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Abstract

We recently presented a Situation Calculus-based framework
for modelling an agent who has incomplete or inaccurate
knowledge about its environments, whose actions are non-
deterministic, and whose sensors might give incorrect results.
Generalizing earlier proposals, the approach represented the
agent’s epistemic state by a set of situations ranked by their
respective plausibility, and which would then be updated by
modifying the plausibility ranks accordingly. Here we extend
our earlier work by considering projection in this framework,
i.e. the question whether a certain (epistemic) formula will
hold after a given sequence of actions. We present results on
both regression, where the query is transformed into an equiv-
alent one about the initial situation, as well as progression,
where the knowledge base is updated to reflect the situation
after executing the action sequence in question.

1 Introduction
In a recent paper (Claßen and Delgrande 2021), we pre-
sented a framework based on the Situation Calculus (Mc-
Carthy and Hayes 1969; Reiter 2001) for representing an
agent that has incomplete or inaccurate knowledge about
its environment, whose actions are non-deterministic, and
whose sensors might be fallible. The approach general-
izes earlier proposals (Shapiro et al. 2011; Delgrande and
Levesque 2012; Delgrande and Levesque 2019) where the
agent’s epistemic state is presented by a set of situations
ranked by their respective plausibility, and which would then
be updated according to the executed action and its sensing
outcome. Two notions of belief were distinguished, an ex-
tensional “bird’s eye” view, and an intensional one from the
agent’s perspective. Here we extend this work by consider-
ing the projection problem, which means deciding whether a
formula will hold after a given sequence of actions, which is
in particular needed for the purpose of planning. We present
results on both regression, where the query is transformed
into an equivalent one about the initial situation, as well as
progression, where the knowledge base is updated to reflect
the situation after executing the action sequence in question.
For brevity, we only discuss the extensional case, but it is
straightforward to adapt our results to the intensional one.

As a motivating example, we adapt the extended litmus
paper problem from (Hunter and Delgrande 2011). The orig-
inal example is due to Moore (1985): There is a liquid in a

beaker that is either an acid or a base, and the agent has a
piece of litmus paper. After dipping the paper into the liquid
and observing its colour, the agent will learn that the liquid
is an acid, if the paper turned red, and a base, if the paper
turned blue. In the extended version, the agent most plausi-
bly believes that the paper is litmus, however also allows for
the possibility that it is just a plain piece of white paper. Af-
ter dipping it and observing that it remained white, the agent
will revise its beliefs so that it now most plausibly believes
that the paper is (and initially was) in fact not litmus paper.

We present preliminaries in Section 2, discuss regression
in Section 3, progression in Section 4, and then conclude.

2 Preliminaries
2.1 The Situation Calculus
The Situation Calculus is a dialect of first-order logic, with
some second-order features, for reasoning about action and
change. There is a sort for actions, one for situations, and
one for objects (everything else, including numbers). Situ-
ations describe possible sequences of actions, where a term
do(α, σ) denotes the situation resulting from applying ac-
tion α in situation σ, and S0 is a constant representing the
initial situation. We will use σ (possibly with decorations)
to denote terms of sort situation, and s (possibly with deco-
rations) as situation variables. Similarly, α and β will refer
to action terms, whereas a is used as action variable. For
convenience, we may use sequence notation for do where
do(β, do(α, S0)) can be written as do(〈α;β〉, S0). Chang-
ing properties are represented by fluents, which are predi-
cates that take a situation as their last argument, e.g. Re(s) to
express that the litmus paper is red in situation s. A formula
is called uniform in σ if the only situation term it mentions
is σ (ruling out quantification and equalities over situations).

2.2 Nondeterminism, Fallible Sensing, Belief
Here we only give a brief summary of our framework for
nondeterministic actions, fallible sensing, and extensional
belief, and refer to (Claßen and Delgrande 2021) for details.
Nondeterminism is handled by distinguishing two types of
action parameters: the ones under the control of the agent,
and those under “nature’s” control (we henceforth omit the
scare quotes). For example, flip(x, y) might denote the ac-
tion of flipping a coin x, for which nature then determines
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outcome y (e.g., heads, tails, or some form of failure).
We use three special predicates: Ieq(a, a′) expresses that

actions a and a′ are intensionally equivalent, meaning they
are identical except maybe for arguments set by nature.
Apl(a, p, s) says that action a has argument plausibility p
in situation s, where p = 0 corresponds to the most plausi-
ble outcome(s), and higher values to less plausible ones. The
sensing fluent SF (a, s) holds iff action a reports sensing re-
sult “true” in situation s. Fallible sensing is again handled by
a special argument set by nature, e.g. indicating that a light
sensor works correctly (sL(ok)), or has a fault where it tran-
siently reports the light being on (sL(on)) or off (sL(off )).

For beliefs, we allow for multiple initial situations s, de-
noted by Init(s), in addition to S0. We use an accessibility
predicate B(s′, p, s) to express that in situation s, the agent
considers situation s′ possible with plausibility p. A formula
φ is believed in situation s, written Bel(φ, s), iff it is true in
all most plausible (MP ) situations s′ accessible from s:

MP(s′, s)
.
= ∃p.B(s′, p, s)∧∀s′′, p′(B(s′′, p′, s) ⊃ p≤p′)

Bel(φ, s)
.
= ∀s′.MP(s′, s) ⊃ φ[s′].

(As convention, free variables are assumed to be universally
quantified from the outside.) A successor state axiom for B
then determines what is believed after executing an action a:

B(s′, n, do(a, s)) ≡ ∃p′, s∗, n∗, a∗, p∗. B(s∗, n∗, s) ∧ (1)
Apl(a, p′, s)∧Ieq(a, a∗)∧Apl(a∗, p∗, s∗)∧s′=do(a∗, s∗)

∧ (SF (a∗, s∗) ≡ SF (a, s)) ∧ n = n∗+p′+p∗

We call formulas that don’t mention SF , Apl , Ieq , or B
objective formulas. A formula is situation-independent if it
does not mention any fluents (including special ones such
as B), but perhaps includes equalities over situation terms.
Finally, we say that a (non-objective) formula is about a
ground situation term σ = do(~α, Si) if: (a) only σ occurs
as right-hand side argument of B; (b) every other situation
term in it is either a variable or a ground situation do(~β, Sj)

with |~β| = |~α|; (c) if a fluent atom F (~t, s) has a variable s
as its situation argument, s is restricted to range only over
situations such that B(s, p, σ) for some p or Init(s) holds.
In particular any Bel(ψ, σ) formula then is about σ.

2.3 Basic Action Theories
In order to describe a dynamic domain, we use action theo-
ries very similar to the ones proposed by Reiter (2001), but
with additional axioms for the new special predicates:
Definition 1 (Basic Action Theory). A basic action theory
(BAT) consists of the union of the following sets of formulas:
• Σ0 is an initial theory that is given by a finite set of sen-

tences about S0, satisfying that initial situations are only
B-related to other initial situations, and that plausibility
values are a function of the pair of situations:

Init(s) ∧B(s′, n, s) ⊃ Init(s′)

Init(s) ∧B(s′, n1, s) ∧B(s′, n2, s) ⊃ n1 = n2

• Σpost is a finite set of successor state axioms, one for each
fluent predicate F (~x, s), of the form

F (~x, do(a, s)) ≡ γF (~x, a, s),

where γF is an objective formula uniform in s whose free
variables are among ~x, a, and s;
• Σsense is a singleton sentence of the form

SF (a, s) ≡ ϕSF (a, s),

where ϕSF is an objective formula uniform in s whose
free variables are among a and s;

• ΣIeq is a singleton sentence of the form

Ieq(a1, a2) ≡ ϕIeq(a1, a2),

where ϕIeq(a1, a2) is a situation-independent objective
formula whose free variables are among a1 and a2;

• ΣApl is a singleton sentence of the form

Apl(a, p, s) ≡ ϕApl(a, p, s),

where ϕApl is an objective formula uniform in s whose
free variables are among a, p, and s;

• Σuna is a set of unique names axioms for actions;
• Σfnd is the set of foundational axioms that defines the set

of situations to form a forest of isomorphic trees rooted at
initial situations, where Init(s)

.
= ¬∃a, s′. s = do(a, s′).

We ignore preconditions here for brevity, but they would
be straightforward to include. Compared to (Claßen and
Delgrande 2021), we also make the simplifying assumption
that axioms for Ieq , Apl , and SF are given as a single equiv-
alence each, instead of multiple guarded axioms. It is con-
ceivable, though significantly more involved, to extend our
projection results to include guarded axioms along the lines
of what is described in (De Giacomo and Levesque 1999).
Example 1. We formalize the extended litmus scenario as
follows. Fluents Ac(s), Li(s), Re(s), and Bl(s) denote that
in situation s, the liquid is an acid, the paper is litmus paper,
the paper is red, and the paper is blue, respectively. The ac-
tion of dipping the paper in the liquid is denoted by dip, and
the action of sensing whether the paper is white by sW (y).
• Σ0: Initially, the agent considers four situations possible:

It does not know whether the liquid is acid, but believes
(p = 0) that the paper is litmus, while allowing for the
possibility (p = 1) that the paper is not litmus. It is cer-
tain though that the paper is white (neither red nor blue).

Init(s) ≡ s = S0 ∨ s = S1 ∨ s = S2 ∨ s = S3,

B(s, p, S0) ≡ (s = S1 ∧ p = 0) ∨ (s = S2 ∧ p = 0) ∨
(s = S0 ∧ p = 1) ∨ (s = S3 ∧ p = 1),

¬Ac(S0) ∧ ¬Li(S0) ∧ ¬Re(S0) ∧ ¬Bl(S0),

Ac(S1) ∧ Li(S1) ∧ ¬Re(S1) ∧ ¬Bl(S1),

¬Ac(S2) ∧ Li(S2) ∧ ¬Re(S2) ∧ ¬Bl(S2),

Ac(S3) ∧ ¬Li(S3) ∧ ¬Re(S3) ∧ ¬Bl(S3).

• Σpost : In this example, Ac(s) and Li(s) are rigid pred-
icates, and don’t change their value due to any action.
Re(do(a, s)) will be true iff a is a dip action, the liquid
is acid, and the paper is litmus. Similar for Bl .

Ac(do(a, s)) ≡ Ac(s), Li(do(a, s)) ≡ Li(s),

Re(do(a, s)) ≡ a = dip ∧ Ac(s) ∧ Li(s) ∨ Re(s),

Bl(do(a, s)) ≡ a = dip ∧ ¬Ac(s) ∧ Li(s) ∨ Bl(s).
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• Σsense : When working correctly (outcome ok ), sW
senses whether the paper is neither red nor blue. In addi-
tion, we allow for transitory on and off failures. Thus:

SF (a, s) ≡ (a = sW (ok) ∧ ¬(Re(s) ∨ Bl(s))) ∨
(a = sW (on))

• ΣIeq : The dip action is deterministic, and so only inten-
sionally equivalent to itself. The sensing action has a na-
ture’s argument to allow for transitory errors.

Ieq(a1, a2) ≡ (a1 = a2 = dip) ∨∨
c1,c2 ∈

{ok ,on,off }

(a1 = sW (c1) ∧ a2 = sW (c2))

• ΣApl : Due to being deterministic, the dip action always
has plausibility 0. The sensing action most plausibly re-
turns the correct result, less plausibly has a transitory off
failure, and even less plausibly a transitory on failure.

Apl(a, p, s) ≡
(a = dip ∧ p = 0) ∨ (a = sW (ok) ∧ p = 0) ∨
(a = sW (off ) ∧ p = 1) ∨ (a = sW (on) ∧ p = 2)

3 Regression
The idea behind regression is to turn a query formula about
a future situation into an equivalent one about the initial sit-
uation, and then test it against the initial theory of the BAT:

Definition 2 (Regression). Let Σ be a BAT, ~α a sequence
of ground action terms, and ψ a formula about do(~α, S0).
Then a formula φ is a regression of ψ wrt Σ if it is about S0

and Σ |= ψ iff Σ0 ∪ Σuna |= φ.

Reiter (2001) presented a regression operator R that
achieves this for objective formulas by iteratively replacing
subexpressions deemed equivalent by the BAT. It is straight-
forward to extend it to the new SF , Ieq , and Apl predicates:

• R[F (~t, do(α, σ))] = R[γF (~t, α, σ)], if F is a fluent;

• R[P (~t)] = R[ϕP (~t)] for P ∈ {SF , Ieq ,Apl};
• R[φ] = φ for every other atomic formula φ;

• R distributes over ¬, ∧, ∀, e.g. R[φ∧ ψ] = R[φ]∧R[ψ].

In principle, formulas involvingB and Bel could be handled
similarly, given that (1) is a successor state axiom for B. A
technical problem is that the axiom as well as Bel formu-
las use quantification over situations, and due to nesting, we
may end up with a formula such as ∃s′. s′ = do(a, s)∧P (s′)
that cannot immediately be regressed further, unless we
rewrite it to P (do(a, s)). The solution below makes use
of this idea, together with the fact that if situations σ and
σ′ are B-related, then they are the result of applying action
sequences of the same length to B-related initial situations.

We here restrict ourselves to regressing belief atoms of
the form Bel(φ, do(~α, S0)), where ~α = 〈α0, . . . , αk−1〉 is
a sequence of ground actions of length k. Let ~a′,~a′′ denote
sequences of action variables of the same length, and ~αi the
prefix 〈α0, . . . , αi〉, with ~α−1

.
= 〈〉. We add the rules

• R[Bel(φ, do(~α, S0))] =
R[∀~a′, s′0. MP(do(~a′, s′0), do(~α, S0)) ⊃ φ[do(~a′, s′0)]];

• R[MP(do(~a′, s′0), do(~α, S0))] =
R[∃p′. B(do(~a′, s′0), p

′, do(~α, S0)) ∧
∀~a′′, s′′0, p′′ (B(do(~a′′, s′′0), p

′′, do(~α, S0)) ⊃ p′≤ p′′)];
• R[B(do(~a′, s′0), n, do(~α, S0))] =

R[∃n0, . . . , nk. B(s′0, n0, S0)∧ (n = nk)∧
∧k−1
i=0 Ψi],

where the Ψi formulas in the last line are given by

Ψi
.
= ∃pi, p′i. ni+1 = ni + pi + p′i ∧ Ieq(αi, a

′
i) ∧

Apl(αi, pi, do(~αi−1, S0)) ∧Apl(a′i, p
′
i, do(~a′i−1, s

′
0)) ∧

(SF (a′i, do(~a′i−1, s
′
0)) ≡ SF (αi, do(~αi−1, S0))).

Theorem 1. For any belief atom ψ = Bel(φ, do(~α, S0)),
R[ψ] is a regression of ψ wrt Σ.

Proof. (Sketch) R[ψ] clearly has the right form, and hence
only depends on Σ0 ∪ Σuna . Correctness follows from
the fact that subformulas are only substituted by equivalent
ones, except for the ∀-quantified s′ and s′′ in Bel and MP
being replaced by do(~a′, s′0) and do(~a′′, s′′0), respectively.
The latter is shown to be “safe” by an induction over ~α.

Example 2. To decide if Bel(¬Li , do(〈dip; sW (ok)〉, S0))
is entailed by the BAT from Ex. 1, we need to determine
R[B(do(〈a′0; a′1〉, s′0), n, do(〈dip; sW (ok)〉, S0))], i.e.

R[ ∃n0, n1, n2. B(s′0, n0, S0) ∧ n = n2 ∧
∃p0, p′0. n1 = n0 + p0 + p′0 ∧ Ieq(dip, a′0) ∧

Apl(dip, p0, S0) ∧Apl(a′0, p
′
0, s
′
0) ∧

(SF (a′0, s
′
0) ≡ SF (dip, S0)) ∧

∃p1, p′1. n2 = n1 + p1 + p′1 ∧ Ieq(sW (ok), a′1) ∧
Apl(sW (ok), p1, do(dip, S0)) ∧
Apl(a′1, p

′
1, do(a′0, s

′
0)) ∧

(SF (a′1, do(a′0, s
′
0)) ≡ SF (sW (ok), do(dip, S0))) ].

During further evaluation, many subexpressions can be sim-
plified. For example, SF (sW (ok), do(dip, S0)) reduces to
TRUE, and Ieq(dip, a′0) to (a′0 = dip). We thus obtain

∃n0. B(s′0, n0, S0) ∧ a′0 = dip ∧
(a′1 = sW (ok) ∧ n = n0 ∧ ¬Li(s′0) ∨
a′1 = sW (on) ∧ n = n0 + 2).

MP(...) now describes those do(〈a′0; a′1〉, s′0) situations
with minimal n, and Bel(...) requires Li to be false there.
Both do(〈dip; sW (ok)〉, S0) and do(〈dip; sW (ok)〉, S3)
satisfy this with n = 1. The agent hence believes the pa-
per is not litmus after dipping and sensing that it is white.

4 Progression
We follow (Vassos and Levesque 2013) and define:
Definition 3 (Progression). Let Σ be a BAT, α a ground ac-
tion term, and Σα a set of sentences about do(α, S0). Then
Σα is a progression of Σ0 wrt α, Σ iff for every sentence φ
about do(α, S0), Σ |= φ iff (Σ− Σ0) ∪ Σα |= φ.
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Lin and Reiter (1997) showed that even in the objective
case, the progression of a theory may require second-order
logic. However, they also presented special cases for which
progression is first-order definable, one of them being the
relatively complete databases. Here, we generalize this class
to the case of extensional belief. Let us call a BAT relatively
complete if Σ0 comprises exactly the following formulas:

1. The formula

Init(s) ≡ s = S0 ∨ · · · ∨ s = Sk,

where S0, . . . , Sk denote all and only initial situations;
2. one formula of the form

B(s, p, S0) ≡ ΠS0

B (s, p),

where ΠS0

B is a situation-independent objective formula
whose free variables are among s, p;

3. for each fluent F and each Si, one formula of the form

F (~x, Si) ≡ ΠSi

F (~x),

where ΠSi

F (~x) is a situation-independent objective for-
mula whose free variables are among ~x.

Also assume that a ground action α has only finitely many β
with Σuna |= Ieq(α, β). Let P now be an operator replacing
B and F subformulas by corresponding Π expressions:

• P[B(σ, t, S0)] = ΠS0

B (σ, t);

• P[F (~t, σ)] =
∨

0≤i≤k(σ = Si) ∧ΠSi

F (~t);

• P[P (~t)] = P[ϕP (~t)] for P ∈ {SF , Ieq ,Apl};
• P[φ] = φ for every other atomic formula φ;
• P distributes over ¬, ∧, ∀, e.g. P[φ∧ ψ] = P[φ]∧P[ψ].
Theorem 2. Let Σ be a relatively complete BAT, α a ground
action, and γB(s′, p, a, s) the right-hand side of axiom (1).
We construct a set Σα consisting of the following formulas:

1. The formula

B(s, p, do(α, S0)) ≡ P[γB(s, p, α, S0)].

2. For each fluent F , each Si, and each ground action β such
that Σuna |= Ieq(α, β), the formula

F (~x, do(β, Si)) ≡ P[γF (~x, β, Si)].

Then Σα is a progression of Σ0 through α wrt Σ.

Proof. (Sketch) Σα obviously has the right form. Sound-
ness follows from the fact that we only replace equivalent
subformulas, completeness from the fact that the set gives a
complete description for all fluents and situations.

Notice that Σα has the right form to apply progression re-
peatedly, if we treat the finitely many do(β, Si) as new ini-
tial situations (e.g. by replacing each by a new constant Siβ).

Example 3. Suppose we want to progress the BAT from
Example 1 through 〈dip; sW (ok)〉, i.e. determine what the
agent believes after dipping the paper and then performing
a sense-white action. Notice that the BAT has the right form
if we understand expressions like ¬Ac(S2) as shorthand for

Ac(S2) ≡ FALSE. After the dip action, each initial situation
is updated by the results of the dip (let S′i

.
= do(dip, Si)):

¬Ac(S′0) ∧ ¬Li(S′0) ∧ ¬Re(S′0) ∧ ¬Bl(S′0)

Ac(S′1) ∧ Li(S′1) ∧ Re(S′1) ∧ ¬Bl(S′1)

¬Ac(S′2) ∧ Li(S′2) ∧ ¬Re(S′2) ∧ Bl(S′2)

Ac(S′3) ∧ ¬Li(S′3) ∧ ¬Re(S′3) ∧ ¬Bl(S′3)

The situations’ plausibilities remain unchanged, but for
those situations where Li is true, the agent will believe the
paper is red if the liquid is acid, and blue if base. Conse-
quently the agent believes the paper is either red or blue.

B(s, p, S′0) ≡ (s = S′1 ∧ p = 0) ∨ (s = S′2 ∧ p = 0) ∨
(s = S′0 ∧ p = 1) ∨ (s = S′3 ∧ p = 1)

After the sense-white action, the physical fluents retain their
previous value, but the belief state changes as follows:

B(s, p, do(〈dip; sW (ok)〉, S0)) ≡
(s = do(〈dip; sW (ok)〉, S0) ∧ p = 1) ∨
(s = do(〈dip; sW (ok)〉, S3) ∧ p = 1) ∨
(s = do(〈dip; sW (on)〉, S1) ∧ p = 2) ∨
(s = do(〈dip; sW (on)〉, S2) ∧ p = 2) ∨
(s = do(〈dip; sW (on)〉, S0) ∧ p = 3) ∨
(s = do(〈dip; sW (on)〉, S3) ∧ p = 3)

The two situations with minimum (p = 1) implausibility are
those where sensing worked correctly. In both, the paper
is not litmus, but Ac only holds in one. Other situations
(p > 1) record less plausible circumstances where the sens-
ing action failed. Hence the agent believes the paper is not
litmus and does not know whether the liquid is acid or base.

5 Conclusion
We presented results on both regression and progression in
a Situation Calculus-based framework for reasoning about
the beliefs of an agent who is dealing with conflicting infor-
mation, nondeterministic actions, and fallible sensing. As
the two main solutions to the projection problem, they are
paramount ingredients for any practical application of the
formalism. A prototype implementation of our methods in
SWI-Prolog with the examples from this paper is available
on GitHub (Claßen 2022). For future work, we want to in-
vestigate their use as basis for an epistemic planner, possi-
bly in combination with first-order knowledge compilation
techniques (Claßen 2018). Without going into detail, we be-
lieve that our approach lends itself very well for this pur-
pose when compared to similar work (Fang, Liu, and Wen
2015; Schwering and Lakemeyer 2015; Arenas et al. 2016).
While (Shapiro et al. 2011) do not even consider projection,
(Hunter and Delgrande 2011) only keep track of the most
plausible set of situations, albeit in an action language (Gel-
fond and Lifschitz 1998) framework. In case of a contra-
diction, they regress to the initial situation, carry out belief
revision, and progress through the action sequence again.
We avoid this by keeping track of all possible outcomes, and
in case of a sensing conflict, only need to look at the most
plausible situations compatible with the sensing outcome.
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