
Chasing Streams with Existential Rules

Jacopo Urbani1 , Markus Krötzsch2 , Thomas Eiter3
1Department of Computer Science, Vrije Universiteit Amsterdam, The Netherlands

2Knowledge-Based Systems Group, TU Dresden, Germany
3Institute of Logic and Computation, Technische Universität Wien, Austria
jacopo@cs.vu.nl,markus.kroetzsch@tu-dresden.de,eiter@kr.tuwien.ac.at

Abstract

We study reasoning with existential rules to perform query
answering over streams of data. On static databases, this
problem has been widely studied, but its extension to rapidly
changing data has not yet been considered. To bridge this
gap, we extend LARS, a well-known framework for rule-
based stream reasoning, to support existential rules. For
that, we show how to translate LARS with existentials into
a semantics-preserving set of existential rules. As query an-
swering with such rules is undecidable in general, we de-
scribe how to leverage the temporal nature of streams and
present suitable notions of acyclicity that ensure decidability.

1 Introduction
Streaming data arises in many applications, fostered by the
need of deriving timely insights from emerging informa-
tion and the inherent impossibility of storing all available
data (Margara et al. 2014). Stream reasoning has become a
productive area of KR with many formalisms (Anicic et al.
2011; Le-Phuoc et al. 2011; Barbieri et al. 2010; Tiger and
Heintz 2016; Dell’Aglio et al. 2017; Kharlamov et al. 2019;
Wałega, Kaminski, and Cuenca Grau 2019). This multiplic-
ity is justified by the breadth of scenarios where stream pro-
cessing is useful. Many of the approaches are distinguished
from classical temporal reasoning, e.g., since data snapshots
(windows) play an important role to reduce data volumes.

A well-known formalism in this space is LARS (Beck,
Dao-Tran, and Eiter 2018), which is a rule-based language
for stream reasoning that combines concepts from logic pro-
gramming with dedicated stream operators to express win-
dows and temporal quantifiers. For example, the LARS rule
r1: ⊞3 □beltTmp(X,Y) ∧ high(Y) → warn(X) issues a
warning if the temperature on a conveyor belt has been high
for all (□) last three time points (⊞3).

Another prominent field in KR are existential rules, which
are also used as a basis for ontological models, especially in
applications with large amounts of data (Baget et al. 2011;
Cuenca Grau et al. 2013; Gottlob, Lukasiewicz, and Pieris
2014). Other common names for these rules include tuple-
generating dependencies (Abiteboul, Hull, and Vianu 1994)
and Datalog± (Calı̀ et al. 2010). As a simple example, the
rule r2: belt(X)→∃Y.beltOperator(X,Y) expresses that
every belt has an operator (even if unknown). Existential
quantification is central for ontologies and provides high

expressivity beyond plain Datalog (Krötzsch, Marx, and
Rudolph 2019). While reasoning with existential rules is
known to be undecidable in general (Beeri and Vardi 1981),
many well-behaved language fragments and practical imple-
mentations exist (Benedikt et al. 2017; Urbani et al. 2018;
Bellomarini, Sallinger, and Gottlob 2018).

Until now, however, these areas have not been combined,
and stream reasoning approaches do not support existential
rules. Even for logic-based ontology languages in general,
solutions only seem to exist for specific cases where queries
are rewritable (Kharlamov et al. 2019; Kalaycı et al. 2019).
As a consequence, it is often unclear how existing ontologi-
cal background knowledge can be used in stream reasoning.

Additionally, the lack of existential quantification pre-
vents useful modelling techniques for stream analysis. In
particular, existential quantification can be used to represent
temporal events, possibly spanning multiple time points, or
to track unknown individuals. For instance, it can be used to
create a new incident ID if the temperature on a belt is high
for too long, or to track a not-yet-recognized object within a
bounding box in a video stream. Notice that while in prin-
ciple events could be modeled without value invention, i.e.,
using ad-hoc relations, doing so would put an upper bound to
the number of possible events which might be undesirable as
the future stream is typically unknown. A similar argument
applies to the example above about objects within bounding
boxes: it is arguably more natural to introduce new values
and treat them as first-class individuals.

With this motivation in mind, we developed an extension
of existential rules with LARS-based temporal quantifiers
called LARS+. Due to the undecidability of query answer-
ing with existential rules, our objective are decidable frag-
ments, with the following contributions:
• We introduce LARS+ as an existential stream reasoning
language with a model-theoretic semantics.

• We give a semantics-preserving transformation from
LARS+ to existential rules to allow query answering. Doing
so allows us to exploit existing decidability results, but these
are limited in their use of time. We thus present time-aware
extensions of acyclicity notions for LARS+ programs.

• Initial experiments suggest that our method is promising.1

1Source code is at https://github.com/karmaresearch/elars; for a
longer version of this paper see (Urbani, Krötzsch, and Eiter 2022).

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

415

https://github.com/karmaresearch/elars

2 LARS+

Currently, LARS and DatalogMTL (Brandt et al. 2017;
Wałega, Kaminski, and Cuenca Grau 2019) are popular for
rule-based reasoning on data streams. While we focus on
LARS, some of our work may be adapted to DatalogMTL.

To cope with big data volumes, LARS allows one to re-
strict streams to data snapshots (i.e., substreams) taken by
generic window operators ⊞. Typically, windows are used
to consider only the knowledge in the most recent past, but
this is not enough to avoid a complexity explosion or even
undecidability that could arise from reasoning over an in-
definite future. To overcome this problem, it is common in
this domain to restrict future predictions up to a horizon of
interest h, which is moved forward indefinitely.

Our language LARS+ can be viewed as an extension of
existential rules with temporal features of LARS. In the
choice of data-snapshot operators, we take inspiration from
plain LARS, which is a LARS fragment that is apt for effi-
cient implementation (Bazoobandi, Beck, and Urbani 2017).
Syntax We consider a two-sorted logic with abstract ele-
ments and the natural numbers N as time points. We assume
infinite sets VA of abstract variables, VT of time variables,
N of labelled nulls, and C of constants that are mutually dis-
joint and disjoint from N. Abstract terms (resp. time terms)
are elements of VA ∪N ∪ C (resp., VT ∪ N).

Predicates p are from a set P of predicates and have arity
ar(p) ≥ 0, with each position typed (abstract or time sort).
A normal atom is an expression p(t), t = t1, . . . , tar(p),
where ti is a term of proper sort. An arithmetic atom has the
form t1 ≤ t2 or t1 = t2 + t3 for time terms t1, t2, t3. The
set of all atoms (normal and arithmetic) is denoted A. For an
atom α (or any other logical expression introduced below),
the domain dom(α) of α is the set of all terms in α; we write
α[x] to state that x = dom(α)∩ (VA ∪VT); and we say that
α is ground if it contains no variables.

A predicate p∈P is simple if it has no position of time
sort, while an atom is simple if it normal and has a simple
predicate. A LARS+ atom α has the form

α := a | b | @T b | ⊞n@T b | ⊞n♢b | ⊞n□b (1)

where a is an arithmetic atom, b is either a null-free simple
atom or ⊤ (which holds true at all times), T is a time term,
and n ∈ N. Window operators ⊞n restrict attention back to
n time points in the past, and @T (resp. □, ♢) indicates that
a formula holds at time T (resp., every, some time point).

Arithmetic atoms do not depend on time, whereas atoms
@T b refer to a specific time T . All other LARS+ atoms
are interpreted relative to some current time point. Simple
atoms b can equivalently be written as ⊞0♢b or as ⊞0□b.
Definition 1. A LARS+ rule is an expression of the form

r = □∀x,y.(B[x,y] → ∃v.H[y,v]) (2)

where x, y, and v are mutually disjoint sets of variables,
and v contains only abstract variables; the body B[x,y] is
a conjunction of LARS+ atoms; and the head H[y,v] is a
conjunction of atoms of the form b or @T b in (1). We set
b(r) := B and h(r) := H , and we usually omit the leading
□ and universal quantifiers when writing rules.

A LARS+ program is a finite set of LARS+ rules; we de-
note the set of all such programs by L+.
Semantics Like for LARS, the semantics of LARS+ is
based on streams. Formally, a stream S = (T, v) consists
of a timeline T = [0, h] ⊂ N and an evaluation function
v : N → 2A such that, for all t ∈ N, v(t) is a set of ground
normal atoms and v(t) = ∅ if t /∈ T. We call S a data stream
if only extensional atoms occur in S, i.e., atoms with desig-
nated predicates not occurring in rule heads. Given n ∈ N
and t ∈ T, we write wn(S, t) for the stream ([0, t], v′) where
for any t′ ∈ N, v′(t′) = v(t′) if t−n ≤ t′ ≤ t, and v′(t) = ∅
otherwise; we call wn(S, t) a window of size n on S at t.

Models of LARS+ are special streams. For a stream S =
(T, v), a simple ground atom b, and t, t′, n ∈ N, we write:

S, t |= b if b ∈ v(t), S, t |= @t′b if S, t′ |= b,
S, t |= ♢b /□b if S, t′′ |= b for some / all t′′ ∈ T,
S, t |= ⊞nβ if wn(S, t), t |= β.

Further, S, t |= ⊤ holds for all t ∈ T and S, t |= a for all
ground arithmetic atoms a that express a true relation on N.
To define satisfaction of rules on a stream S at time point
t, we introduce the auxiliary notion of T-match σ for a set
C of atoms on S and t as a sort-preserving mapping from
the variables of C to terms, s.t. (i) each time variable X is
mapped to T (Xσ ∈T) and (ii) S, t |= ασ for each α∈C.
Definition 2. A LARS+ rule r as in (2) is satisfied by a
stream S = (T, v), written S |= r, if either (i) h(r) contains
some time point t /∈ T (i.e., ignore inference out of scope),
or (ii) for all t ∈ T, every T-match σ of b(r) on S and t is
extendible to a T-match σ′ ⊇ σ of b(r) ∪ h(r) on S and t.

A program P ∈ L+ is satisfied by S, written S |= P , if
S |= r for all r ∈ P . A data stream D = (T′, v′) is satisfied
by S, written S |= D, if T′ ⊆ T and v′(t) ⊆ v(t) for all
t ∈ T′. We then call S a model of P resp. D.
Example 1. Consider the data stream D=([0, 9], v), where
v(t)= {belt(b1), high(90), beltTmp(b1, tmp(t))} for each
t∈ [0, 9], where tmp(t)= 90 if t≤ 4 and tmp(t)= 70 other-
wise. Then any model S of the rules r1, r2 in Section 1 and
D fulfills S, 4 |=warn(b1)∧ beltOperator(b1, v) for some
constant or null v. Similarly S, 5 |= beltOperator(b1, v

′) for
some constant or null v′ while S, 5 |=warn(b1) may fail.

3 Query Answering with LARS+

The query answering problem in LARS+ is as follows.
Definition 3. A LARS+ Boolean Conjunctive Query (BCQ)
q has the form ∃x.Q[x], where Q is a conjunction of LARS+

atoms. A stream S = (T, v) satisfies q at time t, written
S, t |= q, if some T-match σ of Q on S and t exists. A pro-
gram P ∈ L+ and data stream D entail q at time t, written
P,D, t |= q, if S, t |= q for every model S of P and D.

For instance, a BCQ could be ∃X. ⊞5 □warn(X), which
asks if there has been a warning over the same belt in the last
5 time points. To solve BCQ answering with LARS+, we
propose a consequence-preserving rewriting rew(·) to exis-
tential rules with a time sort. This rewriting is useful because
it will allow us to exploit known results for existential rules,
e.g., acyclicity notions (Cuenca Grau et al. 2013).

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

416

Our proposed rewriting of P into rew(P) has 5 steps:
(1) Each atom ⊞n♢p(t) is replaced by ⊞n@T p(t), where T
is a fresh variable used only in one atom.
(2) For any simple predicate p, we add auxiliary predicates
J⊞□ pK and J⊞@ pK of arity ar(p)+2 resp. ar(p)+3. Intu-
itively, J⊞□ pK(t, n, C) and J⊞@ pK(t, n, T, C) mean that
⊞n□p(t) and ⊞n@T p(t) hold at time C, respectively.
(3) Using a fresh variable C to represent the current time,
we rewrite non-arithmetic atoms α in P (where ⊤ is ⊤()) to

rew(α) =

J⊞□ pK(t, 0, C) if α = p(t),
J⊞□ pK(t, 0, T) if α = @T p(t),
J⊞□ pK(t, n, C) if α = ⊞n□p(t),
J⊞@ pK(t, n, T, C) if α = ⊞n@T p(t)

(4) We add J⊞□⊤K(0, C) in rule bodies not containing C.
(5) For every predicate p (including ⊤), we add the follow-
ing rules to P , where X is a list of variables of length ar(p)
and m = max(0, n | ⊞n occurs in P):

0≤C → J⊞□⊤K(0, C) (3)
J⊞□ pK(X, 0, 0) → J⊞□ pK(X,m, 0) (4)

J⊞□ pK(X, N ′, C) ∧N ′=N+1 → J⊞□ pK(X, N,C) (5)

J⊞□ pK(X, N,C) ∧N ′=N+1 ∧N ′≤m ∧ C ′=C+1
∧ J⊞□ pK(X, 0, C ′) → J⊞□ pK(X, N ′, C ′)

(6)

J⊞□ pK(X, 0, C) → J⊞@ pK(X, 0, C, C) (7)

J⊞@ pK(X, N, T, C) ∧N ′≤m ∧N ′=N+1
∧ I ≤ 1 ∧ C ′=C+I → J⊞@ pK(X, N ′, T, C ′)

(8)

We rewrite a LARS+ BCQ ∃x.Q and time point t sim-
ilarly to rew(∃x.Q, t) = ∃x.

∧
α∈Q rew(α) ∧ C≤t ∧ t≤C

(treating atoms ⊞n♢p(t) as before), and a stream S=(T, v)
to facts rew(S) = {J⊞□ pK(t, 0, s) | p(t) ∈ v(t), t ∈ T}.
Example 2. We illustrate the rewriting on r1. Step
(2) creates predicates J⊞□beltTmpK, J⊞□highK, and
J⊞□warnK and Step (3) the rule J⊞□highK(X,Y, 3, C)∧
J⊞□highK(Y, 0, C) → J⊞□warnK(X, 0, C). Step (5) adds
auxiliary rules to implement the semantics; e.g., rule (6)
ensures that “⊞□”-facts survive across time points, say
if J⊞□beltTmpK(a, b, 0, 6) and J⊞□beltTmpK(a, b, 2, 5)
hold, then J⊞□beltTmpK(a, b, 3, 6) should hold as well.

Let us denote by P ′ |=T q′ entailment of a BCQ q′ from
existential rules P ′ with timeline T, which is defined using
T-matches as P,D, t |= q but disregarding D and t. Then:
Theorem 1. For any P ∈L+, BCQ q, data stream D on T,
and t∈T holds P,D, t |=q iff rew(P)∪rew(D)|=Trew(q, t).

Theorem 1 is important as it allows us to implement BCQ
answering in LARS+ using existential rule engines, e.g.,
GLog (Tsamoura et al. 2021); arithmetic atoms over T can
be simulated with regular atoms: simply add the set rew(T)
of all true instances of arithmetic atoms in P over T and
view rew(P)∪ rew(D)∪ rew(T) as a single-sorted theory.

4 Decidability
As BCQ entailment over existential rules is undecidable, we
desire that the rewriting rew(·) falls into a known decid-
able fragment. Such may be defined by acyclicity condi-
tions (Cuenca Grau et al. 2013), which ensure that a suitable

chase, which is a versatile class of reasoning algorithms for
existential rules (Benedikt et al. 2017) based on “applying”
rules iteratively, will terminate over a given input. We use a
variant of the skolem chase (Marnette 2009), using nulls in-
stead of skolem terms (aka semi-oblivious chase), extended
to the time sort (see (Urbani, Krötzsch, and Eiter 2022)).

Conditions like the canonical weak acyclicity (WA) (Fa-
gin et al. 2005) ensure in fact universal termination, i.e.,
chase termination for a given rule set over all sets of input
facts. We can thus apply such criteria to rew(P) (viewed
as single-sorted theory) while ignoring rew(D) and rew(T).
Universal termination may here be seen as an analysis that
disregards time. To formalise this, let strip(P) result from
P by deleting all arithmetic atoms, window operators, and
temporal quantifiers, and let CT and WA be the classes of
all rule sets on which the skolem chase universally termi-
nates and of all weakly acyclic rule sets, respectively. Then:
Theorem 2. For any P ∈ L+, we have (i) strip(P)∈CT
iff rew(P)∈CT and (ii) strip(P)∈WA iff rew(P)∈WA.

Analogous results hold for elaborated acyclicity notions
(Cuenca Grau et al. 2013). Notably, we can check acyclicity
on the simpler rule set strip(P). With WA as a representative
notion, we let L+

LWA = {P ∈ L+ | strip(P) ∈ WA}.
While easy to check, universal termination also considers

situations that are impossible on properly encoded streams.
Example 3. Consider P = {@T p(X,Y) ∧ T ′=T+1 →
∃V.@T ′ p(Y, V)}. The skolem chase on rew(P)∪ rew(D)∪
rew(T) terminates on all T and D, but not universally for
non-standard timelines where e.g., 0 = 0+1 holds. That is,
reasoning with P always terminates despite P ̸∈ L+

LWA.
We thus introduce time-aware acyclicity, which retains

relevant temporal information instead of working with
strip(P) only. First, to simplify P , we fix a fresh time vari-
able N and replace all LARS+ atoms in all rules as follows:

p(t) 7→ @N p(t) (9)
⊞n□p(t) 7→ @N p(t) (10)

⊞n@T p(t) 7→ @T p(t) (11)
⊞n♢p(t) 7→ @U p(t) (12)

where (9) refers to atoms with no surrounding LARS+ op-
erators and U in (12) is a fresh time variable unique for each
replacement; arithmetic atoms are kept unchanged. The re-
sulting program is denoted by wfree(P) (“window-free”).
Example 4. Let P consist of the following rules:

⊞3□ p(X) → ∃Y.q(X,Y) (13)
@T q(X,Y) ∧ U =T +1 → @U p(Y) (14)

As in Example 3, the skolem chase on rew(P) terminates if
the given input data encodes a valid timeline, else it may not
(indeed, P ̸∈ L+

LWA). In wfree(P), (13) is changed to
@N p(X) → ∃Y.@N q(X,Y) (15)

Intuitively, in wfree(P), N is the time at which rules are
evaluated and localises all simple atoms to it; windows are
removed and their restrictions relaxed: ⊞n□ (“at all times
in window up to now”) becomes @N (“now”); ⊞n@T (“at
T if in window”) becomes @T ; and ⊞n♢ (“at some time
in window”) becomes @U (“at some time”). As this logi-
cally weakens rule bodies, wfree(P) has more logical con-
sequences than P . We obtain the following useful insight:

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

417

Theorem 3. For every P ∈ L+ and data stream D, if
the skolem chase terminates on rew(wfree(P)) and rew(D),
then it also terminates on rew(P) and rew(D).

To exploit Theorem 3, we study the chase termination
over rew(wfree(P)) while restricting to actual timelines,
which are incorporated by partial grounding.
Definition 4. The partial grounding grndA(P) of a pro-
gram P for a set A of null-free facts over a set PA of predi-
cates not occurring in rule heads of P , is the set of all rules
(B\BA →∃z.H)σ, where BA are the atoms in B with pred-
icate in PA, s.t. a rule B→∃z.H ∈P and a homomorphism
σ between BA and A exist, i.e., a sort- and constant- pre-
serving mapping σ : dom(BA) → dom(A) s.t. BAσ⊆A.

As long as A comprises all facts over PA, grndA(P) has
the same models as P and the chase is also preserved. We
use this to ground the time sort in LARS+:
Definition 5. Given a program P , the temporal grounding
of wfree(P) for a timeline T, denoted tgrndT(P), is the
partial grounding grnda(T,P)(P

′) where

• P ′ results from rew(wfree(P)) by adding, for each T ∈
VT in each rule body B, an atom T ≤ T to B and

• a(T, P) is the set of all ground instances of arithmetic
atoms in P with values from T that are true over N.

Example 5. For wfree(P) from Example 4 and timeline
T = [0, 1], the temporal grounding is as follows (the deleted
ground instances of BA are shown in parentheses):

J⊞□ pK(X, 0, 0) → ∃Y.J⊞□ qK(X,Y, 0, 0) (0≤ 0)

J⊞□ pK(X, 0, 1) → ∃Y.J⊞□ qK(X,Y, 0, 1) (1≤ 1)

J⊞□ qK(X,Y, 0, 0) → J⊞□ pK(Y, 0, 1) (1=0+1)

While universal termination on tgrndT(P), which can be
recognized in Example 5 using e.g. MFA (Cuenca Grau et
al. 2013), ensures chase termination on rew(P) and rew(D)
for all data streams D on T, simpler, position-based notions
like WA still fail. We thus encode time into predicate names:
Definition 6. Let P be an existential rules program with
atoms of form J⊞□ pK(s, 0, t) only, where t is a time point.
Then tfree(P) is obtained by replacing each J⊞□ pK(s, 0, t)
with JpKt(s) for a fresh predicate JpKt of proper signature.

Let tfgrndT(P) := tfree(tgrndT(P)). The following re-
sult shows that this is a good basis to check for acyclicity.
Theorem 4. If tfgrndT(P) is weakly acyclic for P ∈L+

and timeline T, then the skolem chase terminates on rew(P)
and rew(D) for all data streams D on T.
Example 6 (cont’d). As tfgrndT(P) is WA, by Theorem 4
the skolem chase on rew(P) and rew(D) always terminates.

In view of Theorem 4, we call P ∈L+ temporally weakly
acyclic (TLWA) over T if tfgrndT(P) is WA, and denote by
L+
TLWA(T) the class of all such programs P . We then have:

Theorem 5. L+
LWA ⊂L+

TLWA(T) holds for all T s.t. |T| ≥ 2.
Regarding complexity, as rew(T) is polynomial in the

length of T, it is exponential if T is encoded in binary. How-
ever, a polynomial axiomatisation of time is feasible, follow-
ing the idea to encode numbers 0,1,. . . ,m using sequences of

SA: p1/p2/p3 Run Mem Out
0.0/0.0/0.0 13.12ms 21.9 10.5k
0.3/0.3/0.5 13.34ms 22.7 10.7k
0.7/0.7/1.0 13.67ms 22.9 10.7k

SB :n Run Mem Out
0 0.6s 45.0 36k
2 1.3s 81.8 64k
4 2.6s 114.4 82k

Table 1: Preliminary experiments for scenario SA and SB

⌈log2 m⌉ bits and to define predicates on them, cf. (Dantsin
et al. 2001), such that for the resulting rewriting rewT(·) in-
stead of rew(·), Theorems 1 and 2 hold analogously.

BCQ answering for L+
TLWA(T) is as for WA rules

2EXPTIME-complete in general (on extensional streams, i.e,
all v(t), t∈T, are listed). The P-complete data complexity
for WA rules carries over to L+

LWA but gets 2EXPTIME-hard
for L+

TLWA(T), as hardest WA programs with bounded predi-
cate arities (Calı̀, Gottlob, and Pieris 2010) can be emulated.

5 Preliminary Evaluation and Conclusion
We implemented an experimental prototype in Python,
which is fed with the stream pointwise. At each time point,
it computes the LARS+ model with the stream collected up
to the last ℓ time points, using the rewriting in Section 3 and
the chase implementation of GLog (Tsamoura et al. 2021).

We considered two scenarios SA and SB . The first, SA,
is a toy example with conveyor belts and sensors that mea-
sure speed and temperature. The program contains 5 simple
rules and the stream is parametrized by probability values
p1, p2, and p3 that regulate the number of rule executions
(higher values lead to more reasoning). Scenario SB is much
more complex than SA. We considered the dataset Deep100
from the ChaseBench suite (Benedikt et al. 2017), which is
a stress test of chase engines. We created a stream by copy-
ing all facts on each time point and rewrote the original rules
using LARS+ operators and different window sizes n. More
details are available at (Urbani, Krötzsch, and Eiter 2022).

Table 1 reports multiple metrics obtained using a lap-
top, viz. avg. runtime (Run), avg. peak use of RAM (in
MB, Mem), and avg. model size (# facts, Out). Notably,
a LARS+ model can be computed rather quickly, viz. in
≈13ms with an hypothetical input like SA. This suggests
that our approach can be used in scenarios that need fast re-
sponse times. For “heavier” scenarios like SB , the runtime
increases but still stays within few seconds. Moreover, rea-
soning used at most 114MB of RAM; thus it may be done
on limited hardware, e.g., sensors or edge devices.

Conclusion. Our work shows that combining existential
rules with LARS can give rise to a versatile stream reason-
ing formalism with expressive features which is still decid-
able. A worthwhile future objective is to develop more ef-
ficient algorithms to compute the models. Our translation
to existential rules is a good basis, but many optimisations
are conceivable. On the theoretical side, a study of further
decidability paradigms, especially related to guarded log-
ics, is suggestive. Finally, further extensions towards non-
monotonic reasoning or other issues, like window validity
(Ronca et al. 2018), are challenging for existential rules, but
would be very useful for stream reasoning.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

418

Acknowledgments
The authors would like to thank Mike Spadaru for his work
on earlier versions of the prototype used in this work.

This work was partly supported by Deutsche Forschungs-
gemeinschaft (DFG) in project 389792660 (TRR 248, Cen-
ter for Perspicuous Systems), by the Bundesministerium
für Bildung und Forschung (BMBF) in project ScaDS.AI
(Center for Scalable Data Analytics and Artificial Intelli-
gence), and by the Center for Advancing Electronics Dres-
den (cfaed).

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1994. Foundations of
Databases. Addison Wesley.
Anicic, D.; Fodor, P.; Rudolph, S.; and Stojanovic, N. 2011.
EP-SPARQL: A Unified Language for Event Processing and
Stream Reasoning. In WWW, 635–644.
Baget, J.-F.; Leclère, M.; Mugnier, M.-L.; and Salvat, E.
2011. On rules with existential variables: Walking the de-
cidability line. Artificial Intelligence 175(9–10):1620–1654.
Barbieri, D. F.; Braga, D.; Ceri, S.; Valle, E. D.; and Gross-
niklaus, M. 2010. C-SPARQL: a continuous query language
for rdf data streams. International Journal of Semantic Com-
puting 04(01):3–25.
Bazoobandi, H. R.; Beck, H.; and Urbani, J. 2017. Expres-
sive Stream Reasoning with Laser. In ISWC, 87–103.
Beck, H.; Dao-Tran, M.; and Eiter, T. 2018. LARS:
A Logic-based framework for Analytic Reasoning over
Streams. Artificial Intelligence 261:16–70.
Beeri, C., and Vardi, M. Y. 1981. The Implication Problem
for Data Dependencies. In ICALP, 73–85.
Bellomarini, L.; Sallinger, E.; and Gottlob, G. 2018. The
Vadalog System: Datalog-based Reasoning for Knowledge
Graphs. PVLDB 11(9):975–987.
Benedikt, M.; Konstantinidis, G.; Mecca, G.; Motik, B.; Pa-
potti, P.; Santoro, D.; and Tsamoura, E. 2017. Benchmark-
ing the Chase. In PODS, 37–52.
Brandt, S.; Kalaycı, E. G.; Kontchakov, R.; Ryzhikov, V.;
Xiao, G.; and Zakharyaschev, M. 2017. Ontology-Based
Data Access with a Horn Fragment of Metric Temporal
Logic. In AAAI, 1070–1076.
Calı̀, A.; Gottlob, G.; Lukasiewicz, T.; Marnette, B.; and
Pieris, A. 2010. Datalog+/-: A Family of Logical Knowl-
edge Representation and Query Languages for New Appli-
cations. In LICS, 228–242.
Calı̀, A.; Gottlob, G.; and Pieris, A. 2010. Query Answering
under Non-guarded Rules in Datalog+/-. In RR, 1–17.
Cuenca Grau, B.; Horrocks, I.; Krötzsch, M.; Kupke, C.;
Magka, D.; Motik, B.; and Wang, Z. 2013. Acyclicity no-
tions for existential rules and their application to query an-
swering in ontologies. J. Artif. Intell. Res. 47:741–808.
Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001.
Complexity and expressive power of logic programming.
ACM Computing Surveys 33(3):374–425.

Dell’Aglio, D.; Della Valle, E.; van Harmelen, F.; and Bern-
stein, A. 2017. Stream reasoning: A survey and outlook.
Data Science 1(1-2):59–83.
Fagin, R.; Kolaitis, P. G.; Miller, R. J.; and Popa, L. 2005.
Data exchange: semantics and query answering. Theoretical
Computer Science 336(1):89 – 124.
Gottlob, G.; Lukasiewicz, T.; and Pieris, A. 2014.
Datalog+/-: Questions and Answers. In KR, 682–685.
Kalaycı, E. G.; Brandt, S.; Calvanese, D.; Ryzhikov, V.;
Xiao, G.; and Zakharyaschev, M. 2019. Ontology-based
access to temporal data with ontop: A framework proposal.
Applied Mathematics and Computer Science 29(1):17–30.
Kharlamov, E.; Kotidis, Y.; Mailis, T.; Neuenstadt, C.; Niko-
laou, C.; Özçep, Ö. L.; Svingos, C.; Zheleznyakov, D.;
Ioannidis, Y. E.; Lamparter, S.; Möller, R.; and Waaler, A.
2019. An ontology-mediated analytics-aware approach to
support monitoring and diagnostics of static and streaming
data. Journal of Web Semantics 56:30–55.
Krötzsch, M.; Marx, M.; and Rudolph, S. 2019. The Power
of the Terminating Chase. In ICDT, 3:1–3:17.
Le-Phuoc, D.; Dao-Tran, M.; Xavier Parreira, J.; and
Hauswirth, M. 2011. A Native and Adaptive Approach for
Unified Processing of Linked Streams and Linked Data. In
ISWC, 370–388.
Margara, A.; Urbani, J.; Van Harmelen, F.; and Bal, H. 2014.
Streaming the web: Reasoning over dynamic data. Journal
of Web Semantics 25:24–44.
Marnette, B. 2009. Generalized Schema-Mappings: from
Termination to Tractability. In PODS, 13–22.
Ronca, A.; Kaminski, M.; Cuenca Grau, B.; and Horrocks, I.
2018. The Window Validity Problem in Rule-Based Stream
Reasoning. In KR, 571–581.
Tiger, M., and Heintz, F. 2016. Stream Reasoning Using
Temporal Logic and Predictive Probabilistic State Models.
In TIME, 196–205.
Tsamoura, E.; Carral, D.; Malizia, E.; and Urbani, J. 2021.
Materializing knowledge bases via trigger graphs. PVLDB
14(6):943–956.
Urbani, J.; Krötzsch, M.; Jacobs, C. J. H.; Dragoste, I.; and
Carral, D. 2018. Efficient Model Construction for Horn
Logic with VLog - System Description. In IJCAR, 680–688.
Urbani, J.; Krötzsch, M.; and Eiter, T. 2022. Chasing
Streams with Existential Rules. arXiv:2205.02220 [cs].
http://arxiv.org/abs/2205.02220.
Wałega, P. A.; Kaminski, M.; and Cuenca Grau, B. 2019.
Reasoning over Streaming Data in Metric Temporal Data-
log. In AAAI, 3092–3099.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

419

https://www.perspicuous-computing.science/
https://www.perspicuous-computing.science/
https://www.scads.de
https://www.scads.de
https://cfaed.tu-dresden.de
https://cfaed.tu-dresden.de

	Introduction
	LARS+
	Query Answering with LARS+
	Decidability
	Preliminary Evaluation and Conclusion

