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Abstract

The triple language RDFS is designed to represent and reason
with positive statements only (e.g., “antipyretics are drugs”).
In this paper, we extend RDFS to deal with various forms
of negative statements under the Open World Assumption
(OWA). To do so, we consider ρdf, a minimal, but significant
RDFS fragment that covers all essential features of RDFS,
and then extend it to ρdf¬

⊥ , allowing express also statements
such as “radio therapies are non drug treatments”, “Ebola
has no treatment”, or ”opioids and antipyretics are disjoint
classes”. The main features of our proposal are: (i) ρdf¬

⊥ re-
mains syntactically a triple language by extending ρdf with
new symbols with specific semantics and there is no need to
revert to the reification method to represent negative triples;
(ii) the logic is defined in such a way that any RDFS rea-
soner/store may handle the new predicates as ordinary terms
if it does not want to take account of the extra capabilities;
(iii) despite negated statements, every ρdf¬

⊥ knowledge base
is satisfiable; (iv) the ρdf¬

⊥ entailment decision procedure
is obtained from ρdf via additional inference rules favouring
a potential implementation; and (v) deciding entailment in
ρdf¬

⊥ ranges from P to NP.

1 Introduction
The Resource Description Framework (RDF)1 and its
extension RDF Schema (RDFS)2 are both W3C stan-
dards, and nowadays quite popular knowledge represen-
tation languages. Essentially, a statement in RDF is a
triple of the form (s, p, o), allowing to state that sub-
ject s is related to object o via the property p. For in-
stance, (fever, hasTreatment, paracetamol) is such a
triple whose intended meaning is “fever can be treated
via paracetamol”. RDFS is an extension of RDF pro-
viding mechanisms for describing groups of related terms
and the relationships between these terms via a spe-
cific vocabulary of predicates. So, e.g., the RDFS triple
(paracetamol, type, antipyretic) express that “parac-
etamol is an antipyretic” (here type is the predicate for class
membership specification), while (antipyretic, sc, drug)
asserts that “antipyretic is a subclass of drug” (sc is the pred-
icate for sub-class specification).

1http://www.w3.org/RDF/
2https://www.w3.org/TR/rdf-schema/

As both languages have been designed to represent and
reason with positive statements only, they can not properly
deal with negative statements such as

“opioids and antipyretics are disjoint classes”; (1)
“radio therapies are non drug treatments”; and (2)
“Ebola has no treatment”. (3)

In particular, we may not infer that “paracetamol is not a
treatment for Ebola”. Such a statement could only be in-
ferred with the major assumption that the Knowledge Base
(KB) is complete — the so-called Closed-World Assumption
(CWA) (Reiter 1978), which however is not realistic to be
assumed in many cases. For instance, in medicine, it is im-
portant to distinguish between knowing about the absence of
a biochemical reaction between substances, and not know-
ing about its existence at all, which rises then the need for
explicitly stating salient negative statements (see, e.g., (Ar-
naout et al. 2021b) for a recent work about it). This is par-
ticularly true in the case in which the information about the
represented world is assumed to be incomplete, — the so-
called Open World Assumption (OWA).

Contribution. In this paper we show how to extend
RDFS to express and reason with various forms of nega-
tive statements under the OWA. To do so, we start from
ρdf (Muñoz, Pérez, and Gutierrez 2009), a minimal, but
significant RDFS fragment that covers all essential features
of RDFS, and then extend it to ρdf¬

⊥, allowing express also
negative statements via a specific expressions involving
negated classes/properties, disjointness relationships, and
no-value existence. So, for instance, the ρdf¬

⊥ triple
(opioid,⊥c, antipyretic) expresses (1) (⊥c is the
vocabulary predicate for class disjointness specification),
(radiotherapy, sc,¬drugTreatment) expresses (2)
(here, essentially we introduce class complements via the
¬ operator), while (ebola,¬hasTreatment, ⋆treatment) is
meant to encode (3) (here, besides property complement,
we also allow the ⋆c operator, which is the place holder for
an universally quantified variable over domain c).3

The main and, to the best of our knowledge, unique fea-
tures of our proposal are (cf., related work below): (i)

3We refer the reader to Table 1 for an informal First-Order
Logic (FOL) reading of some types of ρdf¬

⊥ triples.
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ρdf¬
⊥ remains syntactically a triple language by extending

ρdf with new symbols with specific semantics and there is no
need to revert to the reification method to represent negative
triples; (ii) the logic is defined in such a way that any RDFS
reasoner/store may handle the new predicates as ordinary
terms if it does not want to take account of the extra capa-
bilities; (iii) despite negated statements, every ρdf¬

⊥ knowl-
edge base is satisfiable, which is obtained via an intentional
like four-valued semantics; (iv) the ρdf¬

⊥ entailment deci-
sion procedure is obtained from ρdf via additional inference
rules favouring a potential implementation; and (v) deciding
entailment in ρdf¬

⊥ ranges from P to NP.

Related Work. There have been various works in the past
about extending RDFS with negative statements, or applica-
tions that would like or require to have such a feature, which
we briefly summarise below and indeed inspired our work.

In (Arnaout et al. 2021b) and related works (Arnaout,
Razniewski, and Weikum 2020; Arnaout et al. 2021a; Ar-
naout et al. 2021c), two types of negative statements are
considered: (i) grounded negative statements of the form
¬(s, p, o), with informal FOL reading ¬p(s, o); and (ii)
universally negative statements of the form ¬∃x.(s, p, x),
meaning in FOL terms ¬∃x.p(s, x). The former type of
triples have been proposed in (Analyti et al. 2004) (and sub-
sequent works, see below), while the latter has been ad-
dressed in (Darari, Prasojo, and Nutt 2015). In (Arnaout
et al. 2021b) essentially a statistical inference method is pro-
posed to extract useful negative statements of this form, such
as “Leonardo DiCaprio has never been married” and “United
Kingdom is not the citizenship of Jimi Hendrix”.4 It also
publishes datasets5 that contain useful negative statements
about entities in Wikidata.6 Reasoning has not been ad-
dressed (and was not the focus of these works). Both types
of negative statements are covered by ρdf¬

⊥ and, thus, our
work is complementary to (Arnaout et al. 2021b) in the sense
that we describe how then to reason with such information.

In (Darari, Prasojo, and Nutt 2015) the problem on how
to express the non-existence of information is addressed,
which has the form No({(s1, p1, o1), . . . , (sn, pn, on)),
with informal FOL reading ¬∃x.(p1(s1, o1) ∧ . . . ∧
pn(sn, on)), or equivalently, ∀x.(¬p1(s1, o1) ∨ . . . ∨
¬pn(sn, on)), where x are the variables occurring the
triples. It shows how to represent it via the reification
method and incorporate it into SPARQL7 query answering.
Reasoning is not addressed however. We consider here only
the case n = 1 via the expression (s,¬p, ⋆c) as the general
case n ≥ 2 would introduce a disjunction, which we would
like to avoid for computational reasons.

In (Analyti et al. 2008) and related works (Analyti,
Damásio, and Antoniou 2015; Analyti, Antoniou, and

4Optionally, triples may be annotated with a degree such as
e.g., “The Sultan Resort has no parking facility to degree 0.97”.
See e.g., (Zimmermann et al. 2012) for a general framework to deal
with annotated triples.

5https://github.com/HibaArnaout/usefulnegations
6https://www.wikidata.org
7http://www.w3.org/TR/sparql11-query/

Damásio 2008; Analyti, Antoniou, and Damásio 2009;
Analyti, Antoniou, and Damásio 2011; Analyti et al. 2013;
Analyti et al. 2005; Analyti et al. 2004; Damásio, Analyti,
and Antoniou 2010) the authors deal with Extended RDF
(ERDF), a non-monotonic logic, where an ERDF ontol-
ogy consists of two parts: an ERDF graph and an ERDF
logic program. An ERDF graph allows negated RDF triples
of the form ¬(s, p, o), informally in FOL terms ¬p(s, o),
while in the body of rules all the classical connectives ¬,⊃
,∧,∨, ∀, ∃, plus the weak negation (negation-as-failure) ∼
are allowed. Various “stable model” semantics have been
proposed. From a computational complexity point view,
decision problems in ERDF are non-polynomial (Analyti,
Damásio, and Antoniou 2015). E.g., deciding model exis-
tence and, thus, model existence is not guaranteed, ranges
from NP to PSPACE, while query answering goes from co-
NP to PSPACE, depending on the setting.8 In comparison,
ρdf¬

⊥ does not use a rule layer, the triple language is more
expressive, model existence is guaranteed and the computa-
tional complexity ranges between P and NP. Of course, all
inference rules for ρdf¬

⊥ can be implemented in the rule layer
of ERDF (and in Datalog in general).

Eventually, (Casini and Straccia 2020) considers ρdf⊥ on
top of which to develop a non-monotonic RDFS logic based
on Rational Closure (Lehmann and Magidor 1992). ρdf⊥
extends ρdf allowing to express disjointness among (posi-
tive) classes and relations.

In summary, our work aims at putting all together within
RDFS to deal with expressions of the form e.g., (1)–(3) in a
generalised way.

We proceed as follows. As next we introduce the basic no-
tions about ρdf we will rely on. Section 3 is the main part of
this paper in which we extend ρdf to ρdf¬

⊥. The paper con-
cludes with a summary of the contributions and addresses
some topics for future work.

2 Preliminaries
For the sake of our purposes, we will rely on a minimal, but
significant RDFS fragment, called ρdf (Muñoz, Pérez, and
Gutierrez 2009; Muñoz, Pérez, and Gutiérrez 2007), that
covers the essential features of RDFS. In fact, ρdf may be
considered as the logic behind RDFS and suffices to illus-
trate the main concepts and algorithms we will consider. ρdf
is defined as the following subset of the RDFS vocabulary:

ρdf = {sp, sc, type, dom, range} . (4)

Informally, (i) (p, sp, q) means that property p is a sub prop-
erty of property q; (ii) (c, sc, d) means that class c is a sub
class of class d; (iii) (a, type, b) means that a is of type b;
(iv) (p, dom, c) means that the domain of property p is c;
(v) (p, range, c) means that the range of property p is c.

Syntax. Assume pairwise disjoint alphabets U (RDF URI
references), B (Blank nodes), and L (Literals). We assume
U,B, and L fixed, and for simplicity we will denote unions

8There are also many more works that use rule languages on
top of RDFS, which however we are not going to discuss here (see,
e.g., (Casini and Straccia 2020).
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of these sets simply concatenating their names. We call ele-
ments in UBL terms (denoted a, b, . . . , w), and elements in
B variables (denoted x, y, z).9 A vocabulary is a subset of
UL and we assume that U contains the ρdf vocabulary -see
Eq. (4). A triple is of the form

(s, p, o) ∈ UBL×U×UBL ,

where s, o /∈ ρdf. We call s the subject, p the predicate, and
o the object. A graph (or RDF Knowledge Base) G is a set
of triples τ . A subgraph is a subset of a graph. The universe
of G, denoted uni(G), is the set of terms in UBL that occur
in the triples of G. The vocabulary of G, denoted by voc(G)
is the set uni(G)∩UL. A graph is ground if it has no blank
nodes, i.e., variables. A map (or variable assignment) is as
a function µ : UBL → UBL preserving URIs and literals,
i.e., µ(t) = t, for all t ∈ UL. Given a graph G, we define

µ(G) = {(µ(s), µ(p), µ(o)) | (s, p, o) ∈ G} .

We speak of a map µ from G1 to G2, and write µ : G1 →
G2, if µ is such that µ(G1) ⊆ G2.
Example 1 (Running example). The following is a
ρdf graph:10

G = {(paracetamol, type, antipyretic),
(antipyretic, sc, drugTreatment),

(morphine, type, opioid), (opioid, sc, drugTreatment),

(drugTreatment, sc, treatment),

(brainTumour, type, tumour),

(hasDrugTreatment, sp, hasTreatment),

(hasTreatment, dom, illness),

(hasTreatment, range, treatment),

(hasDrugTreatment, range, drugTreatment),

(fever, hasDrugTreatment, paracetamol)

(brainTumour, hasDrugTreatment, morphine) } .

Semantics. A ρdf interpretation I over a vocabulary V is
a tuple

I = ⟨∆R,∆P,∆C,∆L,P[[·]],C[[·]], ·I⟩ ,

where the finite non-empty sets ∆R,∆P, ∆C,∆L are the in-
terpretation domains of I and P[[·]],C[[·]], ·I are the interpre-
tation functions of I. They have to satisfy:

1. ∆R are the resources;

2. ∆P are property names;

3. ∆C ⊆ ∆R are the classes;

4. ∆L ⊆ ∆R are the literal values and contains all the literals
in L ∩ V ;

5. P[[·]] is a function P[[·]] : ∆P → 2∆R×∆R ;

6. C[[·]] is a function C[[·]] : ∆C → 2∆R ;

9All symbols may have upper or lower script.
10For ease of presentation, we use the terms paracetomol, an-

tipyretic, morphine and opioid to mean paracetomol-, antipyretic-,
morphine- and opioid-treatement, respectively.

7. ·I maps each t ∈ UL ∩ V into a value tI ∈ ∆R ∪ ∆P,
where ·I is the identity for literals; and

8. ·I maps each variable x ∈ B into a value xI ∈ ∆R.

As next, for space reasons and without loosing the substan-
tial ingredients, we illustrate the so-called reflexive-relaxed
ρdf semantics (Muñoz, Pérez, and Gutierrez 2009, Defini-
tion 12), in which the predicates sc and sp are not assumed
to be reflexive. Informally, the notion entailment is defined
using the idea of satisfaction of a graph under certain in-
terpretation. Intuitively a ground triple (s, p, o) in an RDF
graph G will be true under the interpretation I if p is in-
terpreted as a property name, s and o are interpreted as re-
sources, and the interpretation of the pair (s, o) belongs to
the extension of the property assigned to p. Moreover, blank
nodes, i.e., variables, work as existential variables. Intu-
itively the triple (x, p, o) with x ∈ B will be true under I if
I maps x into a resource s such that the pair (s, o) belongs
to the extension of the property assigned to p. Formally,

Definition 1 (Model/Satisfaction/Entailment ). A ρdf in-
terpretation I is a model of a ρdf graph G, denoted I G,
if and only if I is an interpretation over the vocabulary
ρdf ∪ uni(G) such that:
Simple:

1. for each (s, p, o) ∈ G, pI ∈ ∆P and (sI , oI) ∈ P[[pI ]];
Subproperty:

1. P[[spI ]] is transitive over ∆P;
2. if (p, q) ∈ P[[spI ]] then p, q ∈ ∆P and P[[p]] ⊆ P[[q]];

Subclass:
1. P[[scI ]] is transitive over ∆C;
2. if (c, d) ∈ P[[scI ]] then c, d ∈ ∆C and C[[c]] ⊆ C[[d]];

Typing I:
1. x ∈ C[[c]] if and only if (x, c) ∈ P[[typeI ]];
2. if (p, c) ∈ P[[domI ]] and (x, y) ∈ P[[p]] then x ∈ C[[c]];
3. if (p, c) ∈ P[[rangeI ]] and (x, y) ∈ P[[p]] then y ∈ C[[c]];

Typing II:
1. for each e ∈ ρdf, eI ∈ ∆P;
2. if (p, c) ∈ P[[domI ]] then p ∈ ∆P and c ∈ ∆C;
3. if (p, c) ∈ P[[rangeI ]] then p ∈ ∆P and c ∈ ∆C;
4. if (x, c) ∈ P[[typeI ]] then c ∈ ∆C.

A graph G is satisfiable if it has a model I. Moreover, given
two graphs G and H , G entails H , denoted G H , if and
only if every model of G is also a model of H .
Example 2. From G in Example 1, it can be
shown that G {(fever, hasTreatment, x),
(x, type, drugTreatment)}.

Deductive System for ρdf. We recap the sound and com-
plete deductive system for ρdf (Muñoz, Pérez, and Gutier-
rez 2009). In every rule, A,B,C,D,E,X and Y stand for
meta-variables to be replaced by actual terms. An instanti-
ation of a rule is obtained by replacing all meta-variables
with terms such that all triples after the replacement are
ρdf triples.
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Definition 2 (Deductive rules for ρdf). The deductive rules
for ρdf are the following:

1. Simple:
(a) G

G′ for a map µ : G′ → G (b) G
G′ for G′ ⊆ G

2. Subproperty:

(a) (A,sp,B),(B,sp,C)
(A,sp,C) (b) (D,sp,E),(X,D,Y )

(X,E,Y )

3. Subclass:
(a) (A,sc,B),(B,sc,C)

(A,sc,C) (b) (A,sc,B),(X,type,A)
(X,type,B)

4. Typing:

(a) (D,dom,B),(X,D,Y )
(X,type,B) (b) (D,range,B),(X,D,Y )

(Y,type,B)

5. Implicit Typing:

(a) (A,dom,B),(D,sp,A),(X,D,Y )
(X,type,B)

(b) (A,range,B),(D,sp,A),(X,D,Y )
(Y,type,B)

Definition 3 (Derivation ). Let G and H be ρdf-graphs.
G H if and only if there exists a sequence of graphs
P1, P2, . . . , Pk with P1 = G and Pk = H and for each j
(2 ≤ j ≤ k) one of the following cases hold:

• there is a map µ : Pj → Pj−1 (rule (1a));
• Pj ⊆ Pj−1 (rule (1b));
• there is an instantiation R/R′ of one of the rules (2)-(5),

such that R ⊆ Pj−1 and Pj = Pj−1 ∪R′.

Such a sequence of graphs is called a proof of G H .
Whenever G H , we say that the graph H is derived from
the graph G. Each pair (Pj−1, Pj), 1 ≤ j ≤ k is called a
step of the proof which is labeled by the respective instanti-
ation R/R′ of the rule applied at the step.

Please note that if G H then H is indeed a graph. Finally,
the closure of a graph G, denoted Cl(G), is defined as

Cl(G) = {τ | G ∗ τ} ,

where ∗ is as except that rule (1a) is excluded.
Example 3. Consider Example 1. Then it can be ver-
ified that Cl(G) ⊇ {(morphine, type, drugTreatment),
(brainTumour, type, illness)}.

The following proposition recaps salient results taken
from (Gutiérrez et al. 2011; Muñoz, Pérez, and Gutierrez
2009; ter Horst 2005)
Proposition 1. Every ρdf-graph is satisfiable. Moreover, let
G and H be ρdf-graphs. Then

1. G H if and only if G |= H;
2. if G |= H then there is a proof of H from G where rule

(1a) is used at most once and at the end;
3. the closure of G is unique and |Cl(G)| ∈ Θ(|G|2);
4. deciding G H is an NP-complete problem;
5. if G is ground then Cl(G) can be determined without us-

ing implicit typing rules (5);

6. if H is ground, then G H if and only if H ⊆ Cl(G);

7. There is no triple τ such that ∅ |= τ .

Remark 1. Please note that: (i) a proof of NP-
completeness of point 4. above can be found in (ter Horst
2005, Proposition 2.19) via a reduction of the k-clique prob-
lem encoding an undirected graph G into a ρdf graph G′

(an edge ⟨v, w⟩ is encoded via two triples (v, e, w) and
(w, e, v)) and H ′ consists of the triples (x, e, y), where
x and y are distinct variables of new set of k blank
nodes. Then, G has a clique of size ≥ k iff G′ |= H ′,
i.e., there is a map µ : H ′ → G′; and (ii) concerning
the size of the closure, the lower bound is determined by
triples (p1, sp, p2), . . . , (pn, sp, pn+1), whose closure’s size
is Ω(n2) via rule (2a). The upper bound follows by an anal-
ysis of the rules, where the important point is the propaga-
tion of triples (s, p, o) via rule (2b). This gives at most a
quadratic upper bound (for triples with fixed predicate, the
quadratic bound is trivial).

Note that from Proposition 1 it follows that deciding if, for
two ground ρdf-graphs G and H , G |= H can be done in
time O(|H||G|2) by computing first the closure of G and
then check whether H is in that closure. An alternative
method not requiring to compute the closure with a com-
putational benefit is illustrated by the following proposition:

Proposition 2 ( (Muñoz, Pérez, and Gutierrez 2009)). Let G
and H be two ground ρdf graphs. Then deciding if G |= H
can be done in time O(|H||G| log |G|). The result hods also
in case each triple in H has at most one blank node.

3 Extending ρdf with Negative Statements
In this section, we show how to extend ρdf allowing to rep-
resent negative statements.

3.1 Syntax
To start with, consider a new pair of predicates, ⊥c and ⊥p,
used to represent disjoint information: e.g., (i) (c,⊥c, d) in-
dicates that the classes c and d are disjoint; analogously, (ii)
(p,⊥p, q) indicates that the properties p and q are disjoint.

We call ρdf⊥ the vocabulary obtained from ρdf by adding
⊥c and ⊥p, that is,

ρdf⊥ = ρdf ∪ {⊥c,⊥p} . (5)

Like for ρdf, we assume that U contains the ρdf⊥ vocabu-
lary. Now we extend the alphabet U in the following way:

1. for each (atomic) resource r ∈ U \ ρdf⊥, we add to U
a new negated resource ¬r of r. Let U′ be the resulting
alphabet. We will use the convention that ¬¬r is r. In-
formally, ¬r is intended to represent the complement of
r. So, for instance, (paracetamol, type,¬opioid) may
encode “paracetamol is a non opioid treatment”;

2. for each resource c ∈ U′ \ ρdf⊥, we add to U′ a
new resource of the form ⋆c. Let U′′ be the result-
ing alphabet. Informally, e.g., a triple (s, p, ⋆c) repre-
sents an universal quantification on the third argument
over instance of class c, i.e., (s, p, t) is true for all t ∈
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ρdf¬
⊥ FOL

(s,¬p, o) ¬p(s, o)
(s,¬p, x) ∃x.¬p(s, x)
(a, type,¬c) ¬c(a)
(c, sc,¬d) ∀x.c(x) → ¬d(x)
(p, dom,¬c) ∀x∀y.p(x, y) → ¬c(x)
(¬p, range, d) ∀x∀y.¬p(x, y) → d(y)
(c,⊥c,¬d) ∀x.c(x) ∧ ¬d(x) → ⊥
(¬p,⊥p, q) ∀x∀y.¬p(x, y) ∧ q(x, y) → ⊥
(⋆c, p, o) ∀x.c(x) → p(x, o)
(s,¬p, ⋆c) ∀y.c(y) → ¬p(s, y) (i.e., ¬∃y.c(y) ∧ p(s, y))

Table 1: Informal FOL reading of some types of ρdf¬
⊥-triples.

UL that are instances of the class c. For instance,
(ebola,¬hasTreatment, ⋆treatment) may encode (3);11

3. finally, let U be U′′.
Now, the definition of ρdf¬

⊥-triples extends the one for ρdf-
triples in the following way:
Definition 4 (ρdf¬

⊥-triple). A ρdf¬
⊥-triple is of the form

(s, p, o) ∈ UBL×U×UBL, where
1. s, o /∈ ρdf⊥;
2. p is not of the form ⋆c;
3. s and o can not be both of the form ⋆c;
4. if p ∈ ρdf⊥ then neither s nor o are of the form ⋆c.
In Table 1, to ease the reading, we provide an informal
FOL reading of various additional (non exhaustive) types of
triples supported in ρdf¬

⊥.12

Example 4. In the context of Example 1, let us extend the
graph G with:
G := G ∪ {(opioid,⊥c, antipyretic),

(¬drugTreatment, sc, treatment),
(¬hasDrugTreatment, sp, hasTreatment),
(¬hasDrugTreatment, range,¬drugTreatment),
(brainTumour,¬hasDrugTreatment, radioTherapy),
(¬hasTreatment, dom, illness),

(¬hasTreatment, range, treatment),
(ebola,¬hasTreatment, ⋆treatment) } .

3.2 Semantics
The semantics of ρdf¬

⊥ has the following objectives:
1. we accommodate the new constructs in such a way that

the resulting deductive system will be as for ρdf, plus
some additional rules and, thus, any RDFS reasoner/store
may handle the new triples as ordinary triples if it does not
want to take account of the extra inference capabilities;

2. the semantics has to be such that, despite introducing neg-
ative statements, all ρdf¬

⊥ graphs have a canonical model
(see Corollary 1 later on), and, thus, ρdf¬

⊥ remains a para-
consistent logic; and
11In the sense that “none of the treatments are treatments for

ebola”
12The FOL reading is ‘informal’ as the translation isn’t a bijec-

tion, e.g.,, we have a 4-valued intentional semantics and individuals
may be classes, which may be negated.

3. deciding entailment in ρdf¬
⊥ still ranges from P to NP.

To do so, we will consider a four-valued logic seman-
tics (Belnap 1977) variant of the semantics for ρdf. Specif-
ically, we will have positive extensions of P[[]] and C[[]] (de-
noted P+[[]] and C+[[]], respectively) and negative exten-
sions of P[[]] and C[[]] (denoted P−[[]] and C−[[]], respectively).
Roughly, C+[[c]] will denote the set of resources known to
be instances of class c, while C−[[c]] will denote the set of
resources known not to be instances of class c (for prop-
erties the case is similar). Note that positive and negative
extensions need not to be the complement of each other:
e.g., r /∈ C+[[c]] does not imply necessarily that r ∈ C−[[c]]
as C−[[c]] will not enforced to be e.g., ∆R \ C+[[c]].

The idea of having separate positive and negative ex-
tensions is not new at all and we may find already
traces of it back in the mid 80s with the seminal work
of Patel-Schneider (Patel-Schneider 1985; Patel-Schneider
1986; Patel-Schneider 1987; Patel-Schneider 1988; Patel-
Schneider 1989) in which four-valued variants of Termino-
logical Logics (TLs), viz., the so-called Description Logics
(DLs) (Baader et al. 2007) nowadays, have been proposed
with the aim to obtain some gain from a computational com-
plexity point of view. Later the works (Straccia 1997a;
Straccia 1997b; Straccia 1999; Straccia 2000) have been in-
spired by the same idea, though also to model some sort of
relevance entailment, besides being paraconsistent. More
recently, a similar idea has been considered also in the con-
text of RDFS (Analyti et al. 2004; Analyti et al. 2005;
Analyti et al. 2013; Analyti, Damásio, and Antoniou 2015),
which is also the semantics we start from and are going to
adapt and extend to meet the before mentioned objectives.

A ρdf¬
⊥ interpretation I over a vocabulary V is a tuple

I = ⟨∆R,∆P,∆C,∆L,P
+[[·]],P−[[·]],C+[[·]],C−[[·]], ·I⟩ ,

where the finite non-empty sets ∆R,∆P, ∆C,∆L are the in-
terpretation domains of I and P+[[·]],P−[[·]],C+[[·]],C−[[·]], ·I
are the interpretation functions of I. They have to satisfy:

1. ∆R are the resources;

2. ∆P are property names;

3. ∆C ⊆ ∆R are the classes;

4. for each domain ∆R,∆P and ∆C, for each term t in it,
there is an unique designated complement term of t, de-
noted ¬t, in it;13

5. ∆L ⊆ ∆R are the literal values and contains all the literals
in L ∩ V ;

6. P+[[·]] and P−[[·]] are functions ∆P → 2∆R×∆R such that
P+[[¬p]] = P−[[p]], for each p ∈ ∆P;

7. C+[[·]] and C−[[·]] are functions ∆C → 2∆R such that
C+[[¬c]] = C−[[c]], for each c ∈ ∆C;

8. ·I maps each t ∈ UL ∩ V , that is not of the form ⋆c, into
a value tI ∈ ∆R ∪∆P, such that (¬t)I = ¬ tI and ·I is
the identity for literals; and

9. ·I maps each variable x ∈ B into a value xI ∈ ∆R.

13As for U, we will use the convention that ¬¬t is t.
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In the following, we define

P+[[p]]↑ = {x ∈ ∆R | (x, y) ∈ P+[[p]]}
P+[[p]]↓ = {y ∈ ∆R | (x, y) ∈ P+[[p]]}
P−[[p]]↑ = {x ∈ ∆R | (x, y) ∈ P−[[p]]}
P−[[p]]↓ = {y ∈ ∆R | (x, y) ∈ P−[[p]]}

as the projections of the property extension functions P+[[]]
and P−[[]] on the first and second argument, respectively.

Now, the model/satisfaction/entailment definitions for ρdf
are generalised to ρdf¬

⊥ as follows:

Definition 5 (Model/Satisfaction/Entailment ¬,

⊥
). A ρdf¬

⊥
interpretation I is a ρdf¬

⊥-model of a ρdf¬
⊥ graph G, de-

noted I ¬,

⊥
G, if and only if I is a ρdf¬

⊥-interpretation over
the vocabulary ρdf¬

⊥ ∪ uni(G) such that:

Simple:
1. if (s, p, o) ∈ G and neither s nor o are of the form ⋆c,

then pI ∈ ∆P and (sI , oI) ∈ P+[[pI ]];
2. if (s, p, ⋆c) ∈ G, then pI ∈ ∆P, c

I ∈ ∆C and (sI , y) ∈
P+[[pI ]], for all y ∈ C+[[cI ]];

3. if (⋆c, p, s) ∈ G, then pI ∈ ∆P, c
I ∈ ∆C and (x, sI) ∈

P+[[pI ]], for all x ∈ C+[[cI ]];
4. if (s, p, ⋆c) ∈ G, then pI ∈ ∆P, c

I ∈ ∆C and y ∈
C−[[cI ]], for all (sI , y) ∈ P−[[pI ]] ;

5. if (⋆c, p, s) ∈ G, then pI ∈ ∆P, c
I ∈ ∆C and x ∈

C−[[cI ]], for all (x, sI) ∈ P−[[pI ]];
Subproperty:

1. P+[[spI ]] is transitive over ∆P;
2. if (p, q) ∈ P+[[spI ]] then p, q ∈ ∆P and P+[[p]] ⊆

P+[[q]];
3. (p, q) ∈ P+[[spI ]] if and only if (¬q,¬p) ∈ P+[[spI ]];

Subclass:
1. P+[[scI ]] is transitive over ∆C;
2. if (c, d) ∈ P+[[scI ]] then c, d ∈ ∆C and C+[[c]] ⊆

C+[[d]];
3. (c, d) ∈ P+[[scI ]] if and only if (¬d,¬c) ∈ P+[[scI ]];

Typing I:
1. x ∈ C+[[c]] if and only if (x, c) ∈ P+[[typeI ]];
2. if (p, c) ∈ P+[[domI ]] and (x, y) ∈ P+[[p]] then x ∈

C+[[c]];
3. if (p, c) ∈ P+[[rangeI ]] and (x, y) ∈ P+[[p]] then y ∈

C+[[c]];
4. if (p, c) ∈ P+[[domI ]], x ∈ C−[[c]] and y ∈ P+[[p]]↓

then (x, y) ∈ P−[[p]];
5. if (p, c) ∈ P+[[rangeI ]], y ∈ C−[[c]] and x ∈ P+[[p]]↑

then (x, y) ∈ P−[[p]];
Typing II:

1. For each e ∈ ρdf¬
⊥, eI ∈ ∆P;

2. if (p, c) ∈ P+[[domI ]] then p ∈ ∆P and c ∈ ∆C;
3. if (p, c) ∈ P+[[rangeI ]] then p ∈ ∆P and c ∈ ∆C;
4. if (x, c) ∈ P+[[typeI ]] then c ∈ ∆C;

Disjointness I:
1. if (c, d) ∈ P+[[⊥c

I ]] then c, d ∈ ∆C;
2. if (p, q) ∈ P+[[⊥p

I ]] then p, q ∈ ∆P;
3. P+[[⊥c

I ]] is symmetric, sub-transitive and exhaustive
over ∆C;
Symmetry: if (c, d) ∈ P+[[⊥c

I ]], then (d, c) ∈
P+[[⊥c

I ]];
Sub-Transitivity: if (c, d) ∈ P+[[⊥c

I ]] and (e, c) ∈
P+[[scI ]], then (e, d) ∈ P+[[⊥c

I ]];
Exhaustive: if (c, c) ∈ P+[[⊥c

I ]] and d ∈ ∆C then
(c, d) ∈ P+[[⊥c

I ]];
4. P+[[⊥p

I ]] is symmetric, sub-transitive and exhaustive
over ∆P;
Symmetry: If (p, q) ∈ P+[[⊥p

I ]], then (q, p) ∈
P+[[⊥p

I ]];
Sub-Transitivity: if (p, q) ∈ P+[[⊥p

I ]] and (r, p) ∈
P+[[spI ]], then (r, q) ∈ P+[[⊥p

I ]];
Exhaustive: if (p, p) ∈ P+[[⊥p

I ]] and q ∈ ∆P then
(p, q) ∈ P+[[⊥p

I ]];
Disjointness II:

1. if (p, c) ∈ P+[[domI ]], (q, d) ∈ P+[[domI ]], and
(c, d) ∈ P+[[⊥c

I ]], then (p, q) ∈ P+[[⊥p
I ]];

2. if (p, c) ∈ P+[[rangeI ]], (q, d) ∈ P+[[rangeI ]], and
(c, d) ∈ P+[[⊥c

I ]], then (p, q) ∈ P+[[⊥p
I ]];

3. (c, d) ∈ P+[[⊥c
I ]] if and only if (c,¬d) ∈ P+[[scI ]];

4. (p, q) ∈ P+[[⊥p
I ]] if and only if (p,¬q) ∈ P+[[spI ]].

A graph G is ρdf¬
⊥-satisfiable if it has a ρdf¬

⊥-model I.
Moreover, given two ρdf¬

⊥-graphs G and H , we say that

G ρdf¬
⊥-entails H , denoted G ¬

⊥
H , if and only if every

ρdf¬
⊥-model of G is also a ρdf¬

⊥-model of H .
In the following, if clear from the context, for ease of pre-
sentation, we will omit the prefix ρdf¬

⊥-.
Remark 2 (About Definition 5). Note that:

1. the positive extension of a negated class is the negative
extension of that class;

2. by construction, we also have that for (s,¬p, o) ∈ G,
(sI , oI) ∈ P+[[(¬p)I ]] = P+[[¬ pI ]] = P−[[pI ]]. That is,
(s,¬p, o) ∈ G states that “(s, o) belongs to the negative
extension of p, i.e., s has a non p that is an o”;

3. by construction, e.g., if (c, d) ∈ P+[[scI ]] then also
C−[[d]] ⊆ C−[[c]]. Moreover, x ∈ C−[[c]] if and only if
(x,¬c) ∈ P+[[typeI ]];

4. concerning e.g., point 5 in Typing I, the informal reading
of (p, range, c) is ∀x.∀y.p(x, y) → c(y) and ∀x.∀y ∈ p↓
.¬c(y) → ¬p(x, y). In the latter case, the aim is to limit
the universal quantification in a reasonable way;

5. the presence of e.g., (a, type, b), (a, type, c) and (b,⊥c, c)
in a graph does not preclude its satisfiability. In fact, a
ρdf¬

⊥ graph will always be satisfiable (see Corollary 1
later on) avoiding, thus, the ex falso quodlibet principle.
This is in line with the ρdf semantics (Muñoz, Pérez, and
Gutierrez 2009);
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6. concerning the exhaustive property in Disjointness I:
classically, c disjoint d means that the intersection of c
and d is empty. So, c disjoint c tells us that c is empty, so
disjoint from any other class. We preserved this property
within our semantics.

Example 5. Consider Example 4. Then, it may be verified
that

G ¬
⊥ {(brainTumor, hasTreatment, x),

(x, type,¬antipyretic)} (6)

G ¬
⊥

(ebola,¬hasTreatment, paracetomol) (7)

G ̸ ¬
⊥

(ebola,¬hasTreatment, ebola) . (8)

Note that the last entailment does not hold as “ebola is not a
treatment”, which instead would hold without the restriction
on the domain of the universal quantification.
Remark 3. As anticipated in the related work section,
(Darari, Prasojo, and Nutt 2015) considers expressions of
the form

No({(s1, p1, o1), . . . , (sn, pn, on)) (9)

in informal FOL terms ¬∃x.(p1(s1, o1)∧ . . .∧ pn(sn, on)),
or equivalently, ∀x.(¬p1(s1, o1)∨. . .∨¬pn(sn, on)), where
x are the variables occurring the triples. For instance,

No({(obama, child, x), (x, gender, male)}) (10)

expresses that “Obama has no son”.
ρdf¬

⊥ considers only the case n = 1 in (9) via the ex-
pression (s,¬p, ⋆c) as the general case would introduce a
disjunction, which we would like to avoid for computational
reasons. Nevertheless, we may consider the option to use
e.g., (obama,¬child, ⋆malePerson) instead to express (10).

3.3 Deductive System for ρdf¬
⊥

We now present a deductive system for ρdf¬
⊥.

Definition 6 (Deductive rules for ρdf¬
⊥). The deductive rules

for ρdf¬
⊥ are all rules for ρdf to which we add the following

rules (Z is an additional meta-variable):
2. Subproperty:

(c) (A,sp,B)
(¬B,sp,¬A)

(d) (A,D,⋆C),(D,sp,E)
(A,E,⋆C) (e) (⋆C ,D,A),(D,sp,E)

(⋆C ,E,A)

3. Subclass:
(c) (A,sc,B)

(¬B,sc,¬A)

(d) (A,D,⋆C),(B,sc,C)
(A,D,⋆B) (e) (⋆C ,D,A),(B,sc,C)

(⋆B ,D,A)

4. Typing:

(c) (D,dom,B),(X,type,¬B),(Z,D,Y )
(X,¬D,Y )

(d) (D,range,B),(Y,type,¬B),(X,D,Z)
(X,¬D,Y )

(e) (A,D,⋆C),(Y,type,C)
(A,D,Y ) (f) (⋆C ,D,B),(X,type,C)

(X,D,B)

(g) (A,D,⋆C),(A,¬D,Y )
(Y,type,¬C) (h) (⋆C ,D,B),(X,¬D,B)

(X,type,¬C)

6. Conceptual Disjointness:

(a) (A,⊥c,B)
(B,⊥c,A) (b) (A,⊥c,B),(C,sc,A)

(C,⊥c,B)

(c) (A,⊥c,A)
(A,⊥c,B) (d) (A,⊥c,B)

(A,sc,¬B)

(e) (A,sc,B)
(A,⊥c,¬B)

7. Predicate Disjointness:

(a)
(A,⊥p,B)
(B,⊥p,A) (b)

(A,⊥p,B),(C,sp,A)
(C,⊥p,B)

(c)
(A,⊥p,A)
(A,⊥p,B) (d)

(A,⊥p,B)
(A,sp,¬B)

(e) (A,sp,B)
(A,⊥p,¬B)

8. Crossed Disjointness:

(a) (A,dom,C),(B,dom,D),(C,⊥c,D)
(A,⊥p,B)

(b) (A,range,C),(B,range,D),(C,⊥c,D)
(A,⊥p,B)

Now, the definition of derivation among ρdf¬
⊥-graphs G and

H , denoted G ¬
⊥

H , is as for ρdf (see Definition 3), except
that, of course, we now consider all rules of Definition 6
instead. Similarly, the ρdf¬

⊥-closure of a graph G, denoted
Cl¬⊥(G), is defined as

Cl¬⊥(G) = {τ | G ¬
⊥ ∗ τ} ,

where ¬
⊥ ∗ is as ¬

⊥ except that rule (1a) is excluded.
Example 6. The following is a simple proof of Eq. (6):

(1) (opioid,⊥c, antipyretic) Rule (1b)

(2) (opioid, sc,¬antipyretic) Rule (6d) : (1)

(3) (morphine, type, opioid) Rule (1b)

(4) (morphine, type,¬antipyretic) Rule (3b) : (2), (3)

(5) (brainTumour, hasDrugTreatment, morphine) Rule (1b)

(10) (brainTumor, hasTreatment, x)

(x, type,¬antipyretic) Rule (1a): (4), (5)

In the following, we will also assume that the definition of
entailment is extended naturally to ρdf¬

⊥-graphs by con-
sidering ⊥c,⊥p,¬p and ⋆c as resources without any specific
semantic constraint. In a similar way, we assume (and
Cl(·)) to be extended to ρdf¬

⊥-graphs by assuming that triples
involving ⊥c,⊥p,¬p and ⋆c are considered as ρdf triples.
Then, the following can easily be proven:
Proposition 3. Let G and H be two ρdf¬

⊥-graphs. Then,

1. if G H then G ¬
⊥

H;

2. if G H then G ¬
⊥

H;
3. Cl(G) ⊆ Cl¬⊥(G).
Of course, conditions 1.-3. above do not hold in general for
the opposite direction. For instance, for G = {(a,⊥c, b)}
we have G ̸ (a, sc,¬b), G ̸ (a, sc,¬b) and (a, sc,¬b) /∈
Cl(G), but G ¬

⊥
(a, sc,¬b) and (a, sc,¬b) ∈ Cl¬⊥(G).

The next proposition shows the construction of the canon-
ical model for ρdf¬

⊥ graphs and extends the result for ρdf
(see Proposition 1), i.e., all ρdf¬

⊥-graphs G are satisfiable.
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Proposition 4 (ρdf¬
⊥ Canonical model). Given a ρdf¬

⊥-
graph G, define a ρdf¬

⊥ interpretation IG as a tuple

IG = ⟨∆R,∆P,∆C,∆L,P
+[[·]],P−[[·]],C+[[·]],C−[[·]], ·IG⟩

such that:
1. ∆R := uni(G) ∪ {¬r | r ∈ uni(G)} ∪ ρdf;
2. ∆′

P := {p ∈ uni(G) | either (s, p, o), (s, p, ⋆c),
(⋆c, p, o), (p, sp, q), (q, sp, p), (p, dom, c), (p, range, d)
or (p,⊥p, q) is in Cl¬⊥(G)} ∪ ρdf¬

⊥;
3. ∆P := ∆′

P ∪ {¬p | p ∈ ∆′
P};

4. ∆′
C := {c ∈ uni(G) | either (x, type, c), (c, sc, d),

(d, sc, c), (p, dom, c), (p, range, c), (s, p, ⋆c), (⋆c, p, o) or
(c,⊥c, d) is in Cl¬⊥(G)};

5. ∆C := ∆′
C ∪ {¬c | c ∈ ∆′

C};
6. ∆L := uni(G) ∩ L;
7. P+[[·]] and P−[[·]] are extension functions ∆P → 2∆R×∆R

s.t. P+[[p]] := {(s, o) | (s, p, o) ∈ Cl¬⊥(G)} and P−[[p]] :=
P+[[¬p]];

8. C+[[·]] and C−[[·]] are extension functions ∆C → 2∆R s.t.
C+[[c]] := {x ∈ uni(G) | (x, type, c) ∈ Cl¬⊥(G)} and
C−[[c]] := C+[[¬c]];

9. ·IG is the identity function over ∆R.

Then, IG ¬,

⊥
G.

Proof. We prove that IG satisfies the constraints in Defini-
tion 5. We illustrate here the proof of some of the conditions
in Definition 5 only. The others can be worked out similarly.

Simple:
1. Suppose (s, p, o) ∈ G and neither s nor o are of the

form ⋆c. Then by construction p ∈ ∆P and (s, o) ∈
P+[[p]], which concludes.

2. Suppose (s, p, ⋆c) ∈ G. Then, by construction p ∈
∆P and c ∈ ∆C. Now, assume y ∈ C+[[c]] and, thus,
by construction (y, type, c) ∈ Cl¬⊥(G). Therefore, by
rule (4e) we have also (s, p, y) ∈ Cl¬⊥(G) and, thus,
(s, y) ∈ P+[[p]] by construction, which concludes.

Subclass:
2. Assume (c, d) ∈ P+[[sc]]. By construction, (c, sc, d) ∈

Cl¬⊥(G) and c, d ∈ ∆C. Now, assume x ∈ C+[[c]] and,
thus, by construction (x, type, c) ∈ Cl¬⊥(G). There-
fore, by rule (3b) we have also (x, type, d) ∈ Cl¬⊥(G)
and, thus, x ∈ C+[[d]] by construction. As a conse-
quence, C+[[c]] ⊆ C+[[d]]. Eventually, assume x ∈
C−[[d]] and, thus, by construction both x ∈ C+[[¬d]] and
(x, type,¬d) ∈ Cl¬⊥(G) hold. But, (c, sc, d) ∈ Cl¬⊥(G)
implies, by rule (3c), (¬d, sc,¬c) ∈ Cl¬⊥(G) and, thus,
by rule (3b) we have (x, type,¬c) ∈ Cl¬⊥(G). There-
fore, by construction x ∈ C+[[¬c]] = C−[[c]] and, thus,
C−[[d]] ⊆ C−[[c]], which concludes.

Typing I:
2. Assume (p, c) ∈ P+[[domI ]] and (x, y) ∈ P+[[p]].

By construction, both (p, dom, c) and (x, p, y) are
in Cl¬⊥(G). Therefore, by rule (4a), (x, type, c) ∈
Cl¬⊥(G) and, thus, by construction x ∈ C+[[c]], which
concludes.

4. Assume (p, c) ∈ P+[[domI ]], x ∈ C−[[c]] and
y ∈ P+[[p]] ↓. By construction, we have
that {(p, dom, c), (x, type,¬c), (z, p, y)} ⊆ Cl¬⊥(G).
Therefore, by rule (4c), (x,¬p, y) ∈ Cl¬⊥(G) and, thus,
by construction, (x, y) ∈ P+[[¬p]] = P−[[p]], which
concludes.

Typing II:
2. Assume (p, c) ∈ P+[[domI ]]. Then, by construction

(p, dom, c) ∈ Cl¬⊥(G) and, thus, p ∈ ∆′
P ⊆ ∆P and

c ∈ ∆′
C ⊆ ∆C, which concludes.

Disjointness I:
3. Symmetry: Assume (c, d) ∈ P+[[⊥c

I ]]. By construc-
tion, (c,⊥c, d) ∈ Cl¬⊥(G) and, thus, by rule (4a)
(d,⊥c, c) ∈ Cl¬⊥(G). Therefore, by construction,
(d, c) ∈ P+[[⊥c

I ]], which concludes.
Disjointness II:

1. Assume (p, c) ∈ P+[[domI ]], (q, d) ∈ P+[[domI ]], and
(c, d) ∈ P+[[⊥c

I ]]. Then, by construction, we have that
{(p, dom, c), (q, dom, d), (c,⊥c, d)} ⊆ Cl¬⊥(G) and,
thus, by rule (8a) (p,⊥p, q) ∈ Cl¬⊥(G). Therefore, by
construction, (p, q) ∈ P+[[⊥p

I ]], which concludes.

3. If (c, d) ∈ P+[[⊥c
I ]] then, by construction, (c,⊥c, d) ∈

Cl¬⊥(G) and, thus, by rule (6d) (c, sc,¬d) ∈ Cl¬⊥(G).
Therefore, by construction, (c,¬d) ∈ P+[[scI ]]. Vice-
versa, if (c,¬d) ∈ P+[[scI ]] then by construc-
tion, (c, sc,¬d) ∈ Cl¬⊥(G) and, thus, by rule (6e)
(c,⊥c, d) ∈ Cl¬⊥(G). Therefore, by construction,
(c, d) ∈ P+[[⊥c

I ]], which concludes.

By Proposition 4, it follows that

Corollary 1. Every ρdf¬
⊥-graph is satisfiable.

We prove now soundness and completeness of our deduction
system for ρdf¬

⊥. The proofs are inspired by the analogous
ones in (Muñoz, Pérez, and Gutierrez 2009) for ρdf.

The following proposition is needed for soundness.

Proposition 5 (Soundness). Let G and H be ρdf¬
⊥-graphs

and let one of the following statements hold:

1. there is a map µ : H → G;
2. H ⊆ G;
3. there is an instantiation R/R′ of one of the rules in Defi-

nition 6, such that R ⊆ G and H = G ∪R′.

Then, G ¬
⊥

H .

Proof. By Corollary 1 we know that G is satisfiable. So, let

I = ⟨∆R,∆P,∆C,∆L,P
+[[·]],P−[[·]],C+[[·]],C−[[·]], ·I⟩

be a model of G, i.e., I ¬,

⊥
G. Therefore, I satisfies the

constraints in Definition 5. We have to prove that I ¬,

⊥
H .

The proof is split in cases depending on rule applications of
which we address here only some of them. The other cases
can be shown similarly.
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Rule (4e). Let {(s, p, ⋆c), (o, type, c)} ⊆ R for some R ⊆
G, R′ = {(s, p, o)}, obtained via the application of rule
(4e), and H = G ∪ R′. As I ¬,

⊥
G and R ⊆ G, I ¬,

⊥
R

follows. Therefore, I ¬,

⊥
(o, type, c) and, thus, oI ∈

C+[[cI ]] follows. But, also I ¬,

⊥
(s, p, ⋆c) and, thus, by

condition Simple, case 2. in Definition 5, we have that
(sI , oI) ∈ P+[[pI ]]. That is, I ¬,

⊥
(s, p, o). Hence, from

I ¬,

⊥
R′, I ¬,

⊥
G and H = G ∪R′, I ¬,

⊥
H follows.

Rule (6d). Let (c,⊥c, d) ∈ R for some R ⊆ G, R′ =
{(c, sc,¬d)}, obtained via the application of rule (6d),
and H = G ∪ R′. As I ¬,

⊥
G and R ⊆ G, I ¬,

⊥
R

follows. Therefore, I ¬,

⊥
(c,⊥c, d) and, thus, (cI , dI) ∈

P+[[⊥c
I ]]. But, by condition Disjointness II, case 3. in

Definition 5 we have that (cI ,¬dI) ∈ P+[[scI ]] and, thus,
(cI , (¬d)I) ∈ P+[[scI ]]. Therefore, I ¬,

⊥
(c, sc,¬d).

Hence, from I ¬,

⊥
R′, I ¬,

⊥
G and H = G∪R′, I ¬,

⊥
H

follows.

Proposition 6. Let G and H be ρdf¬
⊥-graphs. If G ¬

⊥
H

then there is a map µ : H → Cl¬⊥(G).

Proof. Consider the canonical model

IG = ⟨∆R,∆P,∆C,∆L,P
+[[·]],P−[[·]],C+[[·]],C−[[·]], ·IG⟩

of G, as defined in Proposition 4. As G ¬
⊥

H , IG ¬,

⊥
H

follows. Therefore, for each (s, p, o) ∈ H , pIG ∈ ∆P

and (sIG , oIG) ∈ P+[[pIG ]]. By construction, pIG =
p, and P+[[pIG ]] = P+[[p]] = {(t, t′) | (t, p, t′) ∈
Cl¬⊥(G)}. Finally, since (sIG , oIG) ∈ P+[[p]], we have that
(sIG , p, oIG) ∈ Cl¬⊥(G), i.e., (sIG , pIG , oIG) ∈ Cl¬⊥(G).
Therefore, ·IG is a map such that HIG ⊆ Cl¬⊥(G), i.e., a
map ·IG : H → Cl¬⊥(G), which concludes.

From Proposition 6 we get the following corollary:

Corollary 2. Let G and H be ρdf¬
⊥-graphs. If G ¬

⊥
H then

there is a proof of H from G where rule (1a) is used at most
once and at the end.

Eventually, combining previous Propositions 5 and 6, we get
soundness and completeness of our deductive system.

Theorem 1 (Soundness & Completeness). Let G and H be
ρdf¬

⊥-graphs. Then G ¬
⊥

H iff G ¬
⊥

H .

Proof. Concerning soundness, if G ¬
⊥

H then, by Proposi-

tion 5, G ¬
⊥

H . Concerning completeness, if G ¬
⊥

H then,
by Proposition 6, H can be obtained from Cl¬⊥(G) using rule
(1a). Therefore, as G ¬

⊥
Cl¬⊥(G), G ¬

⊥
H follows, which

concludes.

Finally, unlike ρdf (see Proposition 1), the size of the closure
of a ρdf¬

⊥ graph G is Θ(|G|3). The upper bound comes from
the fact that in a triple (s, p, o), for each s, p and o we may
have at most |G| terms, while the lower bound is given by
the following example.

Example 7. It can easily be verified that for 1 ≤ i < j ≤ n
and 1 ≤ l, k, h ≤ n

{(ai, type, c), (ai, p1, ⋆c), (pi, sp, pj)} ¬
⊥

(al, pk, ah) ,

and, thus, the number of triples in the closure is Ω(|G|3).
Furthermore, it is not difficult to see that if ⋆c terms do not
occur in a ρdf¬

⊥ graph G, then the closure of G remains
quadratically upper bounded. As case (i) in Remark 1 also
applies to ρdf¬

⊥, it can be shown that

Proposition 7. Let G and H be ρdf¬
⊥-graphs. Then

1. the closure of G is unique and |Cl¬⊥(G)| ∈ Θ(|G|3);
2. if ⋆c terms do not occur in G then |Cl¬⊥(G)| ∈ Θ(|G|2);

3. deciding G ¬
⊥

H is an NP-complete problem;
4. if G is ground then Cl¬⊥(G) can be determined without

using implicit typing rules (5);

5. if H is ground, then G ¬
⊥

H if and only if H ⊆ Cl¬⊥(G);
6. There is no triple τ such that ∅ |= τ .

Eventually, by Proposition 7 it follows immediately that

Corollary 3. Let G and H be two ground ρdf¬
⊥ graphs.

Then deciding if G ¬
⊥

H can be done in time O(|H||G|3)
and in time O(|H||G|2) if ⋆c terms do not occur in G.

4 Conclusions
We have addressed the problem to add negative statements
of various form considered as relevant for RDFS by the lit-
erature. We have presented a sound and complete deduc-
tive system that consists of RDFS rules plus some additional
rules to deal with the extra type of triples we allow. The de-
sign of the semantics has been such that to preserve features
such as the canonical model property and computational at-
tractiveness.

As future work, Corollary 3 tells us that there is still some
computational complexity gap w.r.t. ρdf (see Proposition 2),
which we would like to reduce as much as possible. In par-
ticular, we want to investigate whether the principles of the
method proposed in (Muñoz, Pérez, and Gutierrez 2009)
for ρdf can be adapted to ρdf¬

⊥ as well. Additionally, we
would like to address query answering, in particular to ex-
tend our framework to SPARQL and to verify whether and
how it impacts w.r.t. ρdf¬

⊥ graphs. Eventually, we would
like to develop a FOL encoding of our semantics in the spirit
of (Franconi et al. 2013), which encodes, e.g., subclass tran-
sitivity via ∀x, y, z.sc(x, y)∧sc(y, z) → sc(x, z), and deter-
mine whether our semantics can be reformulated in terms of
a well-know paraconsistent semantics, such as e.g., Quasi-
classical logic (Marquis and Porquet 2001).
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