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Abstract
In this paper, we investigate inductive inference with system
W from conditional belief bases with respect to syntax split-
ting. The concept of syntax splitting for inductive inference
states that inferences about independent parts of the signature
should not affect each other. This was captured in work by
Kern-Isberner, Beierle, and Brewka in the form of postulates
for inductive inference operators expressing syntax splitting
as a combination of relevance and independence; it was also
shown that c-inference fulfils syntax splitting, while system P
inference and system Z both fail to satisfy it. System W is a
recently introduced inference system for nonmonotonic rea-
soning that captures and properly extends system Z as well as
c-inference. We show that system W fulfils the syntax splitting
postulates for inductive inference operators by showing that it
satisfies the required properties of relevance and independence.
This makes system W another inference operator besides c-
inference that fully complies with syntax splitting, while in
contrast to c-inference, also extending rational closure.

1 Introduction
An important subject in the field of knowledge representation
and reasoning is the reasoning with conditional knowledge
(Lehmann and Magidor 1992). A conditional formalizes a de-
feasible rule “If A then usually B” for logical formulas A,B,
denoted here as (B|A). Two well known inference methods
for conditional belief bases consisting of such conditionals
are p-entailment that is characterized by the axioms of System
P (Adams 1965; Kraus, Lehmann, and Magidor 1990) and
system Z (Pearl 1990; Goldszmidt and Pearl 1996). Newer
approaches include inference with c-representations (Kern-
Isberner 2001; Kern-Isberner 2004), skeptical c-inference
taking all c-representations into account (Beierle et al. 2018;
Beierle et al. 2021), and the recently introduced system W
(Komo and Beierle 2020; Komo and Beierle 2022).

While all reasoning approaches cited above satisfy the
axioms of system P, called the “industry standard” for quali-
tative nonmonotonic inference (Hawthorne and Makinson
2007), there are differences among them with respect to
other properties. This also applies to the highly desirable
property of syntax splitting for nonmonotonic reasoning.
The concept of syntax splitting was originally developed
by Parikh (Parikh 1999) for belief sets in order to for-
mulate a postulate for belief revision stating that the re-
vision with a formula that contains only variables from

one part of the signature should only affect the informa-
tion about that part of the signature. The notion of syn-
tax splitting was later extended, e.g. (Peppas et al. 2015;
Kern-Isberner and Brewka 2017). In (Kern-Isberner, Beierle,
and Brewka 2020), syntax splitting is introduced for non-
monotic resoning as a combination of relevance and indepen-
dence, stating that only conditionals from a considered part
of the syntax splitting of a belief base are relevant for cor-
responding inferences, and that inferences using only atoms
from one part of the syntax splitting should be independent
of the other parts. It is shown that c-inference fulfils syntax
splitting, while system P and system Z both fail to satisfy it
(Kern-Isberner, Beierle, and Brewka 2020).

System W has been shown (Komo and Beierle 2022) to
exhibit high-quality properties like capturing and properly ex-
tending p-entailment, system Z, and c-inference, or avoiding
the drowning problem (Pearl 1990; Benferhat et al. 1993). In
this paper, we show that system W also satisfies the required
properties of relevance and independence, making it another
inference operator, besides c-inference, to fully comply with
the highly desirable property of syntax splitting. Furthermore,
system W also extends, in contrast to c-inference, rational
closure and thus inheriting its desirable properties (Lehmann
and Magidor 1992).

After briefly recalling the needed basics of conditional
logic in Sec. 2, the syntax splitting postulates are given in
Sec. 3. In Sec. 4, we present a syntax splitting example and
illustrate how system W handles it, and Sec. 5 shows that
system W satisfies syntax splitting. Sec. 6 concludes and
points out further work.

2 Reasoning with Conditional Logic
A (propositional) signature is a finite set Σ of identifiers. For
a signature Σ, we denote the propositional language over Σ
by LΣ. Usually, we denote elements of the signatures with
lowercase letters a, b, c, . . . and formulas with uppercase let-
ters A,B,C, . . .. We may denote a conjunction A ∧ B by
AB and a negation ¬A by A for brevity of notation. The set
of interpretations over a signature Σ is denoted as ΩΣ. Inter-
pretations are also called worlds. An interpretation ω ∈ ΩΣ

is a model of a formula A ∈ LΣ if A holds in ω. This is
denoted as ω |= A. The set of models of a formula (over a
signature Σ) is denoted as Mod Σ(A) = {ω ∈ ΩΣ | ω |= A}.
A formula A entails a formula B if Mod Σ(A) ⊆ Mod Σ(B).
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Worlds over (sub-)signatures can be merged or marginal-
ized. Let Σ be a signature with disjunct sub-signatures Σ1,Σ2

such that Σ = Σ1 ∪ Σ2. Let ω1 ∈ ΩΣ1
and ω2 ∈ ΩΣ2

. Then
(ω1 · ω2) denotes the world from ΩΣ that assigns the truth
values for variables in Σ1 as ω1 and truth values for variables
in Σ2 as ω2. For ω ∈ ΩΣ, the world from ΩΣ1

that assigns
the truth values for variables in Σ1 as ω is denoted as ω|Σ1

.
A conditional (B|A) connects two formulas A,B and rep-

resents the rule “If A then usually B”. The conditional lan-
guage over a signature Σ is denoted as (L|L)Σ = {(B|A) |
A,B ∈ LΣ}. A finite set of conditionals is called a (condi-
tional) belief base ∆. A belief base ∆ is called consistent if
there is a ranking model for ∆ (Goldszmidt and Pearl 1996).

We use a three-valued semantics of conditionals in this
paper (de Finetti 1937). For a world ω a conditional (B|A)
is either verified by ω if ω |= AB, falsified by ω if ω |= AB,
or not applicable to ω if ω |= A.

Reasoning with conditionals is often modelled by infer-
ence relations. An inference relation is a binary relation |∼
on formulas over an underlying signature Σ with the intu-
ition that A |∼B means that A (plausibly) entails B. (Non-
monotonic) inference is closely related to conditionals: an
inference relation |∼ can also be seen as a set of conditionals
{(B|A) | A,B ∈ LΣ, A |∼B}.

Definition 1 (inductive inference operator (Kern-Isberner,
Beierle, and Brewka 2020)). An inductive inference operator
is a mapping C : ∆ 7→ |∼∆ that maps each belief base to an
inference relation such that direct inference (DI) and trivial
vacuity (TV) are fulfilled, i.e.,

(DI) if (B|A) ∈ ∆ then A |∼∆ B and
(TV) if ∆ = ∅ and A |∼∆ B then A |= B.

Examples for inductive inference operators are p-
entailment (Adams 1965) and system Z (Pearl 1990).

3 Syntax Splitting for Inductive Inference
First, we recall the notion of syntax splitting for belief bases.

Definition 2 (syntax splitting for belief bases (adapted from
(Kern-Isberner, Beierle, and Brewka 2020))). Let ∆ be a
belief base over a signature Σ. A partitioning {Σ1, . . . ,Σn}
of Σ is a syntax splitting for ∆ if there is a partitioning
{∆1, . . . ,∆n} of ∆ such that ∆i ⊆ (L|L)Σi for every i =
1, . . . , n. A syntax splitting {Σ1,Σ2} of ∆ with two parts and
corresponding partition {∆1,∆2} of ∆ is denoted as

∆ = ∆1

⋃
Σ1,Σ2

∆2.

Here, we will focus on syntax splittings in two sub-
signatures. Results for belief bases with syntax splittings in
more than two parts can be obtained by iteratively applying
the postulates presented here.

For belief bases with syntax splitting, the postulate Rel-
evance (Rel) describes that conditionals corresponding to
one part of the syntax splitting do not have any influence on
inferences that only use the other part of the syntax splitting,
i.e., that only conditionals from the considered part of the
syntax splitting are relevant.

(Rel) An inductive inference operator C : ∆ 7→ |∼∆ sat-
isfies (Rel) (Kern-Isberner, Beierle, and Brewka 2020) if
for any ∆ = ∆1

⋃
Σ1,Σ2

∆2, and for any A,B ∈ LΣi
for

i = 1, 2 we have that

A |∼∆ B iff A |∼∆i
B. (1)

The postulate Independence (Ind) describes that inferences
should not be affected by beliefs in formulas over other sub-
signatures in the splitting, i.e., inferences using only atoms
from one part of the syntax splitting should be drawn inde-
pendently of beliefs about other parts of the splitting.
(Ind) An inference operator C : ∆ 7→ |∼∆ satisfies (Ind)

(Kern-Isberner, Beierle, and Brewka 2020) if for any ∆ =
∆1

⋃
Σ1,Σ2

∆2, and for any A,B ∈ LΣi
, D ∈ LΣj

for i, j ∈

{1, 2}, i ̸= j such that D is consistent, we have

A |∼∆ B iff AD |∼∆ B. (2)

Syntax splitting is the combination of (Rel) and (Ind):
(SynSplit) An inductive inference operator satisfies (Syn-

Split) (Kern-Isberner, Beierle, and Brewka 2020) if it sat-
isfies (Rel) and (Ind).
Among the inductive inference operators investigated in

(Kern-Isberner, Beierle, and Brewka 2020), only reasoning
with c-representations satisfies (SynSplit).

4 System W
Recently, system W has been introduced as a new induc-
tive inference operator (Komo and Beierle 2020; Komo and
Beierle 2022). System W takes into account both the toler-
ance information expressed by the ordered partition of ∆
and the structural information about which conditionals are
falsified.
Definition 3 (inclusion maximal tolerance partition (Pearl
1990)). A conditional (B|A) is tolerated by ∆ if there exists
a world ω ∈ ΩΣ such that ω verifies (B|A) and ω does not
falsify any conditional in ∆. The inclusion maximal toler-
ance partition OP(∆) = (∆0, . . . ,∆k) of a consistent belief
base ∆ is defined as follows. The first set ∆0 in the tolerance
partitioning contains all conditionals from ∆ that are toler-
ated by ∆. Analogously, ∆i contains all conditionals from
∆\(

⋃
j<i ∆

j) which are tolerated by ∆\(
⋃

j<i ∆
j), until

∆\(
⋃

j<k+1 ∆
j) = ∅.

It is well-known that OP(∆) exists iff ∆ is consistent;
moreover, because the ∆i are chosen inclusion-maximal, the
tolerance partitioning is unique (Pearl 1990).
Definition 4 (ξj , ξ, preferred structure <w

∆ on worlds (Komo
and Beierle 2022)). Consider a consistent belief base ∆ =
{ri = (Bi|Ai) | i ∈ {1, . . . , n}} with the tolerance partition
OP(∆) = (∆1, . . . ,∆k). For j = 0, . . . , k, the functions ξj
and ξ are the functions mapping worlds to the set of falsified
conditionals from the set ∆j in the tolerance partition and
from ∆, respectively, given by

ξj(ω) := {ri ∈ ∆j | ω |= AiBi}, (3)

ξ(ω) := {ri ∈ ∆ | ω |= AiBi}. (4)
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The preferred structure on worlds is given by the binary rela-
tion <w

∆ ⊆ Ω× Ω defined by, for any ω, ω′ ∈ Ω,

ω <w
∆ ω′ iff there exists m ∈ {0 , . . . , k} such that

ξi(ω) = ξi(ω′) ∀i ∈ {m+ 1 , . . . , k}, and

ξm(ω) ⫋ ξm(ω′) . (5)

Thus, ω <w
∆ ω′ if and only if ω falsifies strictly less con-

ditionals than ω′ in the partition with the biggest index m
where the conditionals falsified by ω and ω′ differ. Note, that
<w

∆ is a strict partial order. The inductive inference operator
system W based on <w

∆ is defined as follows.

Definition 5 (system W, |∼ w
∆(Komo and Beierle 2022)).

Let ∆ be a belief base and A,B be formulas. Then B is
a system W inference from A (in the context of ∆), denoted
A |∼ w

∆B if for every ω′ ∈ ΩAB there is an ω ∈ ΩAB such
that ω <w

∆ ω′.
System W extends system Z and c-inference and enjoys

further desirable properties for nonmonotonic reasoning like
avoiding the drowning problem. For more information on
system W we refer to (Komo and Beierle 2022). We illustrate
system W with an example.
Example 1. Consider the belief base ∆ = {(f |b), (v|d),
(b|p), (f |p)} over the signature Σ = {b, p, f, v, d} from
(Kern-Isberner, Beierle, and Brewka 2020, Example 2) with
the intended meanings birds (b), penguins (p), being able to
fly (f ), being visible in the night (v), dark objects (d). The
preferred structure <w

∆ on worlds is given in in Figure 1.
We have ∆ = ∆1

⋃
Σ1,Σ2

∆2 with Σ1 = {b, p, f}, Σ2 =

{v, d} and ∆1 = {(f |b), (b|p), (f |p)}, ∆2 = {(v|d)}.
The conditional (v|d) can be deduced from ∆ with ev-

ery inductive inference operator because of (DI). But the
conditional (v|dp) cannot be deduced from ∆ with either p-
entailment and System Z; in both cases, the additional infor-
mation p from an independent part of the signature prevents
the deduction of ¬v. Therefore, p-entailment and system Z do
not fulfil (SynSplit). Using the preferred structure <w

∆ given
in in Figure 1, it is straightforward to verify that for each
world ω′ with ω′ |= dpv there is a world ω with ω |= dpv
such that ω <w

∆ ω′. Thus, system W licences the inference
dp |∼ w

∆v, complying with (SynSplit).
Example 1 is an example of system W complying with

(Ind), which is the part of (SynSplit) that system Z and p-
entailment fail to fulfil.

5 System W fulfils Syntax Splitting
For proving that system W fulfils syntax splitting, we first
present four lemmas on the properties of <w

∆ in the pres-
ence of a syntax splitting ∆ = ∆1

⋃
Σ1,Σ2

∆2. Note, that we

consider the belief bases ∆1,∆2 as belief bases over the
signature Σ = Σ1 ∪ Σ2 in this section. Thus, in particular
<w

∆1
and <w

∆2
are relations on ΩΣ and the inference relations

induced by ∆1,∆2 are calculated with respect to Σ.
The following Lemma 1 shows how a syntax splitting

on a belief base carries over to the corresponding inclusion
maximal tolerance partitioning.

bpfvd

bpfvd
bpfvd

bpfvd

bpfvd bpfvd

bpfvd bpfvd bpfvd bpfvd bpfvd bpfvd

bpfvd bpfvd

bpfvd bpfvd bpfvd bpfvd bpfvd bpfvd bpfvd bpfvd
bpfvd

bpfvd bpfvd bpfvd bpfvd bpfvd bpfvd bpfvd bpfvd bpfvd

Figure 1: The preferred structure on worlds induced by the belief
base ∆ from Example 1. Edges that can be obtained from transitivity
are omitted for lucidity.

Lemma 1. Let ∆ = ∆1

⋃
Σ1,Σ2

∆2 be a consistent belief

base with syntax splitting. Let OP(∆) = (∆0, . . . ,∆k)
be the inclusion maximal tolerance partitioning of ∆. Let
OP(∆i) = (∆0

i , . . . ,∆
li
i ) be the inclusion maximal toler-

ance partition of ∆i for i = 1, 2.

1. For i = 1, 2 and j = 0, . . . , li we have ∆j
i = ∆j ∩ ∆i

and thus especially ∆j
i ⊆ ∆j .

2. max{l1, l2} = k

3. If l1 ⩽ l2, then ∆j =

{
∆j

1 ∪∆j
2 for j = 1, . . . , l1

∆j
2 for j = l1 + 1, . . . , k.

If we have ω <w
∆ ω′, then there is some conditional r that

falsifies ω′ but not ω and thus causes the ⫋ relation in (5) in
Definition 4. If ∆ = ∆1

⋃
Σ1,Σ2

∆2, this r is either in ∆1 or in

∆2. Lemma 2 states that the relation ω <w
∆ ω′ can also be

obtained using only ∆1 or only ∆2.
Lemma 2. Let ∆ = ∆1

⋃
Σ1,Σ2

∆2 and let ω, ω′ ∈ Ω. If

ω <w
∆ ω′, then ω <w

∆1
ω′ or ω <w

∆2
ω′.

Note, that both ω <w
∆1

ω′ and ω <w
∆2

ω′ might be true.
The next Lemma 3 considers the reverse direction of

Lemma 2 and shows a situation where we can infer ω <w
∆ ω′

from ω <w
∆1

ω′ for a belief base with syntax splitting.

Lemma 3. Let ∆ = ∆1

⋃
Σ1,Σ2

∆2 and let ω, ω′ ∈ Ω. If

ω <w
∆1

ω′ and ω|Σ2
= ω′

|Σ2
, then ω <w

∆ ω′.
The next Lemma 4 captures that in a world the variable

assignment for variables that do not occur in the belief set
has no influence on the position of this world in the resulting
preferential structure on worlds.
Lemma 4. Let ∆ = ∆1

⋃
Σ1,Σ2

∆2 and ωa, ωb, ω′ ∈ ΩΣ with

ωa
|Σ1

= ωb
|Σ1

. Then we have ωa <w
∆1

ω′ iff ωb <w
∆1

ω′.
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Proofs for Lemmas 1 to 4 are given in (Haldimann and Beierle
2022). We now show that system W fulfils (Rel) and (Ind).

Proposition 1. System W fulfils (Rel).

Proof. Let ∆ = ∆1

⋃
Σ1,Σ2

∆2 and let A,B ∈ LΣ1
be propo-

sitional formulas. W.l.o.g. we need to show that

A |∼ w
∆B if and only if A |∼ w

∆1
B. (6)

Direction ⇒ of (6): Assume that A |∼ w
∆B. Let ω′ be

any world in ΩAB . Now choose ω′
min ∈ Ω such that

1. ω′
min ⩽w

∆ ω′,
2. ω′

|Σ1
= ω′

min |Σ1
, and

3. there is no world ω′
min2 with ω′

min2 <w
∆ ω′

min that fulfils
(1.) and (2.).

Such an ω′
min exists because ω′ fulfils properties (1.) and (2.),

<w
∆ is irreflexive and transitive, and there are only finitely

many worlds in Ω. Because of (2.) and because ω′ |= AB we
have that ω′

min |= AB. Because A |∼ w
∆B, there is a world

ω such that ω |= AB and ω <w
∆ ω′

min . Lemma 2 yields that
ω <w

∆1
ω′
min or ω <w

∆2
ω′
min .

The case ω <w
∆2

ω′
min is not possible: Assuming ω <w

∆2

ω′
min , it follows that ω′

min2 = (ω′
min |Σ1

· ω|Σ2
) <w

∆2
ω′
min

with Lemma 4. With Lemma 3 it follows that ω′
min2 <w

∆
ω′
min . This contradicts (3.). Hence, ω <w

∆1
ω′
min . Because

of (2.) and Lemma 4 it follows that ω <w
∆1

ω′.
As we can find an ω such that ω <w

∆1
ω′ and ω |= AB for

every ω′ |= AB we have that A |∼ w
∆1

B as required.
Direction ⇐ of (6): Assume that A |∼ w

∆1
B. Let ω′ be

any world in ΩAB . Because A |∼ w
∆1

B, there is a world ω∗

such that ω∗ |= AB and ω∗ <w
∆1

ω′. Let ω = (ω∗
|Σ1

·ω′
|Σ2

).
Because ω∗ |= AB we have that ω |= AB. With Lemma 4 it
follows that ω <w

∆1
ω′ and thus ω <w

∆ ω′ due to Lemma 3.
As we can construct ω such that ω <w

∆ ω′ and ω |= AB

for every ω′ |= AB we have that A <w
∆ B as required.

Proposition 2. System W fulfils (Ind).

Proof. Let ∆ = ∆1

⋃
Σ1,Σ2

∆2. W.l.o.g. let A,B ∈ LΣ1
and

C ∈ LΣ2
such that C is consistent. We need to show that

A |∼ w
∆B if and only if AC |∼ w

∆B. (7)

Direction ⇒ of (7): Assume that A |∼ w
∆B. Let ω′ be any

world in ΩABC . Now choose ω′
min ∈ Ω such that

1. ω′
min ⩽w

∆ ω′,
2. ω′

|Σ1
= ω′

min |Σ1
, and

3. there is no world ω′
min2 with ω′

min2 <w
∆ ω′

min that fulfils
(1.) and (2.).

Such an ω′
min exists because ω′ fulfils properties (1.) and (2.),

<w
∆ is irreflexive and transitive, and there are only finitely

many worlds in Ω. Because of (2.) and because ω′ |= ABC
we have that ω′

min |= AB. Because A |∼ w
∆B, there is a world

ω∗ such that ω∗ |= AB and ω∗ <w
∆ ω′

min . Lemma 2 yields
that either ω∗ <w

∆1
ω′
min or ω∗ <w

∆2
ω′
min .

The case ω∗ <w
∆2

ω′
min is not possible: Assuming ω∗ <w

∆2

ω′
min , it follows that ω′

min2 = (ω′
min |Σ1

· ω∗
|Σ2

) <w
∆2

ω′
min

with Lemma 4. With Lemma 3 it follows that ω′
min2 <w

∆
ω′
min . This contradicts (3.). Hence, ω∗ <w

∆1
ω′
min . Let ω =

(ω∗
|Σ1

· ω′
|Σ2

). Because ω∗ |= AB we have that ω |= AB.
Because ω′ |= C we have that ω |= C. Because of (2.) and
Lemma 4 it follows that ω <w

∆1
ω′ and thus with Lemma 3

ω <w
∆ ω′.

As we can construct an ω such that ω <w
∆ ω′ and ω |=

ABC for every ω′ |= ABC we have AC |∼ w
∆B as required.

Direction ⇐ of (7): Assume that AC |∼ w
∆B. Let ω′ be

any world in ΩAB . Now choose ω′
min ∈ Ω such that

1. ω′
min |= C

2. ω′
|Σ1

= ω′
min |Σ1

, and

3. there is no world ω′
min2 with ω′

min2 <w
∆ ω′

min that fulfils
(1.) and (2.).

Such an ω′
min exists because C is consistent, C ∈ LΣ2

,
<w

∆ is irreflexive and transitive, and there are only finitely
many worlds in Ω. Because of (2.) and because ω′ |= AB
we have that ω′

min |= AB. Because of (1.) we have that
ω′
min |= C. Because AC |∼ w

∆B, there is a world ω∗ such
that ω∗ |= ABC and ω∗ <w

∆ ω′
min . Lemma 2 yields that

either ω∗ <w
∆1

ω′
min or ω∗ <w

∆2
ω′
min .

The case ω∗ <w
∆2

ω′
min is not possible: Assuming ω∗ <w

∆2

ω′
min , it follows that ω′

min2 = (ω′
min |Σ1

· ω∗
|Σ2

) <w
∆2

ω′
min

with Lemma 4. With Lemma 3 it follows that ω′
min2 <w

∆
ω′
min . This contradicts (3.). Hence, ω∗ <w

∆1
ω′
min . Let ω =

(ω∗
|Σ1

· ω′
|Σ2

). Because ω∗ |= AB we have that ω |= AB.
Because of (2.) and Lemma 4 it follows that ω <w

∆1
ω′ and

thus with Lemma 3 ω <w
∆ ω′.

As we can construct an ω such that ω <w
∆ ω′ and ω |= AB

for every ω′ |= AB we have A |∼ w
∆B as required.

Combining Propositions 1 and 2 yields that system W
fulfils (SynSplit).
Proposition 3. System W fulfils (SynSplit).

6 Conclusions and Further Work
In this short paper, we showed that the recently introduced
System W that extends rational closure and c-inference, also
fully complies with syntax splitting. In a new publication
parallel to this one, lexicographic inference (Lehmann 1995)
is shown to fulfill syntax splitting as well (Heyninck, Kern-
Isberner, and Meyer 2022). In our current work, we are study-
ing the effect of syntax splitting on the preferred structure
on worlds and further properties of system W; first results
of these further studies are given in (Haldimann and Beierle
2022), along with the observation that lexicographic inference
extends system W and thus also c-inference. Furthermore, we
investigate normal forms of conditional belief bases respect-
ing system W inferences (Beierle and Haldimann 2022), and
we will extend the online reasoning platform InfOCF-Web
(Kutsch and Beierle 2021) by a system W implementation.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

408



Acknowledgements
This work was supported by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation), grant BE
1700/10-1 awarded to Christoph Beierle as part of the prior-
ity program ”Intentional Forgetting in Organizations” (SPP
1921). Jonas Haldimann is supported by this grant.

References
Adams, E. 1965. The Logic of Conditionals. Inquiry 8(1-
4):166–197.
Beierle, C., and Haldimann, J. 2022. Normal forms of con-
ditional belief bases respecting inductive inference. In Pro-
ceedings of the Thirty-Fifth International Florida Artificial
Intelligence Research Society Conference (FLAIRS). (to ap-
pear).
Beierle, C.; Eichhorn, C.; Kern-Isberner, G.; and Kutsch, S.
2018. Properties of skeptical c-inference for conditional
knowledge bases and its realization as a constraint satisfac-
tion problem. Ann. Math. Artif. Intell. 83(3-4):247–275.
Beierle, C.; Eichhorn, C.; Kern-Isberner, G.; and Kutsch, S.
2021. Properties and interrelationships of skeptical, weakly
skeptical, and credulous inference induced by classes of min-
imal models. Artificial Intelligence 297.
Benferhat, S.; Cayrol, C.; Dubois, D.; Lang, J.; and Prade,
H. 1993. Inconsistency Management and Prioritized Syntax-
Based Entailment. In Proceedings of the Thirteenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’93),
volume 1, 640–647. San Francisco, CA, USA: Morgan Kauf-
mann Publishers.
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