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Abstract

General Game Playing (GGP) aims to develop agents that are
able to play any game with only rules given. The game rules
are encoded in the Game Description Language (GDL). A
GGP player processes the game rules to obtain game states
and expand the game tree search for an optimal move. The re-
cent accomplishments of AlphaGo and AlphaZero have trig-
gered new work in extending the neural network approach to
GGP. In these works, the neural networks are used only for
optimal move selection, while the components dealing with
GDL still use the logic-based methods. This motivates us
to explore if a neural network based method would be able
to approximate the logical inference in GDL with a high ac-
curacy. The structured nature of logic tends to be a difficulty
for neural networks, which rely heavily on statistical features.
Inspired by the recent work on neural network learning for
logical entailments, we propose a neural network based rea-
soner that is able to learn logical inferences for GDL. We
present three key contributions: (i) a general, game-agnostic
graph-based representation for game states described in GDL,
(i1) methods for generating samples and datasets to frame the
GDL inference task as a neural network based machine learn-
ing problem and (iii) a GNN based neural reasoner that is
able to learn and infer various game states with high accuracy
and has some capability of transfer learning across games.

1 Introduction

General Game Playing (GGP) (Love et al. 2008) aims to de-
velop agents that are able to play any game with only the
rules given. The game rules are encoded in Game Descrip-
tion Language (GDL), a logical language that is a variant of
Datalog with function symbols and a few known keywords.
In order to play games, the players in GGP parse the game
rules using logic-based inferences to obtain game states and
expand the game tree to search for an optimal move. These
inferences are typically done through Prolog or PropNet
(propositional networks) (Schkufza, Love, and Genesereth
2008) implementations. The recent accomplishments of Al-
phaGo (Silver et al. 2016) and AlphaGo Zero (Silver et al.
2017b) use Monte-Carlo Tree Search (MCTS), deep neural
networks and learning through self-play to achieve super-
human performance in Go. The generality of this method is
extended in AlphaZero(Silver et al. 2017a) to also allow the
agent to play Chess and Shogi effectively. However, Alp-
haZero is limited in that it does not automatically extend to
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play other games without additional human information and
the game types are always assumed to be two-player, turn-
taking and zero-sum. In the domain of GGP, an agent must
be able to account for games with any number of players,
simultaneous action and non-zero-sum, without the aid of
human information. GDL serves the purpose of represent-
ing such games in a flexible way.

In this paper, we propose methods for a neural network
based reasoner that is able to learn logical inferences for
GDL. As GDL allows flexible representation of various
games, the reasoner has to handle game states with various
sizes and features; e.g., a state in Tic-Tac-Toe is quite dif-
ferent to a state in Connect Four. Typical neural network ar-
chitectures such as multilayer perceptrons and convolutional
networks would not be able to capture the general nature of
the different state features of various games without intro-
ducing unintended biases.

To overcome this, we propose graph-based representa-
tions of GDL rules and game states, using a Graph Neural
Network (GNN) based architecture for inference. This com-
bination provides an avenue for the development and imple-
mentation of GNN based reasoners that are able to learn to
infer the rules of general games. We present three key con-
tributions: (i) a general, game-agnostic graph-based repre-
sentation for game states described in GDL, (ii) methods for
generating samples and datasets to frame the GDL inference
task as a neural network based machine learning problem
and (iii) a GNN based neural reasoner that is able to learn
and infer various game states with high accuracy and has
some capability of transfer learning across games.

The rest of the paper is organised as follows: Section 2
gives an overview of the different components of our neu-
ral reasoner. Section 3 describes a general representation
for game states in GGP, and in particular we propose in-
stantiated rule graphs. Section 4 introduces our proposed
GNN architecture that is able to handle the instantiated rule
graphs and outputs the predicted legal actions and next flu-
ents. Section 5 presents and discusses the results of our neu-
ral reasoner across a variety of games as well as a mixture
of games. The neural reasoner is evaluated across a set of
games to investigate its generalisation capability. In partic-
ular, we find that our reasoner can achieve 100% accuracy
in several games and over 80% for the majority. The design
of the GNN architecture also allows us to transfer learned
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Figure 1: Overview of the Neural Reasoner

knowledge from one game to a different game which we
demonstrate with experimental results showing the neural
reasoner’s transfer learning capability. We discuss in Sec-
tion 6 related work in graph neural networks and GGP. Fi-
nally, we discuss the limitations of the approaches we have
presented and conclude with possible future directions for
research.

2 Overview of the Neural Reasoner

We first show the inference tasks in GGP that our neural rea-
soner learns to approximate and then present an overview
of the different components in the neural reasoner. Games
in the GGP setting are described using Game Description
Language (GDL), a logical programming language based
on Datalog that can describe game states and mechanics
with logical rules. Figure 2 shows an example fragment of
the description for game Tic-Tac-Toe. The left rule states
that in the next state, (cell 1 1 o) istrueif oplayer
does action (mark 1 1) and (cell 1 1 b) istruein
the current state. The right rule states that it is legal for
oplayer to take the action (mark 1 1) if (cell 1
1 b) and (control oplayer) are true in the current
state. A full GDL description of a game will consist of many
other rules to define the full dynamics of the game.

(<= (next (cell 1 1 o))
(does oplayer (mark 1 1))

(true (cell 1 1 b)))

(<= (legal oplayer (mark 1 1))
(true (cell 1 1 b))
(true (control oplayer)))

Figure 2: Fragment of GDL description of Tic-Tac-Toe.

A game state described with GDL consists of a set of dy-
namic predicates called fluents, such as (cell 1 1 o),
(cell 1 1 b) (control oplayer). A subsequent
state (next-state) can be logically derived by the combination
of rules, fluents present in the current state and the actions
made by the players. Suppose we have a game G, defined
as a set of rules in GDL, two key inference tasks are to find
out (1) what are the legal actions for the players at the cur-
rent state and (2) what is the next state if the agents make
a joint move. Task (1) can be formalized as the following:
to find out for each player ¢, its legal move m at the current
state s, as in a logical representation G A s |= legal(i, m).
There can be multiple legal actions in a state. Task (2) can be
formalized as the following: to find out all the fluent f that
holds in the next state, given each player ¢ € [1, k] doing a
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move m; at the current state s, as in a logical representation
G A s ANdoes(1,mq) A ... A does(k, my) = next(f).
Figure 1 gives an overview of the different components in
our neural reasoner for GGP. We start with a game described
as a set of rules in GDL. It is converted into a rule graph,
which is built upon the dependency of the fluents or other
predicates in such rules. The rule graph is then combined
with a game state into an instantiated rule graph (IRG). We
apply a node-vector embedding to the nodes of the IRG to
prepare it as input of the Graph Neural Network component.
The output of the GNN component is a rule graph with node
probabilities. Node masking is then applied based on node
type to extract the probabilities of the legal and next
nodes, using information from the input rule graph. During
training, the output probabilities are compared to the ground
truth training targets to calculate the error for backpropaga-
tion. Finally, the nodes with output probabilities greater than
a threshold are selected as the legal actions and next fluents.
The training samples, generated by a logical reasoner,
are in the form of the pairs ((G, s), Siegal) for Task (1) and
((G, s, Does), Sext) for Task (2), where G is a game, s the
current state, Siega the set of legal actions, Does the joint
action set, and Spey the set of fluents true in the next state.
Once the graph neural network is trained, we then use it to
predict the legal actions and next fluents. In the next two
sections, we will provide more details on these components.

3 Game State Representations

A key element of applying neural networks to games is find-
ing a state representation that allows for effective feature ex-
traction, while also being computationally efficient. Typi-
cally, these representations consists of a vector, matrix or
tensor based structure, depending on the type of neural net-
work architecture used. For example, in Chess or Go, the
game board can be directly translated into a matrix, with el-
ements representing the presence of different pieces on the
board. These matrices can then be used directly as input
to a convolutional neural network, as the grid-structure of
the matrix retains the positional information of the various
pieces. Although they are effective and efficient, these vec-
tor or matrix based representations are “fixed” in size for
each game and are not compatible across different games.
As different games described in GDL may have varying
sets of possible fluents, a simple vector or matrix is not ca-
pable of representing the general features of various game
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states. Consider the games Tic-Tac-Toe and Connect-Four:
one could represent various GDL states by constructing a
one-hot vector representing all possible fluents that could be
present in a state, such as cell (1, 1, o), cell(l,
2, x) and so on. However, as Tic-Tac-Toe and Connect-
Four have different numbers of fluents (28 and 127 respec-
tively), these vectors would have different sizes. Likewise, if
we were to instead represent a state by mapping its board po-
sitions to a matrix, these matrices would also have different
sizes. A multilayer perceptron or convolutional neural net-
work would have a fixed size for its input layer and would
not be able to take both Tic-Tac-Toe and Connect-Four states
as input without additional preprocessing or padding, which
may introduce unintended biases. This means a different
neural network needs to be trained for each game separately.
In this section, we propose a more general “game-
agnostic” representation that suits the domain of GGP better.
This representation will be able to fully capture the features
present in states, while still allowing for states of various
games to be valid inputs for the same neural network. The
basis of this representation is a rule graph, a graph-based
representation of game rules first introduced in (Kuhlmann
and Stone 2007), initially used to identify similarity in game
descriptions. The rule graph captures the relational inductive
biases present in the game rules. We first give the details of
rule graphs in section 3.1 and then propose to extend the rule
graphs to be a general state representation in section 3.2.

3.1 Rule Graphs

Rule graphs are coloured, directed graphs consisting of four
types of nodes: keyword nodes, predicate nodes, label nodes
and label argument nodes. Keyword nodes represent logi-
cal and relational sentences consisting of a predefined GDL
keyword such as legal, next, does, etc. Predicate
nodes represent sentences consisting of non-keyword nodes,
i.e., custom defined predicates declared specifically for the
game. In the fragment in Figure 1, the predicates mark and
cell are examples of non-keyword predicates. Label nodes
are used to identify which predicates are the same through-
out the description without keeping explicit or specific lexi-
cal labels. This is done by drawing an edge from label nodes
to each predicate which is an instance of said label. Finally,
label argument nodes are used to identify the position of ar-
guments in a predicate, encoding the positional information
of predicates into the rule graph. Similarly to label nodes, an
edge is drawn between the label argument node to each in-

Figure 3: Rule graph of the fragment in Figure 2. Lexicographic
information such as predicate names are not stored and only shown
here to aid in visualisation.
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stance of an argument given its position. Additionally, vari-
able nodes can also be included, however for our purposes
the game descriptions are initially grounded which instanti-
ates all variables. Edges are drawn between predicates and
their arguments, constructing a syntax tree.

Figure 3 shows the rule graph generated from the rule
fragment presented in Figure 2. Oval nodes are keyword
nodes. Rectangular nodes are predicate nodes. Red nodes
are label nodes. Blue nodes are label argument nodes. Lex-
ical labels are only for visualisation and are not retained in
the actual rule graph. To generate a rule graph from a game
description GG, we follow the method in (Schiffel 2010):

¢ Ground all rules to eliminate all variables in G.

 For each logical sentence, relational sentence and predi-
cate in G, create a node in the graph. E.g.,

— The rule graph in Figure 3 consists of nodes for
each keyword and predicate present in the fragment
in Figure 2: the keyword legal is represented by
an oval keyword node and the predicate (control
oplayer) is represented by a rectangular predicate
node.

* Add an edge between each term’s node to all the term’s
argument nodes. For the backwards implication node, add
edges from the head node to the body nodes. E.g.,

— The node legal (oplayer,mark(1l,1)) has
edges to its arguments, nodes oplayer and
mark (1,1). Aditionally, as it is the head argu-
ment of a backwards implication node, it has edges to
the body nodes true (control (oplayer)) and
true(cell(1l,1,b)).

* For each unique non-keyword predicate in the game de-
scription, create a label node and an edge to each node
that represents an instance of that predicate being used.
E.g.,

— As the predicate mark is used in both rules, the red
mark\2 label node has edges to each instance of the
predicate.

* For each label node’s predicate with arity ¢, create ¢ label
argument nodes, representing each possible argument’s
position. Add an edge from the label node to each cor-
responding label argument node. Add an edge to each
node that represents an argument with the corresponding
label argument node according to its position. E.g.,

— The blue mark\2 node has two label argument nodes:
mark_0 and mark_1.

As the rule graphs only retain the relations and positions
of the various predicates without storing actual predicate
names, the representation is isomorphic to predicate scram-
bling. Two different descriptions of the same game that have
their predicate names changed would have the same rule
graph representation. Additionally, similar features defined
in different games would have similar subgraphs within their
rule graph representations.



Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Special Session on KR and Machine Learning

3.2 Instantiated Rule Graphs

Although GDL provides a representation for rules that are
general across different games, it does not provide a general
state representation. Likewise, the rule graphs discussed in
the previous section are still only a representation of game
rules and are not a general representation of game states.
To overcome this limitation, we present instantiated rule
graphs, a general state representation generated by instan-
tiating the rule graph of a game, localising it to a specific
state by providing a unique node labelling for each state.

Definition 3.1. Instantiated Rule Graph. Given a rule graph
R = (V,E) and astate S = {f1, f2,..., fn} consisting of
fluents f;, an instantiated rule graph is a graph I = (V, E, L)
where V, E are the same as in rule graph R and Lg : V —
{false,true} is a labelling function based on state S and
the following requirements:

For node 7 in rule graph R and current state S:

* If node n is a predicate node that corresponds to a fluent
in state S and parent node n, is a t rue node with edge
(np,n) € E, then nodes Lg(n) = true, Ls(n,) = true
and Lg(n.) = true for all children nodes given (n, n.) €
E.

* For all other nodes, Lg(n,) = false.

Figure 4 shows the rule graph from Figure 3 instantiated
to a state S where fluent cell (1,1,b) € S. Nodes la-
belled true are shaded in blue. All other nodes are labelled
false. A benefit of the instantiated rule graphs is that any
modifications or improvements can be made to the labelling
function without loss of generality across all games.

Tegal(.)

G

) G o] o]
w

[ovine]

Figure 4: An example of an instantiated rule graph

4 Neural Network Architecture

This section outlines the neural network architecture used
with instantiated rule graphs. Firstly we introduce our strat-
egy of embedding the node features into a vector. Secondly,
we provide details of the graph neural network based archi-
tecture. Thirdly, we present a general method of generating
datasets for different games. Finally, we provide details on
the training of the neural network itself.

4.1 Node-Vector Embeddings

To prepare the instantiated rule graph as input for a neu-
ral network, we convert the labelling and the node types
into a vector embedding. For node n € V in instantiated
rule graph I = (V, E, L), we construct a vector embedding
N

7" € {0,1}%. This embedding provides a general fixed
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Index | Node Embedding
6 <=
7 not
8 or
Index | Node Embedding 9 distinct
- 10 does
1 True in state (label)
11 goal
2 Constant symbol C
. 12 init
3 Variable symbol
. 13 legal
4 Predicate
5 Variable 14 next
15 role
(a) Label and non-keywords 16 terminal
17 true
18 input
19 base

(b) Keywords

Table 1: Vector embedding values
Erue(cell (1, 1, b)) _>[1000000000000000100

Figure 5: Example vector embedding of two nodes of the instanti-
ated rule graph from Figure 4.

——————— [100100000000000000 0

length vector that can represent without ambiguity the var-
ious types of nodes and labelling present in an instantiated
rule graph. The first value of the vector directly corresponds
to the labelling function, with true and false represented
by values 1 and 0 directly. The rest of the vector acts as a
one-hot encoding representing the type of node, with the first
four corresponding to the non-keyword node types and the
rest corresponding to the keywords present in GDL. Table 1
shows the node feature that each value ‘71__,19 corresponds
to.

Figure 5 shows an example of a vector embedding of the
cell (1, 1, Db) nodesin the instantiated rule graph from
Figure 4. Note that as the node is a predicate node, the value
of ¥} = 1. Thenode true (cell (1, 1, b)) isatrue
keyword node, resulting in the value of v];, = 1. Both nodes
are labelled true by the labelling function, so both vectors
will have the value o7 = 1.

The vector embeddings of all nodes in the graph are then
stacked to create node feature matrix X € {0, 1}IVIx19,
Alongside the adjacency matrix of the graph A, the node
feature matrix X is used as the input for the graph neural
network described in the next section.

4.2 Graph Neural Network Architecture

As the game state representation we have discussed in the
previous section is defined as a graph, we use a graph neu-
ral network. The overall architecture of our GNN, shown
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in Figure 6, consists of three distinct layers: an initial set
of fully connected input embedding layers, a set of 3 GAT
Block layers and finally a set of fully connected output lay-
ers. The GAT Blocks consist of two pairs of Graph Atten-
tion Networks (GAT) (Velickovi¢ et al. 2018) acting as bi-
directional edge layers, a skip connection and ReL.U nonlin-
earity.

An input IRG with node vector embeddings is first passed
through a set of fully connected input layers, attending only
to individual node embeddings. Then, the graph is passed
through a set of GAT Blocks, propogating messages to up-
date the node embeddings. After the last GAT Block, final
node embeddings are generated. Global soft attention (Li et
al. 2016) is applied across the final node embeddings to pool
into a graph-level embedding. This graph-level embedding
is combined with each individual final node embedding and
passed through the fully connected output layers. Lastly a
sigmoid activation is used to provide the final output node
probabilities.

We chose the Graph Attention Network architecture for
the graph neural network layers as they provided the best
balance between performance and memory usage. Experi-
ments with other architectures such as Graph Convolutional
Networks (Kipf and Welling 2017) exhibited worse perfor-
mance, while more complex architectures such as Directed
Acyclic Graph Neural Networks (Thost and Chen 2021) re-
stricted the size of games that were usable while providing
minimal improvement in performance.

4.3 Dataset Generation

To train the neural network, we require a dataset of train-
ing samples containing game states and the inferred legal
actions and next fluents. Using the definition of IRGs and
node-vector embeddings, we propose a general method of
generating training datasets for a game described in GDL.
To generate a dataset, the GDL description of the selected
game G is used to play out random games. As new states
are visited throughout the game plays, we store the states
as instantiated rule graphs and use a Prolog based reasoner
to generate ground truth logical inferences for the states as
the training target. While inferring the legal actions only re-
quires the fluents of a state, inferring the fluents present in
the next state additionally requires the actions selected. To
account for this, we additionally store a randomly selected
legal joint action in a given state. The training targets for
each example is the truth valuations of the 1egal and next
rules for a given state or state and joint action pair respec-
tively. These correspond directly to the 1egal and next
nodes present in the IRG. The task of the neural network is
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Game IRG size Outdegree Mean path
Nodes | Edges | Max | Mean | length
blocker 5087 12201 | 559 | 2.40 4.23
connectfour (C4) 19672 | 47221 | 2249 | 2.40 433
connectfour3p (C43,) 17076 | 42623 | 1731 | 2.50 4.25
hamilton 14963 | 31516 | 1601 | 2.11 5.27
hanoi6disks 28055 | 70237 | 4098 | 2.50 4.98
knightstour 12291 | 30154 | 1393 | 2.45 4.45
parallelbuttonsandlights | 1602 3245 182 2.03 4.93
tictactoe (TTT) 4810 11031 | 591 2.29 4.19
doubletictactoe (TTTp) | 7379 16338 | 803 2.21 4.61
tictactoelarge (TTT,) 3553 8185 323 2.30 4.69
connectfour-flat 21450 | 51477 | 2543 | 2.40 4.29
doubletictactoe-flat 27280 | 64342 | 2583 | 2.36 4.52
tictactoelarge-flat 4203 9735 423 2.32 4.60

Table 2: Graph metrics of game datasets

then to learn to approximate a function that converts each
initial node-vector embedding into an output probability. As
such, the dataset can be seen as a partial node classification
task across multiple graphs.

In our implementation, a game description G is used
to generate dataset D¢ consisting of training examples of

=

the form ((X, A),!) for legal actions and ((X,, A), ) for
next fluents. For a given state .S and joint action a
does(1,mq) A...Adoes(k, my), X is the node feature ma-
trix of IRG I = (V, E, L) of S and X,, is the the node fea-
ture matrix of the IRG I, = (V, E,L,) of S with does
nodes labelled true according to actions a in addition to
the standard fluent labelling. A is the adjacency matrix

of IRGs I and I,. The training targets [ = {0,1}/V! and

it = {0, 1}V are the target output probabilities of the nodes
V' that the network must predict. As X; corresponds to node
i, if node 7 is a 1egal node, l_; = 1 if the vaLuation of the
legal rule represented by node i is true and I; = 0 other-
wise. Likewise, for next node j, 7i; = 1 if the valuation
of the next rule represented by node j is true and 7i; = 0
otherwise.

The above method is general and can be applied to any
game described using GDL. For the experiments in Sec-
tion 5, we generate 12000 training examples for each game.
Although the datasets are generated on a per-game basis
for simplicity, multiple datasets can be combined for multi-
game mixed training or sequential training.

Table 2 shows some metrics of the IRGs present in the
game datasets generated. Although the IRGs are directed
graphs, we calculate the average path length by treating
them as undirected graphs as the graph neural network ar-
chitecture is able to propagate messages along both direc-
tions separately. While the size of the IRG gives a sense of
the complexity of the game description, it is distinct from
the state complexity of the game itself. These metrics high-
light the discrepancy between game state complexity and
game description complexity. For example, while TTT, has
a larger number of game states compared to standard TTT
due to its larger board size, the IRG for TTT, is smaller in
both the number of nodes and edges. These metrics corre-
spond roughly to the complexity of the game description, as
the IRG size corresponds directly to the number and length
of rules present in the description, while the average path
length corresponds to the average distance of logical depen-
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dencies present in the rules. In the end of the table, G-flat
refers to an equivalent game of G, which we examine later
in Section 5.4.

We have only generated the datasets for 10 different
games which are typically used in GGP tournaments, but
there are many other game descriptions that exist in vari-
ous repositories such as the Stanford ! and Dresden?> GGP
repositories. Explanations of game rules and example game
plays can also be found on these repositories. Descriptions
for more complex games like Chess and Go are also avail-
able, but due to hardware limitations we avoid using these
games for our experiments. Additional game descriptions
can be written for games that do not have a description al-
ready available. This presents an opportunity to provide an
extensive benchmark for the inference tasks in GDL, which
we encourage others to use in further graph neural network
research.

4.4 Training Details

We train the neural network using the cross-entropy loss
criterion for both legal action and next fluent prediction.
Only legal and next node output probabilities are used in
the calculations for the cross-entropy loss, with other nodes
masked out. These other nodes contribute to the loss values
implicitly through the message propagation mechanism in
the GAT layers and the global pooling operator. The Adam
optimiser (Kingma and Ba 2015) is used with a base learning
rate of 0.0001 and dropout is applied to the fully connected
layers during training. Additionally, we use Pairnorm (Zhao
and Akoglu 2020) normalisation throughout the graph neu-
ral network layers.

The neural reasoner is trained on datasets generated from
various games with 10% of each dataset reserved as a vali-
dation split. A batch size of 32 examples are used for most
games, however for larger game descriptions a smaller batch
size is used due to hardware limitations. Once the network
training is complete, threshold values for next and legal
node probabilities are selected. For each task, threshold
values 0.1,0.15,0.2,...,0.9 are used to discretise the out-
put probabilities, selecting the threshold value that provides
the lowest mean squared error between the discretised out-
put probabilities and the examples from the validation set.
These selected threshold values are used for each game dur-
ing evaluation.

5 Results and Discussion

We conduct a series of experiments to evaluate the perfor-
mance of the neural reasoner on a collection of games and
to investigate training behaviour in a variety of settings and
learning modalities. Section 5.1 presents the performance
of the neural reasoner trained on individual games. Section
5.2 investigates the neural reasoner’s ability to transfer its
learned knowledge across to different games as well as a
mixed training scheme with multiple games being learned
simultaneously. Section 5.3 compares the mixed training
scheme with a sequential training scheme. Finally, Section

"http://ggp.stanford.edu
*http://general- game-playing.de
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5.4 present a solution to the issues faced with unflattened
rules that causes poorer performance in certain games.

All experiments are conducted on an Intel Xeon Silver
4210 CPU with 96 GB of memory running Ubuntu 20.04.2
LTS and 4 NVIDIA GeForce RTX2080 Ti. The implemen-
tation is written in Python using the PyTorch Geometric li-
brary (Fey and Lenssen 2019) and PySwip (Tekol and con-
tributors 2020).

5.1 Individual Game Experiments

As the networks are trained to predict 1egal actions and
next fluents, we measure the accuracy of the neural rea-
soner over 100 randomly played games. For a given input
state, the predicted legal actions and next fluents are given
by the neural reasoner’s output node probabilities that are
greater than the selected threshold. This is then compared
to the ground truth which is inferred with a Prolog based
reasoner.

Game Next fluents (%) | Legal actions (%)
parallelbuttonsandlights 84.35% 100.00%
tictactoe (TTT) 100.00% 100.00%
tictactoelarge (TTTL) 100.00% 63.69%
doubletictactoe (TTTp) 100.00% 91.96%
connectfour (C4) 93.58% 100.00%
connectfour3p (C43,,) 95.50% 91.75%
blocker 88.94% 100.00%
knightstour 100.00% 100.00%
hamilton 94.94% 100.00%
hanoi6disks 87.55% 72.66%

Table 3: Neural reasoner accuracy over 100 games.

Table 3 shows the accuracy of the neural reasoner on
10 different games, over 100 game plays on each. Across
all games, the neural reasoner shows fairly high accuracy,
achieving 100% at several games and at least 80% accu-
racy in most games. Notable exceptions are TTT; and
hanoi6disks at legal prediction, which we investigate further
in Section 5.4.

parallelbuttonsandlights tictactoe

T
—e— Training loss
0.6 —=— Validation loss

0.4}

Loss

0.5 -

I I I I I I
0 100 200 300 ) 100 200 300

hanoi6disks

connectfour

Loss

I I I I I I I !
0 200 400 600 800 1,0001,2001,4001,600
Epoch

I I
400 600

Epoch

Figure 7: Training loss for parallelbuttonsandlights, tictactoe, con-
nectfour and hanoi6disks.
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Figure 7 shows that the training behaviour across four dif-
ferent games. The differences exhibited here also contribute
to the varying levels of accuracy that the neural reasoner
achieves for different games. Dropout is not applied when
calculating the validation loss, leading to the the lower val-
ues. The differences in epochs correspond to smaller batch
sizes due to hardware limitations as mentioned earlier in
Section 4.4.

5.2 Transfer and Mixed Learning

To evaluate the neural reasoner’s transfer learning capabil-
ities, we run evaluations across the following games: Tic-
Tac-Toe (TTT), Connect-Four (C4), Double Tic-Tac-Toe
(TTTp) and Tic-Tac-Toe Large (TTT;). We evaluate the
neural reasoner on games it has not learned. Additionally,
we conduct mixed training, where the reasoner is trained on
all four games simultaneously with a uniform random mix-
ture of game states. All networks are initialised with ran-
dom weights. Table 4 shows the results of the training con-
ducted. Interestingly, the results have shown the potential
to achieve “zero-step generalisation™ as the network is able
to achieve 100% accuracy on several games that it was not
trained for, which ideally shows that the network is learn-
ing to reason GDL more generally. However we can see
that in several cases this transfer does not occur, such as the
network trained on TTT; which shows poor performance
across all other games.

The network trained on all games jointly shows balanced
performance across the board - notably it outperforms the
C4 trained network on C4 itself on next prediction and
achieves equal or comparable performance in other games.
This shows that mixed training can be used to train a neu-
ral reasoner that can reason multiple games simultaneously
with high accuracy.

5.3 Sequential vs Mixed Training

While the mixed-game training shows that the neural rea-
soner can achieve similar accuracy to its solely trained coun-
terpart, the method in which the examples are mixed might

Train dataset TTT TTTp TTT,, C4
TTT 100.00% | 100.00% | 100.00% | 93.45%
TTTp 100.00% | 100.00% 94.77% | 93.53%
TTT, 40.66% 41.06% 100.0% | 40.92%
C4 100.00% 94.68% 92.49% | 93.58%
Mixed 100.00% | 100.00% | 100.00% | 98.00%
(@)
Train dataset TTT TTTp TTT,, C4
TTT 100.00% 1.35% | 56.02% | 100.00%
TTTp 91.36% | 91.96% | 64.66% 89.71%
TTT,, 59.02% | 14.18% | 63.69% 12.85%
C4 100.00% 1.39% | 56.47% | 100.00%
Mixed 100.00% | 82.62% | 55.80% | 100.00%
(b)

Table 4: Neural reasoner accuracy over 100 games for (a) next
and (b) 1legal prediction.
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Training method TTT TTTp TTT,, C4
Mixed Next | 100.00% | 100.00% | 100.00% 98.00%
Legal | 100.00% 82.62% 55.80% | 100.00%
Sequential Next | 100.00% | 100.00% 92.52% 93.63%
Legal | 100.00% 82.35% 64.45% | 100.00%

Table 5: Neural reasoner accuracy in mixed and sequential train-
ings.

not be practical or well-suited for all game-playing scenar-
ios. In particular, we would like to see if a sequential train-
ing scheme is possible. Rather than mixing the examples
from various games into a single dataset, the network is
trained on the different game datasets sequentially. There are
two questions this raises: Firstly, does the sequential training
cause the network to “forget” the earlier trained games? Sec-
ondly, can the prior training on other games assist the later
training, leading to faster convergence? To answer this, we
train a neural reasoner on the game sequence TTT—TTTp
— TTT1 — C4 and compare its accuracy to mixed training.

Table 5 shows the accuracy of the sequentially trained
neural reasoner compared to the mixed training reasoner.
The sequentially trained neural reasoner shows similar per-
formance to the mixed trained neural reasoner. This shows
that the network does not “forget” its learned reasoning on
earlier games after training on the other games. Like with
the mixed neural reasoner, the network shows balanced per-
formance across the games it is trained on when compared
to the individually trained networks as in Section 5.2.

However, as Figure 8 shows, the sequentially trained neu-
ral reasoner exhibits much more instability during training
as can be seen in the fluctuating validation loss. The se-
quentially trained network is still able to achieve final loss
values equivalent to the mixed training counterpart despite
the instability. The random mixing of various game states
likely acts as a type of regularisation, whereas the sequential
training can potentially lead to overfitting on each individual
game before moving on to the next. Regardless, sequential
training presents an alternative training scheme when mix-
ing is not possible or impractical.

5.4 Rule Flattening

Of note in Section 5.1 was the relatively poor performance
of the variants of TTT, namely TTTp and TTT, when com-
pared to default TTT. We discovered that a potential cause

Sequential training

. | —®— Training loss
| | —=— Validation loss

Mixed training

1.5 T T T T 15F T T

Loss

0.5

: Y M\/\ s

I I I I I . . I
0 200 400 600 800 1,0001,2001,400
Epoch

I I I I I I 1 I
0 200 400 600 800 1,0001,2001,4001,600
Epoch

Figure 8: Comparison of mixed training and sequential training.
Dashed lines show dataset transitions.
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for this disparity is in the way some rules are defined. In
TTT, all of the legal and next rules are defined in a flat man-
ner, with the heads (legal or next predicates) directly de-
pending on fluents that represent the basic features of the
states. However, in other games such as TTTp and TTT,,
several of the legal and next predicates have a longer depen-
dency on fluents via other intermediate predicates.

For example, in the rule fragments shown in Figure 9, the
left two rules are from the standard description of TTT; ..
The legal predicate 1egal (.) in the first rule depends on
the predicate emptycell (.), which is not a fluent and
further depends on the fluent cell (.) in the second rule.
While in the rule on the right, the legal predicate 1egal (.)
directly depends on the fluent cell (.). We give simple
flattening as a process analogous to substitution, inserting
the body of the second rule into the first rule. In particular,
emptycell (.) is replaced with its corresponding body.
This process shall retain the equivalence of the games.

(legal xplayer (mark 1 1 x)) (<=
(true (control xplayer))

(emptycell 1 1))

legal xplayer (mark 1 1 x))
true (control xplayer))

index 1)
index 1)
(true

(
(
(
(
(
( (true

(cell 1 1 x))
(cell 1 1 o))

emptycell 1 1)
index 1)

( )
( )
(index 1)

(

(

)
not (true
not (true

(cell 1 1 x)))
(cell 1 1 0))))

Figure 9: Left: Standard definition of rules in TTT. Right: Flat-
tened version of the same rules

Figure 10 shows the rule graphs of the unflattened and
flattened rules, highlighting the effect of this process: the
dependency path from the 1legal (..) node to the fluent
cell (1,1, x) node reduces from 6 in unflattened version
to 3 in the flattened version. This shortened dependency be-
tween nodes can be seen when comparing the average path
lengths of the unflattened and flattened versions of the same
game in Table 2 (last three rows), with all the flattened ver-
sions showing shorter average paths lengths than their un-
flattened counterparts.

To test whether the poor performance seen in some games
is caused by the behaviour seen in unflattened rules, we train
and evaluate the neural reasoner on the flattened versions
and compare the performance to the standard, unflattened
versions. Table 6 shows the improved accuracy of the neural
reasoner trained on flattened rules compared to the standard
unflattened rules, on the three games.

These results suggest that the distance of the dependency
of legal and next predicates to the fluents is an important fac-

| Game | Next fluents accuracy | Legal actions |
TTT-L (standard) 100.00% 63.69%
TTT-L (flat) 100.00% 100.00%
TTT-D (standard) 100.00% 91.96%
TTT-D (flat) 100.00% 100.00%
C4 (standard) 93.58% 100.00%
C4 (flat) 100.00% 100.00%

Table 6: Terminal prediction for 100 games of standard and flat-
tened games
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Figure 10: Rule graphs of unflattened (top) and flattened (bottom)
fragment from Figure 9. Labels have been removed for clarity.

tor in our representation and flattening the rules could reduce
the distance and potentially increase overall performance of
the neural reasoner. Some limitation of this approach is that
a systematic automated flattening process can be difficult,
e.g., with recursively defined rules and exponential growth
of the number of the rules. Note that game hanoi6disks also
exhibited a large number of unflattened legal rules, which
could not be easily flattened.

6 Related Work

Work in the 90s and early 2000s on the modelling of logic
programming using neural networks (Garcez and Zaverucha
1999; Abdullah 1992; Garcez et al. 2002) laid the founda-
tions of neuro-symbolic computing - the synthesis of logic
and neural networks. Early work in the field rely on di-
rectly translating the logical statements to the neural net-
work structure itself.

Recently, there has been a resurgence in applying neural
network based methods to logical domains, following their
successes in computer vision and natural language process-
ing. This more recent work focuses on using the logical
statements themselves as input to the neural networks, al-
lowing for more general neural network architectures. How-
ever, the structured nature of logic tends to be a difficulty for
neural networks, which rely heavily on statistical features.
Evans et al. introduced a dataset of logical entailment ex-
amples to train and evaluate neural network architectures on
(Evans et al. 2018), as well as their model PossibleWorldNet
which was able to outperform several benchmarks. Rawson
and Reger (Rawson and Reger 2020) were able to further
extend this by taking advantage of the relational inductive
bias present in the logical dataset. Their work presented a
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GNN-based architecture and a graph based encoding for the
logical statements, which combined was able to outperform
PossibleWorldNet in several of the categories of the dataset.

Beyond the two mentioned earlier, many other researchers
have applied graph neural networks to the logical domain
(Thost and Chen 2021; Abdelaziz et al. 2021; Glorot et
al. 2019; Paliwal et al. 2020; Crouse et al. 2019; OIlsak,
Kaliszyk, and Urban 2019). Most work in the logical do-
main focus on tasks such as entailment and automated the-
orem proving, which typically uses much smaller graphs as
the logical formulae consist of fewer clauses than an entire
GDL game description. Additionally, these tasks are typ-
ically formulated as a graph classification problem, which
differs from our approach, which is more akin to a node clas-
sification problem across multiple graphs.

Some recent work such as (Silver et al. 2020; Lin et al.
2022) has applied graph neural networks to planning prob-
lems. However, most work in this field typically use graph-
ical representations of the objects in the environment and
their relationships instead of directly modelling a logical de-
scription. As such, the GNNs are tasked to learn the impor-
tance and probabilities of the objects themselves, rather than
learning to infer legal actions or transition dynamics.

Some of the most notable recent work applying neural
network based approaches to games is that of AlphaGo, Al-
phaGo Zero and AlphaZero (Silver et al. 2016; Silver et
al. 2017b; Silver et al. 2017a), which were able to achieve
super-human performance on Go, Chess and Shogi. The
networks were used for policy and value estimation and
trained through self-play. Although the architecture pre-
sented in AlphaZero was general across the three games,
the networks had were specific for each game and had to
be trained separately due to the varying state representa-
tions. Several recent work (Goldwaser and Thielscher 2020;
Gunawan et al. 2020) have extended the methods in Alp-
haZero to the domain of GGP and shown their effectiveness.
The neural networks are used similarly as in AlphaZero for
optimal move selection and are specific for individual games
too. There are two main differences in our work. Firstly our
graph neural networks are able to handle the game states
more generally. Secondly, we use neural networks in ap-
proximating the logical reasoning, instead of the move se-
lection.

Alongside the initial introduction of rule graphs by
Kuhlmann and Stone (Kuhlmann and Stone 2007), they have
also investigated other applications of transfer learning in
GGP. In their work rule graphs are used to identify similar
games, to which they transfer known value mappings for Q-
learning. Schiffel (Schiffel 2010) further extends this work
and uses rule graphs for symmetry detection within games.
As these make use of standard rule graphs, they do not ap-
ply their methods to individual game states. Additionally,
they do not make use of graph neural networks, instead us-
ing more traditional approaches such as graph isomorphism
algorithms.

7 Limitations

The current implementation of instantiating the rule graph
as described can be improved both in expressiveness and ef-
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ficiency. Firstly, the most effective labelling function for in-
stantiating the rule graph is still not known and the current
implementation can be improved for a more expressive rep-
resentation. Secondly, the current instantiation method re-
quires the game description to be grounded, which is a com-
putationally expensive process that can lead to extremely
large graphs. It is possible that only targeted rules need to be
grounded instead, as the rule graph representation is capable
of representing ungrounded variables.

A key limitation we have discovered is the poor perfor-
mance of the neural reasoner on games that are described us-
ing unflattened rules. We found that by flattening these rules,
the neural reasoner was able to improve its accuracy. How-
ever, as mentioned before, this flattening process is resource
intensive. Furthermore, there are several games where this
flattening is not possible without completely rewriting the
rules. More generally, this issue is likely due to the graph
neural network architecture being unable to make inferences
across long-range dependencies. This also includes other re-
lational structures such as negation, which can be seen as a
two-hop dependency.

Currently, we have only trained the neural reasoner to pre-
dict legal actions and next fluents. To implement a complete
GDL reasoner, we also need to infer whether a state is termi-
nal and the goal values of each player when the state is ter-
minal. We leave this as an open problem as there are issues
that arise from the unbalanced nature of the dataset (there
are more non-terminal states than terminal states) as well as
the limitations faced due to unflattened rules (most terminal
and goal rules are unflattened).

8 Conclusion and Further Work

In this paper we have presented a method to approach GDL
reasoning with neural networks in a general manner. The
translation of the GDL rules and game states to a graph-
based representation allows for the application of graph neu-
ral networks that are able take as input various games with-
out resorting to game-specific networks. We have imple-
mented a neural reasoner that is able to learn to infer the
legal actions and next fluents in various games, with high ac-
curacy in most of them. Furthermore, we show that with the
general instantiated rule graph representation and graph neu-
ral network architecture, we are able to train the neural rea-
soner on multiple games simultaneously as well as transfer
across unlearned games. Sequential training is also possible:
the neural reasoner is able to be trained on a sequence of
various games without forgetting the earlier trained games.
This is likely the most practical method of training a neural
reasoner for use in a game player, as this allows the neu-
ral reasoner to learn new games as they are introduced to it.
However, we have highlighted several limitations.

While the instantiated rule graph representation and the
graph neural network architectures have been used to learn
the reasoning task in this paper, further work could extend
these methods to apply them to the task of game playing.
Using a modified network architecture based on these ap-
proaches in an AlphaZero style self-learning agent would
allow for the agent to learn and play multiple game simulta-
neously, in a truly general manner.
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