 219 14 88 142 76 9 10 11 9

Table 1: Numbers of Predicates and Facts in Training, Validation, and Testing Datasets Per Benchmark

GraIL-BM/FB15K-237 GraIL-BM/NELL-995 GraIL-BM/WN18RR
Threshold β v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

0.001 4.2 2.4 1.1 0.97 29 3.2 1.3 1.6 43 37 9.9 54
0.002 1.5 1.1 0.62 0.55 25 2.0 0.63 1.7 35 27 6.0 39
0.005 0.29 0.28 0.31 0.24 3.9 0.76 0.33 0.52 26 17 11 25
0.01 0.089 0.13 0.21 0.20 4.9 0.50 0.28 0.23 20 11.5 8.2 20
0.02 0.056 0.15 0.14 0.19 3.1 0.43 0.17 0.14 17 7.9 6.6 12
0.05 0.054 0.10 0.14 0.21 1.1 0.35 0.13 0.22 7.9 5.6 3.2 7.9
0.1 0.051 0.089 0.086 0.14 0.58 0.18 0.051 0.24 6.1 3.3 3.2 5.6
0.2 0.044 0.0 0.0 0.0075 0.18 0.098 0.0 0.51 0.98 4.4 3.9 5.1
0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 2: Percentage of Facts Derived by Neural-LP Model M for Threshold β Also Derived by Rβ
M

GraIL-BM/FB15K-237 GraIL-BM/NELL-995 GraIL-BM/WN18RR
Model v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

Precision
Neural-LP 37.8 45.4 67.1 64.6 38.5 69.8 76.8 59.5 19.7 18.2 3.8 16.1

Max-Neural-LP 30.7 75.1 74.7 85.4 39.5 80.1 77.1 70.4 20.5 12.5 5.8 16.9

Recall
Neural-LP 16.6 34.1 25.7 33.7 60.0 26.7 30.3 6.8 13.8 0.9 0.3 11.1

Max-Neural-LP 19.0 31.0 25.5 30.4 62.0 35.9 40.8 53.4 13.3 7.7 4.3 11.0

Accuracy
Neural-LP 44.6 46.5 56.5 57.6 32.0 57.6 60.6 51.1 28.7 48.4 46.0 26.7

Max-Neural-LP 38.0 60.4 58.4 62.6 33.5 63.7 64.3 65.5 30.9 26.8 17.0 28.5

F1 Score
Neural-LP 23.1 38.9 37.1 44.3 46.9 38.6 43.4 12.3 16.3 1.7 0.6 13.1

Max-Neural-LP 23.5 43.9 38.1 44.8 47.3 49.7 64.3 60.7 16.1 9.5 4.9 13.3

AUC
Neural-LP 23.3 39.3 40.7 48.5 20.6 45.4 50.1 48.9 14.0 9.6 3.1 9.7

Max-Neural-LP 25.4 44.8 44.1 50.4 56.7 55.1 53.4 56.7 11.5 8.1 2.8 8.3

Training Time
Neural-LP 3.8 7.5 46.2 90.7 0.4 5.7 35.8 2.4 0.4 2.8 4.8 1.6

Max-Neural-LP 3.3 14.3 39.4 85.9 0.4 5.2 32.3 4.5 0.3 2.7 9.5 1.6

Table 3: Classification Metrics (%) and Training Times (minutes) for Both Systems

compare Neural-LP with other rule learning and rule mining
approaches, and their results transfer to max-Neural-LP as
well. The crucial benefit of max-Neural-LP models is that
we can extract from each model a program that faithfully
captures the model’s predictions on any dataset.

6 Conclusion and Future Work
In this paper, we studied the formal properties of the Neural-
LP approach to rule learning. We showed that there is
a fundamental mismatch between the predictions made by
Neural-LP models and the inferences of the rules extracted
from such models. We proposed a novel family of max-
Neural-LP models for which the extracted Datalog rules
completely characterise the models’ predictions. Our max-
Neural-LP models achieve comparable performance to that
of Neural-LP on knowledge graph completion benchmarks.

Thus, we show that it is possible to devise practical rule
learning approaches with a formally well-understood rela-
tionship between the model and the extracted rules.

For our future work, we shall extend our results to ap-
proaches that build on top of Neural-LP such as those by
Sadeghian et al. (2019) and Wang et al. (2020), as well as
approaches based on different types of models, such as those
by Evans and Grefenstette (2018) and Qu et al. (2021).
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Rocktäschel, T., and Riedel, S. 2017. End-to-end Differ-
entiable Proving. In Guyon, I.; von Luxburg, U.; Bengio,
S.; Wallach, H. M.; Fergus, R.; Vishwanathan, S. V. N.; and
Garnett, R., eds., Proc. of the 31st Conf. on Neural Informa-
tion Processing Systems (NeurIPS 2017), 3788–3800.
Rossi, A.; Barbosa, D.; Firmani, D.; Matinata, A.; and Meri-
aldo, P. 2021. Knowledge graph embedding for link predic-
tion: A comparative analysis. ACM Trans. Knowl. Discov.
Data 15(2):14:1–14:49.
Sadeghian, A.; Armandpour, M.; Ding, P.; and Wang, D. Z.
2019. DRUM: End-To-End Differentiable Rule Mining On
Knowledge Graphs. In Wallach, H. M.; Larochelle, H.;
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