
Verification and Realizability in Finite-Horizon Multiagent Systems

Senthil Rajasekaran and Moshe Y. Vardi
Rice University

{sr79, vardi}@rice.edu

Abstract

The problems of verification and realizability are two cen-
tral themes in the analysis of reactive systems. When mul-
tiagent systems are considered, these problems have natu-
ral analogues of existence (nonemptiness) of pure-strategy
Nash equilibria and verification of pure-strategy Nash equi-
libria. Recently, this body of work has begun to include finite-
horizon temporal goals. With finite-horizon temporal goals,
there is a natural hierarchy of goal representation, ranging
from deterministic finite automata (DFA), to nondeterminis-
tic finite automata (NFA), and to alternating finite automata
(AFA), with a worst-case exponential gap between each suc-
cessive representation. Previous works showed that the re-
alizability problem with DFA goals was PSPACE-complete,
while the realizability problem with temporal logic goals is
in 2EXPTIME. In this work, we study both the realizabil-
ity and the verification problems with respect to various goal
representations. We first show that the realizability problem
with NFA goals is EXPTIME-complete and with AFA goals
is 2EXPTIME-complete, thus establishing strict complexity
gaps between realizability with respect to DFA, NFA, and
AFA goals. We then contrast these complexity gaps with the
complexity of the verification problem, where we show that
verification with respect to DFAs, NFA, and AFA goals is
PSPACE-complete.

1 Introduction
Verification (Clarke, Emerson, and Sistla 1986) and Real-
izability (Pnueli and Rosner 1989) are two major decision
problems in the study of reactive systems. When the goals
of these systems are specified through linear temporal logics,
game theory has provided a powerful modeling framework
for both problems through a two-agent game in which one
agent takes on the role of a system that tries to realize a prop-
erty and the other takes on the role of the environment that
tries to falsify the property. The verification problem corre-
sponds to checking whether an input strategy is winning for
the system agent in the relevant game (Kupferman and Vardi
1996), and the realizability (also called nonemptiness) prob-
lem corresponds to determining whether a winning strategy
for the system agent exists (Pnueli and Rosner 1989).

When the number of autonomous agents increases, the
games become concurrent multiagent games, suitable for
analyzing concurrent multiagent systems (Shoham and
Leyton-Brown 2009). In this setting, the notion of a win-

ning strategy no longer corresponds to a meaningful solu-
tion concept, as there are no longer only two agents with a
purely adversarial relationship. In these types of systems,
the concept of a pure-strategy Nash equilibria (henceforth,
Nash equilibria) has come to be a widely used solution con-
cept (Bouyer et al. 2015). Informally, a Nash equilibria is
a profile of strategies such that for each agent in the sys-
tem deviating from the profile is never more profitable than
not . In this sense, Nash equilibria represent a stable point
that games naturally tend towards over repeated play (Nash
1950; Gutierrez, Harrenstein, and Wooldridge 2015a).

Concurrent multiagent games represent an extremely
broad class of games. Iterated Boolean Games (Gutier-
rez, Harrenstein, and Wooldridge 2015b) are a restriction
of concurrent multiagent games that naturally mirror the
games that model the two-agent realizability and verifica-
tion problems (Kupferman and Vardi 1996; Pnueli and Ros-
ner 1989). In an iterated boolean game each agent has
a temporal goal and at each time step assigns a setting
to a unique collection of boolean variables under its con-
trol. Thus, when all agents’ assignments are considered
we are given a complete valuation of the boolean variables
at each time step. This infinite sequence of valuations is
then used to determine which temporal goals are satisfied
and which are not. Finding Nash equilibria in such games
corresponds to a useful method of analysis of the systems
that these games model; as such, there is a very large of
body finding Nash equilibria when agents’ goals are given
by an infinite-horizon logic such as Linear Time Tempo-
ral Logic (LTL) (Wooldridge 2009; Gutierrez et al. 2020;
Mogavero et al. 2014; Grädel, Thomas, and Wilke 2002;
Abate et al. 2021).

Some systems, however, are naturally modeled by agents
with finite-horizon goals, such as when notions like ‘com-
pletion’ are considered. The concept of a finite-horizon
temporal logic remains a relatively recent development in
the study of temporal logics (Giacomo and Vardi 2013).
While agents still create an infinite trace by setting their
variables at every time step, satisfaction is considered over
finite prefixes. The analogous problem of finding Nash
equilibria in iterated boolean games in which each agent
has been given a finite-horizon temporal goal has recently
begun to receive attention (Rajasekaran and Vardi 2021;
Gutierrez, Perelli, and Wooldridge 2017).

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

278

Our modelling of this problem is done from the view-
point of a system designer. Specifically, when given a sys-
tem in which multiple agents have finite-horizon temporal
logic goals, we query a subset W of “good” agents to see
if there is Nash equilibrium in which precisely the agents
in W are able to satisfy their goals. By the definition of
the Nash equilibrium, this means that agents not within W ,
which we consider as “bad” agents, are unable to unilater-
ally change their strategy and satisfy their own “bad” goal.
In doing so we can naturally incorporate malicious agents
with goals contrary to the designer’s intent by specifying a
set W that not contain such agents. This study of teams
of cooperating agents has clear parallels in earlier work in
rational synthesis (Fisman, Kupferman, and Lustig 2010;
Kupferman, Perelli, and Vardi 2016).

Here we consider Linear Time Temporal Logic on Finite
Traces (LTLf) (Giacomo and Vardi 2013) as our standard
finite-horizon temporal logic, but by using an automata-
based approach we are able to prove more general re-
sults that are independent of a specific logic by consid-
ering the size of the automata that represents the specifi-
cation. Since finite-horizon temporal logics describe lan-
guages of finite words, they admit a variety of equivalent
representations, ranging from deterministic finite automata
(DFAs) to nondeterministic finite automata (NFAs) to al-
ternating finite automata (DFAs) (Giacomo and Vardi 2013;
Giacomo and Vardi 2015; Giacomo and Vardi 2016). While
alternating finite automata are polynomial in the size with
respect to their corresponding LTLf formula, nondetermin-
stic automata are exponential and deterministic finite au-
tomata are doubly exponential (Giacomo and Vardi 2013).
By reasoning about different types of input automata, we are
able to reason broadly about finite-horizon temporal goals
with different goal succinctness from a complexity-theoretic
viewpoint. It is then natural to consider how the succinct-
ness of the representation influences the complexities of the
realizability and verification problems.

Our investigation sheds new light on the computational
complexity of temporal Nash Equilibria. Note that, in prior
work, the verification problem is usually proven to be easier
than the realizability problem from a complexity-theoretic
viewpoint. This corresponds to our intuition, since the ver-
ification problem checks a single input candidate strategy,
while the realizability problem tries to find some solution
strategy. Here, we observe the same phenomena of realiz-
ability being more difficult than verification. The succinct-
ness of the representation does not, however, seem to effect
the complexity of the verification problem in this setting.
No matter which representation we use, we get a PSPACE-
complete complexity result. In contrast, if we consider the
realizability problem then we get a strict hierarchy. For DFA
goals, the problem is PSPACE-complete (Rajasekaran and
Vardi 2021) (the same as verification, an exception to the
intuition that verification is easier than realizability). From
NFAs goals, the problem is EXPTIME-complete. Finally,
for AFA goals, the problem is 2EXPTIME-complete. This
analysis extends the state of the art to include a complete set
of results for both problems with varying representations.

Our approach follows the approach outlined in (Ra-

jasekaran and Vardi 2021) in that we consider the Nash equi-
libria as two separate conditions - one that corresponds to
correct behavior under deviation (the j-Deviant Trace Con-
dition) and one that corresponds to correct behavior when no
deviations are observed (the Primary-Trace condition). Us-
ing this characterization we are able to prove a suite of new
results and prove novel variants of a few older results that
appeared in previous works under this unified framework.
Taken together, they represent a complete characterization
of the complexity of both problems for the three main types
of automata-theoretic representations common to the litera-
ture on finite-horizon temporal logic.

2 Background
The background presented here largely follows (Rajasekaran
and Vardi 2021). We assume familiarity with automata the-
ory, as in (Sipser 2006; Vardi 1996).

2.1 Games

In this section we provide some definitions related to two-
agent games to provide a standard notation throughout this
paper. The two agents are denoted agent 0 and agent 1.

Definition 2.1 (Arena). An arena is a four tuple A =
(V, V0, V1, E) where V is a finite set of vertices, V0 and V1

are disjoint subsets of V with V0 ∪ V1 = V that represent
the vertices that belong to agent 0 and agent 1 respectively,
and E ⊆ V × V is a set of directed edges, i.e. (v, v′) | ∈ E
if there is an edge from v to v′.

Intuitively, the agent that owns a node decides which out-
going edge to follow. Since V = V0 ∪ V1, we omit V and
write A = (V0, V1, E).

Definition 2.2 (Play). A play in an arena A is an infinite
sequence ρ = ρ0ρ1ρ2 . . . ∈ V ω such that (ρn, ρn+1) ∈ E
holds for all n ∈ N. We say that ρ starts at ρ0

Definition 2.3 (Game). A game G = (A,Win) consists
of an arena A with vertex set V and a set of winning plays
Win ⊆ V ω . A play ρ is winning for agent 0 if ρ ∈ Win,
otherwise it is winning for agent 1.

Note that in this formulation of a game, reaching a state
v ∈ V with no outgoing transitions is always losing for
agent 0, as agent 0 is the one that must ensure that ρ is infi-
nite (a member of V ω).

A game is thus defined by its set of winning plays, often
called the winning condition. One such widely used winning
condition is the safety condition.

Definition 2.4 (Safety Games). Let A = (V, V0, V1, E) be
an arena and S ⊆ V be a subset of A’s vertices. Then,
the safety condition Safety(S) is defined as Safety(S) =
{ρ ∈ V ω | Occ(ρ) ⊆ S}, where Occ(ρ) denotes the subset
of vertices that occur at least once in ρ. A game with the
safety condition for a subset S is a safety game with the set
S of safe vertices. Information about solving safety games,
including notions of winning strategies and winning sets can
be found here (McNaughton 1993).

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

279

2.2 Concurrent Games and iBGs
A concurrent game structure (CGS) is an 8-tuple

(Prop,Ω, (ACTi)i∈Ω, S, λ, τ, s0 ∈ S, (Ai)i∈Ω)

where Prop is a finite set of propositions, Ω = {0, . . . k−1}
is a finite set of agents, ACTi is a set of actions, where
each ACTi is associated with Agent i, the set of decisions
is D = ACT0 × ACT1 . . . ACTk−1, S is a set of states,
λ : S → 2Prop is a labeling function that associates each
state with a set of propositions that are interpreted as true
in that state, τ : S × D → S is a deterministic transition
function that takes a state and a decision as input and returns
another state, s0 ∈ S is the initial state, and Ai is a goal
specification for Agent i given in the form of an determinis-
tic finite automaton (DFA), nondeterministic finite automa-
ton (NFA), or alternating finite automaton (AFA). 1 We say
that a finite word automaton accepts an infinite word ω if it
accepts a finite prefix of ω. In a CGS, Agent i prefers plays
in the game that satisfy Ai, that is, a play such that some
finite prefix of the play is accepted by Ai. For a goal au-
tomaton we use the notation Ai = ⟨Qi, qi0,Σ, δ

i, F i⟩, where
Qi is the state space, qi0 ∈ Qi is the initial state, Σ is the al-
phabet, δi is the transition function, and F i is the set of final
states. In this paper we refer to arbitrary infinite sequences
of states in a CGS as traces.

We now define iterated boolean games (iBG), a restric-
tion on the CGS formalism (Gutierrez, Harrenstein, and
Wooldridge 2015b). We follow the formulation of (Ra-
jasekaran and Vardi 2021), as we take the set of actions to
be a finite alphabet rather than a set of truth assignments.
An iBG is defined by applying the following restrictions to
the CGS formalism. Agent i ‘owns” alphabet Σi. These
Σi are disjoint and each Σi serves as the set of actions for
Agent i-an action for agent i consists of choosing a letter
in Σi. The set of decisions is then Σ = ×k−1

i=0 Σi. The
set of states is also Σ, and the labeling function is the iden-
tity function, i.e., λ(s) = s. Our use of the iBG model
is motivated by presentation, as iBGs offer a simple model
in which agent actions influence global states - considering
general CGS models would not influence the forthcoming
complexity-theoretic results. Finally, the transition function
τ is simply the right projection τ(s, d) = d.

We now introduce the notion of a strategy for Agent i in
the general CGS formalism.

Definition 2.5 (Strategy for Agent i). A strategy for Agent i
is a function πi : S

∗ → ACTi. Intuitively, this is a function
that, given the observed history of the game (represented by
an element of S∗), returns an action acti ∈ ACTi.

Recalling that Ω = {0, 1 . . . k − 1} represents the set of
agents, we now introduce the notion of a strategy profile.

Definition 2.6 (Strategy Profile). Let Πi represent the set of
strategies for agent i. We define the set of strategy profiles
Π =×i∈Ω Πi and denote a single strategy profile as π.

A strategy profile can be naturally thought of as a func-
tion of type Σ∗ → Σ, and we will call any function with

1For automata-theoretic background, see (Vardi 1996)

such type a global strategy. Since a global strategy is deter-
ministic, it yields a unique element of Sω , which we call a
primary trace.

Definition 2.7 (Primary Trace resulting from a Global Strat-
egy). Given a global strategy π : Σ∗ → Σ, the primary trace
of π is the unique trace t that satisfies

1. t[0] = π(ϵ)

2. t[i] = π(t[0], . . . t[i− 1])

We denote this trace as tπ .

Given a trace t ∈ Sω , define the winning set Wt = {i ∈
Ω : t |= Ai} to be the set of agents whose DFA goals are
satisfied by a finite prefix of the trace t. The losing set is
then defined as Ω/Wt.

A common solution concept in game theory is the Nash
equilibrium, which we adapt to our iBG framework. In our
framework, a Nash equilibrium is a strategy profile π such
that for each Agent i, if Ai is not satisfied on tπ , then a
unilateral strategy deviation for Agent i does not result in a
trace that satisfies Ai.

Definition 2.8 (Nash Equilibrium). (Gutierrez, Harren-
stein, and Wooldridge 2015b) Let G be an iBG and π =
⟨π0, π1 . . . πk−1⟩ be a strategy profile. We denote Wπ =
Wtπ . The profile π is a Nash equilibrium if for every
i ∈ Ω/Wt we have that for each strategy profile of the form
π′ = ⟨π0, π1 . . . π

′
i . . . πk−1⟩, with π

′

i ∈ Πi, it is the case
that i ∈ Ω/Wπ′ .

This definition provides an analogy for the Nash Equilib-
rium defined in (Nash 1950) by capturing the same property
- no agent can unilaterally deviate to improve its own payoff
(moving from an unsatisfied goal to a satisfied goal). Agents
in the set Wπ cannot have their payoff improved further, so
we do not check their deviations. We say that π is a W -NE
iff π is a Nash Equilibrium with Wπ = W .

We have already defined the primary trace, which corre-
sponds to the trace that results from no deviations to a pro-
file π. Since we consider unilateral deviations from a single
agent in our analysis, we define these traces as well.

Definition 2.9 (j-Deviant-Trace from a Strategy Profile).
Given a strategy profile π, a j-Deviant-Trace (w.r.t π) is
defined as follows. For α ∈ Σ, we introduce the notation
α[−j] to refer to α|Σ\Σj

(that is, α with Σj projected out).
A trace t = y0, y1, . . . is j-deviant if

1. y0 = ε

2. yi+1 = y0, . . . , yi, α, where α ∈ Σ and α[−j] =
π(yi)[−j]

3. t is not the primary trace

Our characterization of the Nash equilibria is based on
(Rajasekaran and Vardi 2021), in which the Nash Equilib-
rium condition was decomposed into the Primary-Trace and
j-Deviant-Trace Condition, which we reintroduce here. For
a fixed strategy profile π we have:

1. Primary-Trace Condition: The primary infinite trace tπ
defined by π satisfies the goals Ai for precisely i ∈W .

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

280

2. j-Deviant-Trace Condition: Each j-deviant trace t =
y0, y1, . . . (w.r.t π) for j ̸∈ W , does not satisfy the goal
Aj .

A strategy profile π : Σ∗ → Σ is then a W -NE iff it
satisfies both the Primary-Trace Condition and the j-Deviant
Trace Condition w.r.t W . In this definition we work with a
general notion of the goal Aj accepting a prefix, therefore
this universally applies to DFA, NFA, and AFA goals.

The main insight of (Rajasekaran and Vardi 2021) was
to show that these two conditions could be reasoned about
through automata-theoretic means separately when consid-
ering DFA goals. In order to analyze the j-Deviant-Trace
Condition for a single agent j with goal Aj , a safety game
Gj with V0 = Qj and V1 = {Qj ×Σ} and edge relation Ej

is defined as follows:

1. (q, ⟨q, α⟩)) ∈ Ej for q ∈ Qj \ F j and all α ∈ Σ.

2. (⟨q, α⟩, q′) ∈ Ej for q ∈ Qj and q′ ∈ Qj , where q′ =
δj(q, β) for some β ∈ Σ such that α[−j] = β[−j].

The winning set of agent 0 in this game is denoted
Win0(Gj); the winning set for agent 1 is Win1(Gj).

In order to reason about the Primary Trace, we construct
the deterministic Büchi automaton (Vardi 1996) AW =
⟨Q, q0,Σ, δ, F ⟩ with

1. Q = (×j∈Ω Qj)× 2Ω

2. q0 = ⟨q10 , . . . , qn0 ,W ⟩
3. F = (×j∈Ω Qj)× {∅}

4. δ(⟨q1, . . . qn, U⟩, α) = ⟨q′1, . . . q′n, V ⟩ if q′j = δi(qj , α),
where q′j ̸∈ F j for j ̸∈W , and V = U − {i : q′i ∈ F i}.

The intuition is that a word in Σω is accepted by AW iff only
the goals in W are satisfied on it.

The winning sets for agent 0 in the games Gj are
now used to refine the state space and transition func-
tion of AW to create the deterministic Büchi automaton
A′

W = (Q′, q0,Σ, δ
′, F ∩ Q′), with Q′ = ×i∈W Qi ×

×j∈Ω\W {Win0(Gj) ∩ Qj} × 2Ω, and δ′ defined as fol-
lows: δ′(q, α) = δ(q, α) if, for all j ̸∈ W , we have that
(q[j], α) ∈ Win0(Gj); otherwise, δ′(q, α) is undefined. It
was then shown that

Theorem 1. (Rajasekaran and Vardi 2021) For a given iBG
G, a W -NE strategy exists in G iff A′

W is nonempty.

Since the goal automata being considered have an in-
put alphabet that is the cross product of k other alphabets
(Σ = Σ0 × Σ1 . . .Σk−1) , they can be seen as exponen-
tial constructions themselves. For this reason, we introduce
bounded-channel automata.

Definition 2.10 (Bounded-Channel Automaton). Let Σ =
Σ0×Σ1 . . .Σk−1 and let I ⊂ {0 . . . k−1} be a strict subset
of agents. A bounded-channel automaton is an automaton
with a transition function ρ that satisfies the property that for
all α, β ∈ Σ and states q in the automaton, if αI = βI , i.e α
and β agree on Σi for every i ∈ I , then ρ(q, α) = ρ(q, β),
i.e. the transition function only considers Σi for i ∈ I on a
state q and a symbol α ∈ Σ.

Intuitively, a bounded-channel automaton does not con-
sider the actions of every agent through an element of Σ
but has an input alphabet ΣB = ×i∈I Σi where I ⊂ Ω.
Note that if |I| is a constant w.r.t |Ω| = k, then such au-
tomata have polynomial-sized alphabets. While the use of
bounded-channel goal automata does not affect many of the
complexity results in this paper, considering bounded chan-
nel automata allows us to reason about a more succinct input
type that arguably better corresponds to realistic situations.

3 Realizability
In this section we study the realizability problem (referred to
as the nonemptiness problem in (Gutierrez, Harrenstein, and
Wooldridge 2015b; Rajasekaran and Vardi 2021)) in which
we are are given an iBG G and a set W ⊆ Ω of agents and
we wish to decide if a Nash equilibria strategy profile exists
in which only the agents in W have their goals satisfied. In
(Rajasekaran and Vardi 2021), this problem was proven to
be PSPACE-complete for DFA goals, using the safety games
Gj and Büchi automaton A′

W , as described in section 2.2.
We now analyze the complexity for NFA and AFA goals.

3.1 NFA Goals
Assume the input goal automata are NFAs. By determiniz-
ing each goal automaton, we can readily apply the procedure
from (Rajasekaran and Vardi 2021). Constructing the DFA
goal automaton Aj = ⟨Qj , qj0,Σ, δ

j , F j⟩ from the NFA goal
input involves a worst-case exponential blowup in the num-
ber of states, with no blow-up in the size of the alphabet Σ.
Therefore, the state space of each safety game Gj , given by
Qj ∪ {Qj ×Σ} is overall exponential in the size of the goal
NFAs. Safety games can be solved in time linear in the size
of the game (McNaughton 1993), so each relevant Gj can
be analyzed in EXPTIME.

The automaton A′
W from (Rajasekaran and Vardi 2021)

has a state space Q′ that is upper bounded by the size of
the cross product of all DFA goals and 2Ω. Each DFA
goal has a state space that is exponential in the size of the
NFA, so the product of all DFAs is still singly exponen-
tial with respect to the NFA goals. Furthermore, 2Ω is also
singly exponential, implying that A′

W is singly exponential
in size with respect to the input. Testing a Büchi automa-
ton for nonemptiness can be done in NLOGSPACE (Vardi
and Wolper 1994), meaning that A′

W can be checked for
nonemptiness in PSPACE. Since the safety games are in
EXPTIME in the worst case, the overall complexity of this
method is in EXPTIME. These results still hold when con-
sidering bounded-channel goals, as they are still polynomial
in the size of the input.

The upper bound for the realizability problem with NFA
goals is analyzed above. For lack of space, we do not include
here the lower-bound proof, which holds even for two-agent
iBGs (and therefore holds for the bounded-channel case as
well). The proof is included in detail in our corresponding
technical report (Rajasekaran and Vardi 2022) 2

2https://arxiv.org/abs/2205.01029

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

281

https://arxiv.org/abs/2205.01029

Theorem 2. The realizability problem with NFA goals is
EXPTIME-complete.

3.2 AFA Goals
We now analyze the case of the realizability problem when
the agents’ goals are specified by AFAs. Since AFAs are
linear (in number of states) in the size of equivalent finite-
trace temporal specifications such as LTLf or LDLf (Gi-
acomo and Vardi 2013), we note that a similar problem of
deciding whether any W -NE exists was given a 2EXPTIME
upper bound, but no lower bound, in (Gutierrez, Perelli, and
Wooldridge 2017). Here we focus on the a single agent set
W and provide a tight 2EXPTIME bound.

Constructing the DFA goal automata Aj from the AFA
goals involves a doubly exponential worst-case blowup in
the number of states (Giacomo and Vardi 2013), with no
blow-up in the size of the alphabet Σ - this holds for
bounded-channel automata as well. The analysis now
largely follows the NFA-goals case. The size of the safety
game Gj is now doubly exponential in the size of the input
due to the presence of Qj , and so each Gj can be solved
in 2EXPTIME. Meanwhile A′

W consists of the cross prod-
uct of the doubly exponential Qjs and the singly exponential
2Ω, so it is doubly exponential overall. Following the same
logic as before yields a 2EXPTIME upper bound.

Theorem 3. The realizability problem with AFA goals can
be solved in 2EXPTIME.

This result agrees with the result in (Gutierrez, Perelli,
and Wooldridge 2017) (where W is not part of the input).
We now extend the analysis by providing a matching lower
bound, proving the problem to be 2EXPTIME-hard by re-
ducing from the 2EXPTIME-complete problem of LTLf re-
alizability, noting that there is a linear-time conversion from
LTLf formulas to equivalent AFA for a fixed-size alphabet
(Giacomo and Vardi 2013). We note that the 2EXPTIME
lower bound for LTLf realizability holds already for fixed
alphabet goals, as in (Rosner 1992).

The LTLf realizability problem (Giacomo and Vardi
2015) takes as input an LTLf formula ϕ along with a par-
tition of the variables V in ϕ into two sets X and Y . The
problem asks whether an agent (Agent 0) that takes control
of the variables in X can always ensure a trace satisfying
ϕ with an antagonistic agent (Agent 1) setting the variables
in Y . At each time step the agents set their variables, thus
producing an infinite trace over 2X∪Y . As before, ϕ is sat-
isfied by an infinite trace if it is satisfied by some finite pre-
fix of that infinite trace. The interaction is naturally mod-
eled as a game between the two agents, which is called the
ϕ-realizability game. There are several variations of these
games, we consider the variation where Agent 0 and Agent
1 move concurrently, assigning values to the X and Y vari-
ables, respectively (Giacomo and Vardi 2015).

Given an instance of the LTLf realizability problem with
goal ϕ, we construct an iBG Gϕ with two agents. Agent 0 is
given the goal ϕ expressed as AFA and Agent 1 is given an
empty goal, i.e., an AFA that accepts the empty language.
Let Σ0 = 2X , Σ1 = 2Y , and the set W be the empty set.

Since we assume that the temporal goal has a bounded al-
phabet, the translation to AFAs is linear in number of states.
Theorem 4. Given an LTLf formula ϕ, Agent 0 wins the
ϕ-realizability game iff no ∅-NE exists in Gϕ.

Proof. (→) Assume that Agent 0 wins the ϕ-realizability
game. Then, there exists a strategy π′

0 : (2Y)∗ → 2X that
ensures that the formula ϕ is eventually satisfied given an ar-
bitrary Agent 1 strategy π1 : (2X)∗ → 2Y . Therefore, there
can not be ∅-NE in G. Suppose to the contrary that the pro-
file ⟨π0, π1⟩ is an ∅-NE, which means that the primary trace
does not satisfy ϕ. Agent 0 can now deviate from this pro-
file and follow the strategy π′

0, so now Agent 0 and Agent
1 are following the profile ⟨π′

0, π1⟩. Since π′
0 is a winning

strategy in the ϕ-realizability game, Agent 0 is able to force
satisfaction of ϕ, so ⟨π0, π1⟩ is not an ∅-NE.

(←) Assume to the contrary that there is an ∅-NE in Gϕ.
We show that it implies that Agent 1 wins the ϕ-realizability
game. Let ⟨π0, π1⟩ be the strategy profile for the ∅-NE in
Gϕ. This means that ϕ is not satisfied in the primary trace,
and, furthermore, for every strategy profile ⟨π′

0, π1⟩ the pri-
mary trace does not satisfy ϕ. This means that π1 is winning
strategy for Agent 1 in the ϕ-realizability game.

Since LTLf -realizability is known to be 2EXPTIME-
complete (Giacomo and Vardi 2015), we get:
Theorem 5. The realizability problem with AFA goals is
2EXPTIME-complete.

Since this lower bound was shown for two-agent games,
it holds for the bounded-channel case as well.

4 Verification
We now address the verification problem in which we are
given an iBG G, a set W ⊆ Ω of agents, and a strat-
egy profile π = ⟨π0 . . . πk−1⟩, where k = |Ω|. We are
given the strategy profile in terms of the individual strate-
gies: Each πi = ⟨Si, si0,Σ,Σi, ρ

i, γi⟩ is a Moore machine
(Sipser 2006) that represents a function of type Σ∗ → Σi,
where Si is the set of states, si0 ∈ Si is the initial state, Σi is
the alphabet controlled by agent i, ρi : Si × Σ → Si is the
transition function, and γi : Si → Σi is the output function.
Σ =×i∈Ω Σi is the common alphabet of the goals in G.
The verification problem takes as inputs G, W , and π and
outputs whether π is a W -NE in G.

We first construct a Moore machine for π from
π0 . . . πk−1 using the standard product construction: π =
⟨S, s0,Σ,Σ, ρ, γ⟩, where

1. S =×i∈Ω Si.

2. s0 = ⟨s00, . . . , sk−1
0 ⟩.

3. Σ is both the input and output alphabet in π.
4. The transition function ρ is defined component-wise. For

t = ⟨t0, . . . , tk−1⟩ ∈ S and α ∈ Σ, we have ρ(t, α) =
⟨t′0, . . . , t′k−1⟩, where t′i = ρi(ti, α), for each i ∈ Ω.

5. The output function γ is defined component-wise. For
t = ⟨t0, . . . , tk1

⟩ ∈ S, we have γ(t) = ⟨σ0, . . . , σk−1⟩,
where σi = γi(ti), for each i ∈ Ω.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

282

Note that the size of π is exponential in the sizes of
π0 . . . πk−1.

We now define the state outcome of running π on input
words in Σ∗, inductively:
• π(ε) = s0, and
• π(wα) = ρ(π(w), α), for w ∈ Σ∗ and α ∈ Σ

The output of running π on a word w ∈ Σ∗ is then
γ(π(w)). In this way, we get that π represents a function
of type Σ∗ → Σ ,i.e. a global strategy (see Definition 2.6),
which yields a primary trace (Definition 2.7).

We can define bounded-channel Moore Machines for
single-agent strategies in the same way we have defined
bounded-channel goal automata. The construction is the
same - instead of considering input alphabet Σ, we con-
sider a restricted version that only considers some subset
of agents. This allows us to consider single-agent strate-
gies that have a succinct representation just as we consid-
ered goals with succinct representations. We now proceed to
analyze the complexity of verification with respect to DFA,
NFA, and AFA goals.

4.1 DFA Goals
As described in Section 2.2, the existence of a W -NE in
an iBG G with DFA goals can be analyzed through solving
safety games Gj and testing a Büchi word automaton A′

W
for nonemptiness. Note, however, that A′

W had a state space
that consisted of the cross product of all DFA goals. Since
here we have a strategy profile specified explicitly by the
Moore machine π = ⟨π0 . . . πk−1⟩, the Primary-Trace and
j-Deviant-Trace Conditions can be checked separately for
each agent, avoiding a cross-product construction. We begin
our analysis by considering agents in W .

Checking Agents in W As mentioned before, we no
longer need to create an automaton from the cross product of
all DFA goals Ai to form AW,π , which checks the primary
trace for all agents at once. Since the primary trace of π is
uniquely determined (Definition 2.7), we can check whether
this trace satisfies the goal Ai for each agent i ∈W .

For each agent i ∈ W , we construct a DFA Ai × π
as the product of the goal Ai = (Qi, qi0,Σ, δ

i, F i) and
π. In detail, Ai × π = (Qi × S, ⟨qi0, s0⟩, ∅, τ i, F i × S).
Note that the alphabet of this automaton is empty, so tran-
sitions are defined between states. For q ∈ Qi and s ∈ S,
We have τ i(⟨q, s⟩) = ⟨q′, s′⟩, where q′ = δi(q, γ(s)) and
s′ = ρ(s, γ(s)). Satisfaction of Ai on the primary trace now
corresponds to nonemptiness of this product automaton (as
the transition function τ i simulates the run of Ai on the pri-
mary trace of π), which means that a state ⟨f, s⟩with f ∈ F i

is reachable from ⟨qi0, s0⟩. This implies that a prefix of the
primary trace is accepted by Ai. Note that the state space of
Ai × π is of exponential size, since the state space of π is of
exponential size. Nonemptiness in a DFA with an exponen-
tial state space can be decided in NPSPACE=PSPACE.

If Ai × π is empty for some i ∈ W . then π is not a W -
NE as the goal goal Ai for an agent i is not satisfied on the
primary trace. We refer to these nonemptiness queries of
Ai × π as the i-queries.

Safety Game for Deviating Agents We now move on to
the analyzing the Primary Trace and Deviant Trace condi-
tions for agents j ̸∈ W . As before, we first construct a
safety game to characterize the set of states from which
successful deviations are possible. We adapt the safety
game Gj to take in account the fact that we wish to check
if π is a W -NE. Formally, we construct the safety game
Gπ,j = (Qj ×S,Qj ×S×Σ, Eπ,j). Agent 0 owns Qj ×S
and agent 1 owns Qj × S × Σ. The edge relation Eπ,j is
defined as follows:

1. (⟨q, s⟩, ⟨q, s, α⟩)) ∈ Eπ,j for q ∈ Qj \ F j , s ∈ S, and
α = γ(s).

2. (⟨q, s, α⟩, ⟨q′, s′⟩) ∈ Eπ,j for q, q′ ∈ Qj and s, s′ ∈ S,
where q′ = δj(q, β) and s′ = ρ(s, β), for some β ∈ Σ
such that α[−j] = β[−j].

As in Gj , if q ∈ F j , then ⟨q, s⟩ has no successor node,
and agent 0 is stuck and loses the game. Since Gπ,j is a
safety game, agent 0’s goal is to avoid states in F j and not
get stuck. Unlike in Gj , however, agent 0 has no “discre-
tion” in Gπ,j ; the move in state (⟨q, s⟩ must be to ⟨q, s, α⟩),
where α = γ(s). Intuitively, we check whether agent 0 can
win this game while sticking to the strategy profile π. By
keeping track of the state s ∈ S of π, agent 0 must move
in accordance with γ(s). Therefore, solving the safety game
Gπ,j amounts to a reachability query; agent 1 wins if she
can reach a state ⟨q, s⟩, with q ∈ F j . Because graph reach-
ability is in NLOGSPACE and the size of the game Gπ,j is
exponential in the input due to the exponential state space
S, the game can be solved in NPSPACE=PSPACE. We de-
note the set of winning states for agent 0 as Win0(Gπ,j);
Win1(Gπ,j) is the set of winning states for agent 1. Note
that, in particular, F j × S ⊆Win1(Gπ,j).

Checking the Agents in Ω \W
For an agent j ̸∈ W , we construct a DFA that checks

that the goal Aj is not satisfied on the primary trace
or on a deviant trace. In detail, Aj × π = (Qj ×
S, ⟨qj0, s0⟩, ∅, τ j ,Win1(Gπ,j)) is defined in exactly the
same way as the automaton Ai × π for i ∈ W with the
exception of the set of final states. We show below that if
Aj × π is nonempty, then either the Primary Trace Condi-
tion or the Deviant Trace conditions is violated for Agent j.

So, we must make sure that no state in Win1(Gπ,j) is
reachable in Aj × π from ⟨qj0, s0⟩. This is equivalent to the
automaton being empty, so we have another nonemptiness
query but now one that should fail. A path from ⟨qj0, s0⟩
to a state in Win1(Gπ,j) corresponds to either acceptance
of Aj on the primary trace or a violation of the j-Deviant-
Trace Condition , both of which contradicts π being a W -
NE. We refer to these nonemptiness queries as the j-queries
(a reference to j ̸∈W), and we note that they can be decided
in NPSPACE=PSPACE by the exact same logic as i-queries.
We now prove the correctness of checking the i-queries for
the agents i ∈W and the j-queries for the agents j ̸∈W .

Theorem 6. Given an iBG G with DFA goal inputs, a strat-
egy profile π is a W -NE iff the i-queries succeed and the

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

283

j-queries fail.

Proof. (→). Assume that π is a W -NE. Therefore, it sat-
isfies both the Primary-Trace Condition and the j-Deviant-
Trace Condition. Since π satisfies the Primary-Trace Condi-
tion, there is a path from ⟨qi0, s0⟩ to F i×S in Ai×π, so we
have that the i-queries are successful.

Suppose now, for contradiction, that some j-query suc-
ceeds. This means that there is a run of Aj on the primary
trace that enters a state ⟨qj , s⟩ in Win1(Gπ,j). There are
now two cases:

1. If qj ∈ F j , then Aj has just accepted on the primary trace,
contradicting the assumption that π was a W -NE.

2. Otherwise, Agent j now has a winning strategy in Gπ,j

from state ⟨qj , s⟩. By following this strategy, the agent is
able to reach a state in F j ×S, which means that Agent j
constructed a j-Deviant-Trace that satisfies Aj , violating
the j-Deviant-Trace Condition of π and contradicting the
assumption that π was a W -NE.

Therefore, we have that the i-queries must succeed and the
j-queries must fail.

(←) Assume now that the i-queries succeed and the j-
queries fail. We show that π satisfies the Primary-Trace
Condition and the j-Deviant-Trace Condition.

For the Primary-Trace Condition, note that goals Ai, for
i ∈ W , accept on the primary trace of π, since the i-queries
succeeded. Furthermore, the goals Aj , for j ̸∈ W , cannot
accept on the primary trace of π, as this would correspond
to a path in Aj × π from ⟨qj0, s0⟩ to F j × S ⊆Win1(Gπ,j)
in Aj × π. No such path exists since the j-queries failed.

For the j-Deviant-Trace Condition, we only need to study
the j-queries, j ̸∈W . Note that Aj×π cannot enter a state in
Win1(Gπ,j), since the j-queries failed. Thus, Aj × π stays
in Win0(Gπ,j). A j-Deviant-Trace must separate from the
primary trace at some time step k ≥ 0, since deviant traces
cannot be the primary trace, so at that point Aj × π is in
some state ⟨q, s⟩ ∈ Win0(Gπ,j). For Aj to accept on a
deviant trace means that agent 1 can force reaching, in the
games Gπ,j , from ⟨q, s⟩ to some ⟨q′, s′⟩ for q ∈ F j and
s ∈ S. But that is not possible, since it would mean that
⟨q, s⟩ ∈ Win1(Gπ,j). It follows that Aj cannot accept on a
j-deviant trace.

Complexity As noted before, each safety game and reach-
ability query can be solved in PSPACE. Therefore, the
entire algorithm has a PSPACE upper bound. The same
holds for the bounded-channel case (for both goal automata
and Moore machines), as the safety games and reachability
queries would still be solved in PSPACE since S would still
be exponential in the size of the input.
Theorem 7. The verification problem with DFA goals can
be solved in PSPACE.

4.2 NFA and AFA Goals
NFA Goals The algorithm for NFA goals follows from the
algorithm for DFA goals with some adaptation. Since we are
dealing with nondeterministic automata now, we denote the

transition function δi of the goal automaton Ai as a set of
triples with ⟨q, α, q′⟩ belonging to δi if it possible to transi-
tion from state q to state q′ upon reading α ∈ Σ. As before,
we start by considering the agents in W .

Checking Agents in W Given a goal automaton Ai =
(Qi, qi0,Σ, δ

i, F i) we use essentially the same construction
of Ai × π = (Qi × S, ⟨qi0, s0⟩, ∅, τ i, F i × S), which is now
a nondeterministic finite automaton. The transition func-
tion τ i is modified slightly to accommodate nondetermin-
stic transitions. As before, the alphabet of this automaton
is empty so transitions are defined between states; therefore
τ i is represented a set of pairs. For q ∈ Qi and s ∈ S,
We have ⟨⟨q, s⟩, ⟨q′, s′⟩⟩ ∈ τ i if ⟨q, γ(s), q′⟩ ∈ δi and
s′ = ρ(s, γ(s)). Once again we test these automata for
nonemptiness, noting that a word accepted by Ai × π corre-
sponds to Ai accepting a finite prefix of the primary trace of
π. As before, we denote these nonemptiness queries as the
i-queries. They can once again be tested for nonemptiness
in NPSPACE=PSPACE, as they are once again equivalent to
reachability testing in an exponentially large graph (caused
by the exponential state space S).

As before, we proceed with the construction of safety
games to analyze the set of states from which deviation is
possible for an agent j ̸∈W .

Safety Game for Deviating Agents We construct the
safety game Gπ,j = (Qj × S,Qj × S × Σ, Eπ,j). agent
0 owns Qj × S, and agent 1 owns Qj × S × Σ. The edge
relation Eπ,j is defined as follows:

1. (⟨q, s⟩, ⟨q, s, α⟩)) ∈ Eπ,j for q ∈ Qj \ F j , s ∈ S, and
α = γ(s).

2. (⟨q, s, α⟩, ⟨q′, s′⟩) ∈ Eπ,j for q, q′ ∈ Qj and s, s′ ∈ S,
if ⟨q, β, q′⟩ ∈ δj and s′ = ρ(s, β), for some β ∈ Σ such
that α[−j] = β[−j].
This is a slight modification from the previous construc-

tion that takes into account that there are now multiple tran-
sitions possible for a state q and a letter β ∈ Σ in Aj , so
the fundamental structure of the game is unchanged. It still
amounts to a reachability query, as agent 0 still has no choice
in moves. As before, these safety games are exponential in
the size of the input due to the presence of S, and therefore
they can be solved in NPSPACE=PSPACE. We retain the
notation that the set of winning states for agent 0 is given by
Win0(Gπ,j) with Win1(Gπ,j) defined analogously.

Checking the Agents in Ω \W Once again, the same ar-
gument from before applies. We create the NFA Aj × π =

(Qj × S, ⟨qj0, s0⟩, ∅, τ j ,Win1(Gπ,j)) from the goal NFA
Aj , which differs from the previous construction of the
NFA Ai × π in only the set of final states. As before, in
the DFA case, we denote nonemptiness queries of Aj × π
as the j-queries and they can once again be conducted in
NPSPACE=PSPACE. It is once again integral to π being a
W -NE that the j-queries fail. We state an equivalent theorem
to Theorem 6 for NFA inputs.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

284

Theorem 8. Given an iBG G with NFA goal inputs, a strat-
egy profile π is a W -NE iff the i-reachability queries succeed
and the j-reachability queries fail.

Proof. The proof of this theorem closely follows the proof
of Theorem 6 and is therefore omitted.

Complexity Each safety game and reachability query was
conducted in PSPACE. Therefore, the entire algorithm has a
PSPACE upper bound. Once again, S is exponential in the
size of the input for even the bounded-channel case, so the
result holds for the bounded-channel case as well.

Theorem 9. The verification problem with NFA goals can
be solved in PSPACE.

We note that we can achieve the same upper bound by
simply determinizing each goal automaton and then apply-
ing the DFA verification procedure. While both a DFA-
based approach and the approach outlined in this section lie
in PSPACE, the latter has better complexity in practice since
it avoids a second exponential blowup. The approach in this
section also prepares us to handle AFA goals.

AFA Goals A similar version of this problem in which a
game G with LDLf goal specifications was queried to see
if some W -NE existed was presented in (Gutierrez, Perelli,
and Wooldridge 2017) and was proven PSPACE-complete.
In this section, we show that this upper bound also holds
when W is specified and we are given AFA goals.

With AFA goals, we have a choice of converting to NFAs,
incurring an exponential blowup, or DFAs, incurring a dou-
bly exponential blowup. By converting to NFAs, we can
avoid a second exponential blow up and show that this prob-
lem lies in PSPACE. Therefore given goal AFAs, we create
equivalent NFAs Ai from the input and proceed as before.

The safety games constructed for NFA goals had a state
space of {Qj × S} ∪ {Qj × S × Σ}. Since we converted
from an AFA to NFA to obtain Qj , Qj is now exponential
in the size of the input. Since S remains exponential and Σ
was a part of the input, this game remains exponential in the
size of the input. Therefore, these safety games can still be
solved in PSPACE.

With respect to the automata constructed for the reacha-
bility queries, each vertex space Qi × S still remains expo-
nential in the size of the input even when Qi is exponential
in the size of the input. Therefore, these reachability queries
can also be solved in PSPACE.

Theorem 10. The verification problem with AFA goals can
solved in PSPACE.

Note that by employing an approach in which we check
each agent individually, we have also avoided a situation in
which we must take the cross product of exponentially large
automata. If we are given k AFAs and wish to convert them
in k NFAs, this represents an exponential blowup. At this
point, we could take the cross product of all NFAs and still
remain exponential in the size of the input. Note, however,
that this would involve a quadratic blowup in the exponent
- while 2n and 2kn are both exponential in n, there is an
exponential (in k) gap between 2n and 2kn.

4.3 Lower Bound
We now prove PSPACE-hardness for the verification prob-
lem with DFA goals, which also serves as a lower bound for
the verification problems with NFA and AFA goals.

We use the succinct representations of bounded-channel
automata to show that the verification problem for DFA
goals is PSPACE-hard through a polynomial time reduction
from the following canonical PSPACE-complete problem :
given a deterministic Turing machine M and a natural num-
ber n in unary, does M accept the empty tape using at most n
space (Sipser 2006)? We further assume that M has a unique
accepting configuration in which the tape consists solely of
a special unused character ∗ with the head on the rightmost
of the n cells. This standard assumption does not influence
the complexity of the problem.

The Turing Machine M has a state set denoted by R and
an alphabet denoted by ∆. Our reduction relies on the notion
of an instantaneous description (ID) of a Turing Machine,
which is a string that represents the content of the tape at a
discrete time step in the run time of M . Such an ID includes
• The complete contents of the tape from left to right.
• The position and state of the head of M . As a matter of

notation, if the head is on cell i then the character corre-
sponding to the content of cell i is a pair consisting of the
the element of ∆ on the tape and an element of R repre-
senting the state of the machine.

As an example, an ID could be of the form 121⟨0, q⟩31. In
this case, the content of the tape is 121031, while the pair
⟨0, q⟩ denotes that the machine is currently reading the cell
with symbol 0 while in state q. Since the machine is deter-
ministic, a sequence of IDs corresponding to the computa-
tion run of M on the empty tape is uniquely given by the
initial state and position of the head of M , which we will
call ID0. The machine then accepts if there is a sequence
of IDs ID0 . . . IDm such that IDm is the unique accepting
configuration of M and IDi+1 follows from IDi according
to the transition function of M . Our reduction strategy to
the verification problem is to use a set of bounded-channel
Moore Machines to simulate the transitions from one IDi to
IDi+1, and a set bounded channel DFA goals of the agents
to verify that the sequence is correct - that it starts at ID0

and eventually reaches IDm.
We now sketch a construction of a game GM,n and a strat-

egy profile πM,n = ⟨π0 . . . πn−1⟩ such that the Turing ma-
chine M accepts the empty tape in at most n steps iff π is an
Ω-NE in G, i.e. a strategy profile that satisfies every agent’s
goal on its primary trace. The number of agents in this game
is given by n, the same as the length of the unary input to
the Turing Machine M .

We first consider the Σi assigned to each agent in G. This
alphabet is R∪{∆×R} for every agent. Intuitively, each Σi

represents a single character of the ID, with Σi specifically
corresponding to the i-th cell of the ID. Therefore taking all
n alphabets together as Σ corresponds to an entire ID.

The strategy πi of an agent i outputs the next configura-
tion of cell i based on the previous configurations of the cell
to the right, the cell to the left, and the cell itself. Thus,
each strategy only needs to read at most three symbols, from

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

285

Σi−1,Σi, and Σi+1–since transitions in a Turing machine
are determined locally–and output a symbol in Σi according
to the transition function of M . (Agents 0 and n − 1 need
only consider two of the Σi since there are no cells to the
left and right of these agents, respectively). If the computa-
tion moves out of bounds, then the Moore machine for the
agent that moved it out of bounds (either 0 or n − 1) im-
mediately moves to a sink state that continuously outputs a
special character that does not appear in the unique accept-
ing configuration. Since each strategy only considers at most
three Σi’s as input and outputs a single Σi, these strategies
can be represented by bounded-channel Moore machines.
The state space of each machine has a size upper bound of
|R ∪ {∆× R}|3, meaning that each machine is polynomial
in the size of the input.

We now consider the goals for the agents. The purpose of
the goals is to check that the initial ID represent the empty
tape, and the final ID is an accepting one. The goal for each
agent except Agents 0 and n−1 is to see the symbol ∗ some
time after reading the empty symbol ⊥ as the first symbol
corresponding to the empty tape input. The goal for Agent
0 is to eventually read the symbol ∗, after reading the first
symbol ⟨⊥, q0⟩, where q0 ∈ R is the initial state of M . The
goal for Agent n−1 is to read the pair ⟨∗, qF ⟩ some time af-
ter seeing an empty cell as the first character, where qF ∈ R
is the unique state corresponding to the accepting configu-
ration IDm since the head is moved all the way to the right
in IDm. The DFA representations of these goals are very
simple, as they solely consist of eventually reading a sin-
gle character after verifying an initial character. Therefore,
all goal DFAs are bounded-channel automata and are there-
fore polynomial in the size of the input. Overall, we have a
polynomial number of agents, each with a polynomial-sized
Moore machine and a polynomial-sized goal DFA. There-
fore, the game G can be constructed in polynomial time. We
now prove the correctness of the reduction.

Theorem 11. The strategy profile πM,n = ⟨π0 . . . πn−1⟩ is
an Ω-NE in GM,n iff M accepts the empty tape using at most
space n.

Proof. (→) Assume that πM,n is an Ω-NE. By construction,
the primary trace of πM,n simulates the sequence of IDs of
M running on the empty tape with a built in check to ensure
that the computation uses no more than n cells. Therefore,
for the DFA goals to accept on this trace it means that in the
final ID all cells except the last are filled with the special ∗
character and the last has the pair ⟨∗, qF ⟩ and that each cell
started empty. This means that there is a valid sequence of
IDs generated by M upon reading the empty tape, meaning
that M accepted the empty tape while staying in bounds.
(←)Assume that M accepts the empty tape using no more

than n space. Then, it generates a unique valid sequence of
IDs that eventually end at the unique accepting configura-
tion. By construction, the primary trace of π consists of this
same sequence of IDs, and IDm must consist of the unique
configuration consisting of ∗ on every cell but the rightmost
with the pair ⟨∗, qF ⟩. Therefore, all DFA goals will accept
on the primary trace of πM,n, so πM,n is an Ω-NE.

We are able to construct the game GM,n and the profile
πM,n in polynomial time due to the succinct representation
of bounded-channel automata. Therefore, we have exhib-
ited a polynomial time reduction from a known PSPACE-
complete problem for the verification problem with DFA
goal inputs. Therefore, we have:
Theorem 12. The verification problems with DFA goals is
PSPACE-complete.

Since DFAs are a special case of both NFAs and AFAs, we
get lower bounds for both corresponding verification prob-
lems as well.
Corollary 12.1. The verification problems with NFA or AFA
goals are PSPACE-complete.

5 Concluding Remarks
In this work we provided complexity results for both the
realizability and verification problems in the finite-horizon
multiagent setting with different types of goal specifications,
significantly extending previous works (Gutierrez, Perelli,
and Wooldridge 2017; Rajasekaran and Vardi 2021). One
of the key points of interest from this analysis is the com-
plexity gap observed between the complexities of the re-
alizability and verification problems. While realizability
with DFA goals was proven to be PSPACE-complete in (Ra-
jasekaran and Vardi 2021), here we have shown that real-
izability with NFA goals is EXPTIME-complete and realiz-
ability with AFA goals is 2EXPTIME-complete. Therefore,
with respect to the realizability problem, we have shown that
the succincness of goal specification greatly influences the
complexity of the realizability problem. With respect to the
verification problem, however, this distinction does not ex-
ist, as the verification problems with DFA,NFA, and AFA
goals are all PSPACE-complete. Thus, the complexity for
DFA goals is the same for both the realizability and the veri-
fication problems, but as the automata get more succinct the
realizability problem grows in complexity while the verifi-
cation problem remains PSPACE-complete. This complex-
ity picture is similar to what is known in temporal reason-
ing in two-agent systems (system and environment), where
the complexity of realizability rises from PTIME for DFA
goals to 2EXPTIME for LTLf goals, while verification, i.e.,
model checking, is PSPACE-complete for different types of
goals, with the system state-explosion problem being the pri-
mary source of PSPACE-hardness, cf. (Vardi 1996)

Finally, by reasoning about the Primary-Trace Condition
and the j-Deviant-Trace Conditions separately, as in (Ra-
jasekaran and Vardi 2021), we were able to get algorithms
that are easy to understand and optimal. This method of sep-
aration was made specifically to reason about Nash equilib-
ria in qualitative games, by leveraging properties of both the
Nash equilibria as a solution concept and qualitative goals
themselves. By analyzing the j-Deviant-Trace Condition
separately through the use of safety games we are able to
get much better complexity bounds than if we dealt with the
entire Nash equilibria at once. We believe that this principle
of separation provides a powerful framework to reason about
other qualitative multi-agent systems and perhaps even other
solution concepts.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

286

Acknowledgements
Work supported in part by NSF grants IIS-1527668, CCF-
1704883, IIS-1830549, CNS-2016656, DoD MURI grant
N00014-20-1-2787, and an award from the Maryland Pro-
curement Office.

References
Abate, A.; Gutierrez, J.; Hammond, L.; Harrenstein, P.;
Kwiatkowska, M.; Najib, M.; Perelli, G.; Steeples, T.; and
Wooldridge, M. J. 2021. Rational verification: game-
theoretic verification of multi-agent systems. Appl. Intell.
51(9):6569–6584.
Bouyer, P.; Brenguier, R.; Markey, N.; and Ummels, M.
2015. Pure Nash equilibria in concurrent deterministic
games. Log. Methods Comput. Sci. 11(2).
Clarke, E.; Emerson, E.; and Sistla, A. 1986. Automatic
verification of finite-state concurrent systems using tempo-
ral logic specifications. ACM Transactions on Programming
Languagues and Systems 8(2):244–263.
Fisman, D.; Kupferman, O.; and Lustig, Y. 2010. Rational
synthesis. In Proc. 16th Int’l Conf. on Tools and Algorithms
for the Construction and Analysis of Systems, volume 6015
of Lecture Notes in Computer Science, 190–204. Springer.
Giacomo, G. D., and Vardi, M. Y. 2013. Linear temporal
logic and linear dynamic logic on finite traces. In Proc. 23rd
Int’l Joint Conf. on Artificial Intelligence, 854–860. IJ-
CAI/AAAI.
Giacomo, G. D., and Vardi, M. Y. 2015. Synthesis for LTL
and LDL on finite traces. In Yang, Q., and Wooldridge,
M. J., eds., Proc. 24th Int’l Joint Conf. on Artificial Intelli-
gence, 1558–1564. AAAI Press.
Giacomo, G. D., and Vardi, M. Y. 2016. LTLf and
LDLf synthesis under partial observability. In Proc. 25th
Int’l Joint Conf. on Artificial Intelligence, 1044–1050. IJ-
CAI/AAAI Press.
Grädel, E.; Thomas, W.; and Wilke, T. 2002. Automata,
Logics, and Infinite Games: A Guide to Current Research.
Lecture Notes in Computer Science 2500. Springer.
Gutierrez, J.; Najib, M.; Perelli, G.; and Wooldridge, M. J.
2020. Automated temporal equilibrium analysis: Verifi-
cation and synthesis of multi-player games. Artif. Intell.
287:103353.
Gutierrez, J.; Harrenstein, P.; and Wooldridge, M. J. 2015a.
Expresiveness and complexity results for strategic reason-
ing. In Proc. 26th Int’l Conf. on Concurrency Theory, vol-
ume 42 of LIPIcs, 268–282. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik.
Gutierrez, J.; Harrenstein, P.; and Wooldridge, M. J. 2015b.
Iterated Boolean games. Inf. Comput. 242:53–79.
Gutierrez, J.; Perelli, G.; and Wooldridge, M. J. 2017. Iter-
ated games with LDL goals over finite traces. In Proc. 16th
Conf. on Autonomous Agents and MultiAgent Systems, 696–
704. ACM.
Kupferman, O., and Vardi, M. 1996. Module checking. In
Proc. 8th Int. Conf. on Computer Aided Verification, vol-

ume 1102 of Lecture Notes in Computer Science, 75–86.
Springer.
Kupferman, O.; Perelli, G.; and Vardi, M. Y. 2016. Syn-
thesis with rational environments. Ann. Math. Artif. Intell.
78(1):3–20.
McNaughton, R. 1993. Infinite games played on finite
graphs. Ann. Pure Appl. Logic 65(2):149–184.
Mogavero, F.; Murano, A.; Perelli, G.; and Vardi, M. Y.
2014. Reasoning about strategies: On the model-checking
problem. ACM Trans. Comput. Log. 15(4):34:1–34:47.
Nash, J. F. 1950. Equilibrium points in n-person games.
Proceedings of the National Academy of Sciences 36(1):48–
49.
Pnueli, A., and Rosner, R. 1989. On the synthesis of a
reactive module. In Proc. 16th ACM Symp. on Principles of
Programming Languages, 179–190.
Rajasekaran, S., and Vardi, M. Y. 2021. Nash equilibria in
finite-horizon multiagent concurrent games. In Proc. 20th
Int’l Conf. on Autonomous Agents and MultiAgent Systems,
1046–1054. Int’l Found. for Autonomous Agents and Mul-
tiagent Systems.
Rajasekaran, S., and Vardi, M. Y. 2022. Verification and
realizability in finite-horizon multiagent systems.
Rosner, R. 1992. Modular Synthesis of Reactive Systems.
Ph.D. Dissertation, Weizmann Institute of Science.
Shoham, Y., and Leyton-Brown, K. 2009. Multiagent Sys-
tems - Algorithmic, Game-Theoretic, and Logical Founda-
tions. Cambridge University Press.
Sipser, M. 2006. Introduction to the Theory of Computation.
Course Technology, second edition.
Vardi, M., and Wolper, P. 1994. Reasoning about infinite
computations. Information and Computation 115(1):1–37.
Vardi, M. 1996. An automata-theoretic approach to linear
temporal logic. In Logics for Concurrency: Structure ver-
sus Automata, volume 1043 of Lecture Notes in Computer
Science, 238–266. Springer.
Wooldridge, M. J. 2009. An Introduction to MultiAgent
Systems, Second Edition. Wiley.

Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

287

	Introduction
	Background
	Games
	Concurrent Games and iBGs

	Realizability
	NFA Goals
	AFA Goals

	Verification
	DFA Goals
	NFA and AFA Goals
	Lower Bound

	Concluding Remarks

