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Abstract

We compare the syntactic multi-agent belief base approach,
and the dynamic epistemic logic possible world semantic ap-
proach. In the belief base approach, the language provides
an implicit and an explicit belief operators, plus a dynamic
modality for actions consisting in adding formulae to bases.
For the semantic approach, we rely on action models of Dy-
namic Epistemic Logic (DEL). We first show how to translate
a formula of the belief base approach into DEL: in particular,
we provide a specific action model scheme corresponding to
the addition of a formula in a belief base. Conversely, we
identify a fragment of DEL that can be translated in the multi-
agent belief base language.

1 Introduction
The formalization of epistemic states and their dynamics is
one of the key topics in the area of knowledge representa-
tion and reasoning. There are two traditions in this area.
On the one hand, there is epistemic logic which started with
the seminal work of Hintikka (Hintikka 1962) on the log-
ics of knowledge and belief. It was extended to the multi-
agent setting at a later stage (Fagin et al. 1995; Meyer and
van der Hoek 1995) and, more recently, to modeling knowl-
edge and belief change with growing research on dynamic
epistemic logic (DEL) (Baltag, Moss, and Solecki 1998;
Baltag and Moss 2004; van Ditmarsch, van der Hoek, and
Kooi 2007a). The standard approach to epistemic logic
is extensional. Its formal semantics exploits the so-called
multi-agent Kripke models, namely, multi-relational struc-
tures equipped with valuation functions for the interpreta-
tion of atomic formulas. Binary relations in a multi-agent
Kripke model are called epistemic (or doxastic) accessibil-
ity relations and are used to describe the agents’ epistemic
states and uncertainty.

On the other hand, we have the so-called syntactic ap-
proach. It includes, for instance, work on belief base and
knowledge base revision (Hansson 1993; 1999; Benferhat et
al. 2002), belief base merging (Konieczny and Pérez 2002)
and input-output logic (Makinson and van der Torre 2000).
The syntactic approach typically leverages belief bases, or
more generally knowledge bases, for representing what an
agent knows or believes. A natural distinction in this ap-
proach is between explicit and implicit belief. An agent’s
explicit belief is seen as a piece of information in the agent’s

belief base, while an implicit belief corresponds to a piece
of information that is derivable from the agent’s belief base
(i.e., included in the deductive closure of the agent’s be-
lief base). The syntactic approach was put forward among
other things as a solution to the logical omniscience prob-
lem in virtue of the fact that an agent’s beliefs are de-
scribed either by a set of formulas which is not necessar-
ily closed under deduction (Eberle 1974; Moore and Hen-
drix 1982) or by a set of formulas obtained by the applica-
tion of an incomplete set of deduction rules (Konolige 1986;
Jago 2009).

The two approaches have been recently reconciled in
(Lorini 2018; 2020) in which a semantics for multi-agent
epistemic logic using belief bases was proposed. The cen-
tral idea of this semantics is that an agent’s epistemic indis-
tinguishability relation should be computed from the agent’s
belief base by stipulating that a state is considered possi-
ble by the agent if and only if it satisfies all information in
the agent’s belief base. Moreover, at a dynamic level, the
dynamics of the agents’ explicit and implicit beliefs are sup-
posed to depend on how their belief bases change over time.
For instance, by privately expanding its belief base with a
new information α, an agent will start to explicitly believe α
and, consequently, it will be able to deduce new facts from
its expanded belief base.

In this paper we push forward the comparison between
the two approaches by investigating the connection between
the update semantics for DEL using so-called action models
(Baltag, Moss, and Solecki 1998) and the update semantics
for epistemic logic using belief bases introduced in (Lorini
2020). We believe comparing the two approaches is use-
ful since each of them has its own advantages and disad-
vantages and it is important to have a clear understanding
of their relationship. For instance, the extensional approach
using multi-relational Kripke models and action models is
general, as it allows us to model a large variety of multi-
agent information dynamics, but it is not compact: even
simple situations require big models. On the contrary, the
syntactic approach is less general, but it represents informa-
tion in a more compact way with the help of belief bases.
We will answer the following questions: what is the exten-
sional counterpart in terms of action model of the notion of
belief base expansion? Which class of multi-agent infor-
mation dynamics can be represented through update opera-
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tions on belief bases? Both directions will be explored: from
multi-agent belief bases to action models and back from ac-
tion models to multi-agent belief bases. On the one hand,
we will show how to translate the notion of private belief
base expansion into a specific class of action models repre-
senting private information change. On the other hand, we
will identify a specific class of “ruby” actions models that
can be translated into the belief base semantics. In a “ruby”
action model each agent privately learns a new fact and up-
dates its beliefs accordingly assuming that the others do not
learn anything. The non-trivial aspect of the construction
from the DEL semantics to the belief base semantics lies in
syntactically representing action models with belief bases.

The paper is organized as follows.1 In Section 2 we
present the background material on the language and the
semantics for epistemic logic exploiting belief bases intro-
duced in (Lorini 2020). Section 3 presents the background
material on DEL: the notions of action model and product
update between an epistemic model and an action model. In
Section 4, we study the connection between the update se-
mantics for epistemic logic using multi-agent belief bases
and the DEL semantics using action models. We provide a
polynomial embedding of the former into the latter and then
we show how to represent “ruby” action models through the
notion of private belief base expansion. In Section 5, we dis-
cuss the two semantics under the assumption of epistemic
introspection. In Section 6, we discuss some related work.

2 Background on Multi-agent Belief Bases
This section presents the dynamic epistemic language for
beliefs of both explicit and implicit types (Lorini 2020).

2.1 Language
Assume a countably infinite set of atomic propositions
Ap = {p, q, . . .} and a finite set of agents Ag = {1, . . . , n}.
Let 2Ag∗ = 2Ag \ {∅} be the set of non-empty coalitions.

We define the language in two steps. First define the lan-
guage L0 by:

L0
def
= α ::= p | ¬α | α ∧ α | 4iα,

where p ranges over Ap and i ranges over Ag. L0 is the lan-
guage used to represent explicit beliefs. The formula 4iα
reads “agent i has the explicit belief that α”. The language
LB extends L0 and is defined by:

LB
def
= ϕ ::= α | ¬ϕ | ϕ ∧ ϕ | �iϕ | [+Jα]ϕ,

where α ranges over L0, i over Ag and J over 2Ag∗.
The other Boolean constructions >, ⊥, ∨, → and↔ are

defined from p, ¬ and ∧ in the standard way. The formula
�iϕ reads “agent i implicitly believes that ϕ”. The abbrevi-
ation ♦iϕ

def
= ¬�i¬ϕ defines the concept of belief compat-

ibility. The formula ♦iϕ reads “ϕ is compatible with agent
i’s explicit beliefs”. The operator [+Jα] is used to model
private belief expansion. Specifically, the formula [+Jα]ϕ
reads “ϕ holds after every agent in the coalition J has ex-
panded its belief base with α”.

1The supplementary material contains the long version of this
submission.

2.2 Belief Base Semantics
The formal semantics for the language LB exploits belief
bases. Unlike the standard Kripke semantics in which possi-
ble worlds and epistemic alternatives are primitive, they are
here defined from the primitive concept of belief base.
Definition 1 (State) A state is a tuple B =

(
(Bi)i∈Ag,V

)
where Bi ⊆ L0 is agent i’s belief base, and V ⊆ Ap is the
actual environment. The set of all states is noted S.

The following definition specifies truth conditions for for-
mulas in the sublanguage L0.
Definition 2 (Satisfaction relation) For any state B =(
(Bi)i∈Ag,V

)
∈ S:

B |= p ⇐⇒ p ∈ V ,

B |= ¬α ⇐⇒ B 6|= α,

B |= α1 ∧ α2 ⇐⇒ B |= α1 and B |= α2,

B |= 4iα ⇐⇒ α ∈ Bi.

Observe the set-theoretic interpretation of the explicit be-
lief operators in the previous definition: agent i has the ex-
plicit belief that α if and only if α is included in its belief
base. The following definition introduces the notion of epis-
temic alternative.
Definition 3 (Epistemic alternatives) Let i ∈ Ag. Then,
Ri is the binary relation on the set S such that, for all B =(
(Bi)i∈Ag,V

)
, B′ =

(
(B ′i)i∈Ag,V

′) ∈ S:

BRiB′ if and only if ∀α ∈ Bi : B′ |= α.

BRiB′ means that B′ is an epistemic alternative for agent
i at B, that is to say, B′ is a state that agent i considers
possible at B. The idea of the previous definition is that B′
is an epistemic alternative for agent i at B if and only if, B′
satisfies all facts that agent i explicitly believes at B.

A multi-agent belief model (MAB), or simply model, is
defined to be a state supplemented with a set of states, called
context. The context Cxt is not necessarily equal to the set
of all states S, since there could be states in S incompatible
with the general “laws of the domain” and, consequently,
with the agents’ epistemic states. For example, we might
want to exclude from the context Cxt all states in which the
propositions “1+1=2” and “1+1=3” are true concomitantly.
Definition 4 (Multi-agent belief model) A multi-agent be-
lief model (MAB) is a pair (B,Cxt), where B ∈ S and
Cxt ⊆ S. The class of MABs is noted M.
Note that in Definition 4 we do not require B ∈ Cxt . The
following definition extends Definition 2 to the full language
LB . Its formulas are interpreted with respect to MABs. (We
omit Boolean cases, as they are defined in the usual way.)
Definition 5 (Satisfaction relation (cont.)) Let
(B,Cxt) ∈M. Then:

(B,Cxt) |= α ⇐⇒ B |= α,

(B,Cxt) |= �iϕ ⇐⇒ ∀B′ ∈ Cxt , if BRiB′ then
(B′,Cxt) |= ϕ,

(B,Cxt) |= [+Jα]ϕ ⇐⇒ (B+Jα,Cxt) |= ϕ,

with V +Jα = V , B+Jα
i = Bi ∪ {α} for all i ∈ J , and

B+Jα
j = Bj for all j 6∈ J .
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According to the previous definition, agent i implicitly be-
lieves that ϕ if and only if ϕ is true at all states in the context
that i considers possible. Moreover, every agent in coalition
J privately expands its belief base with α if every agent in
J adds the information α to its belief base, while all agents
outside of J keep their beliefs unchanged.

Let ϕ ∈ LB . Formula ϕ is said to be valid relative
to the class M, noted |=M ϕ, if and only if, for every
(B,Cxt) ∈ M, we have (B,Cxt) |= ϕ. Formula ϕ is said
to be satisfiable for the class M if and only if ¬ϕ is not valid
for the class M.

3 Background on DEL
An epistemic model is a Kripke structure (i.e. a graph) in
which nodes are possible worlds and edges are labelled by
agents.

Definition 6 An epistemic modelM = (W, (Ri)i∈Ag, V ) is
a tuple where:

• W is a non-empty finite set of possible worlds,
• Ri ⊆W ×W is an accessibility relation for agent i,
• V : W −→ 2Ap is a valuation function.

A static epistemic situation is then classically represented by
a so-called pointed epistemic model, which is a pairM, w
where w is the current world.

Example 1 In Figure 1 (on the left), the epistemic modelM
contains two worlds w and u that are indistinguishable for
both agents i and j. Moreover, the current world is w.

To model epistemic actions (public/private announce-
ments, etc.), DEL provides the notion of action model (Bal-
tag, Moss, and Solecki 1998). An action model is also
a Kripke structure. Nodes are atomic actions, also called
events, labelled by a pair of pre- and post-conditions. The
precondition pre(a) of an atomic action a is the epistemic
formula that should be true before the execution of a, and
the postcondition function post(a) assigns to each proposi-
tion p a new truth value obtained by the evaluation of the
formula post(a)(p).

Definition 7 An action model is a tuple A =
(A, (RAi )i∈Ag, pre, post) where:

• A is a non-empty finite set of possible atomic actions,
• RAi ⊆ A× A is the accessibility relation on A for i,
• pre : A −→ LEL is a precondition function,
• post : A×Ap −→ LEL is a postcondition function.

Example 2 In Figure 1 (top), the action model A contains
two atomic actions a and a′. For a to be executed, its pre-
condition p should be true. Then, action a assigns p to false.
Action a′ is always executable since its precondition is >,
and it does not change the value of any proposition. Action
a is the current event and the sole possible action for agent
i, while agent j considers that the trivial action a′ happens.
The pointed action model A, a corresponds to the private
announcement of p to agent i and the private assignment of
p to false for agent i (that is, only i sees that p has been
assigned to false).

a :
pre : p

post : p←⊥ a′ :
pre : >
post : /

j

i i, j

A

w : {p}

u : ∅

i, j

i, j

i, j

(w, a) : ∅ (w, a′) : {p}

(u, a′) : ∅

j

j

i

i, j

i, j

i, j

M M×A

Figure 1: Example of productM×A.

Now we recall the definition of the productM×A which
corresponds to the epistemic model obtained by executing
the action model A in the initial epistemic modelM.

Definition 8 Let M = (W, (Ri)i∈Ag, V ) be a Kripke
model. Let A = (A, (RAi )i∈Ag, pre, post) be an ac-
tion model. The product of M and A is M × A =
(W ′, (R′i)i∈Ag, V

′) where:
1. W ′ = {(w, a) ∈W × A | M, w |= pre(a)};
2. (w, a)R′i(w

′, a′) iff wRiw′ and aRAi a
′;

3. V ′((w, a)) = {p ∈ Ap | M, w |= post(a, p)}.
Worlds inM×A are pairs (w, a) in which the precondi-

tion of a holds inM, w.

Example 3 Figure 1 shows the resulting product M × A
by executing A from M. Note that the pair (u, a′) is not
present because the precondition p is not true in u. Note
also that p is false in (w, a), due to the postcondition of a.

The product of a pointed epistemic model (M, w) with a
pointed event model (A, a) is defined as (M, w)×(A, a) :=
(M×A, (w, a)). It is defined only ifM, w |= pre(a).We
recall the language of DEL, noted LDEL, by extending stan-
dard epistemic logic with dynamic modalities 〈A, a〉:

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | 〈A, a〉ϕ

Formula Kiϕ is read “agent i knows that ϕ”. Formula
〈A, a〉ϕ is read “action A, a is executable, and after having
executed it, ϕ holds”.

Definition 9 The truth conditionsM, w |= ϕ are defined as
follows (Boolean cases are omitted):
• M, w |= p if p ∈ V (w);
• M, w |= Kiϕ if for all u such that wRiu,M, u |= ϕ.
• M, w |= 〈A, a〉ϕ if M, w |= pre(a) andM ×
A, (w, a) |= ϕ.

We finish this section by recalling the notion of modal
depth md(ϕ) of a formula ϕ which is the maximum of the
number of nested knowledge operators. It is defined by in-
duction: md(p) := 0; md(¬ϕ) := md(ϕ); md(ϕ ∨ ψ) :=
max(md(ϕ),md(ψ)); md(Kiϕ) = 1 + md(ϕ) and finally
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a1 :
pre : >
post : p4iα ← > for all i ∈ J

a2 :
pre : trBA(α)

post : /

a3 :
pre : >
post : /

J
Ag \ J

Ag

Ag

Figure 2: Action model A+Jα that simulates adding α in
bases of agents in J .

md(〈A, a〉)ϕ is the maximum of the modal depths of ϕ and
the formulas written in A.

The notion of bisimulation in modal logic has been refined
to take the modal depth of formulas into account: the notion
of n-bimilation noted -n. We have thatM, w -n M′, w′
iff M, w and M′, w′ agree on formulas of modal depth at
most n (see Prop. 2.31 in (Blackburn, de Rijke, and Venema
2001) and Section 6.5 in (Van Ditmarsch, van Der Hoek, and
Kooi 2007b)).

4 The Two Translations
In this section, we explore the connection between the DEL
semantics using action models and the semantics using be-
lief bases. We first investigate the direction from multi-agent
belief bases to action models. Then, we investigate the other
direction, from action models to multi-agent belief bases.

4.1 From Belief Base Operations to Action
Models

We show how to embed the belief base semantics into the
DEL action model semantics. In particular, we provide a
polynomial satisfiability preserving translation trBA of the
language LB into LDEL. It is defined as follows:

trBA(p) = p,

trBA(¬ϕ) = ¬trBA(ϕ),

trBA(ϕ1 ∧ ϕ2) = trBA(ϕ1) ∧ trBA(ϕ2),

trBA(4iα) = p4iα ∧ KitrBA(α),

trBA(�iϕ) = KitrBA(ϕ),

trBA([+Jα]ϕ) = [A+Jα, a1]trBA(ϕ),

where A+Jα = (A, (RAi )i∈Ag, pre, post) is the action
model (see Figure 2) such that:

• A = {a1, a2, a3};
• ∀i ∈ J , RAi = {(a1, a2), (a2, a3), (a3, a3)};
• ∀i ∈ Ag \ J , RAi = {(a1, a3), (a2, a3), (a3, a3)};
• pre(a1) = >, pre(a2) = trBA(α), pre(a3) = >;

• post(a2, p) = post(a3, p) = p for all p ∈ Ap,
post(a1, p) = p for all p 6∈

⋃
i∈J{p4iα}, and

post(a1, p4iα) = > if i ∈ J .

The following is the core result of this section highlight-
ing the correctness of our polynomial embedding.

Theorem 1 Let ϕ ∈ LB . Then, ϕ is satisfiable for the class
M if and only if trBA(ϕ) is DEL-satisfiable.

PROOF.
The proof relies on the fact the language LB can be

equivalently interpreted relative to models of the form Ω =
(S,B, (⇒i)i∈Ag, τ) where S is a non-empty set of states, B :
Ag× S −→ 2L0 is a belief base function, τ : Ap −→ 2S is
valuation function,⇒i ⊆ S×S is agent i’s epistemic acces-
sibility relation. LB-formulas are interpreted with respect to
pointed models (Ω, s) with s ∈ S as follows (boolean cases
are omitted for simplicity): (i) (Ω, s) |= p iff s ∈ τ(p),
(ii) (Ω, s) |= 4iα iff α ∈ B(i, s), (iii) (Ω, s) |= �iϕ iff
∀s′ ∈ S, if s⇒i s

′ then (Ω, s′) |= ϕ, (iv) (Ω, s) |= [+Jα]ϕ
iff (Ω+Jα, s∗) |= ϕ, where Ω+Jα = (S+Jα,B+Jα, (⇒+Jα

i
)i∈Ag, τ

+Jα) with s∗ 6∈ S and:
• S+Jα = S ∪ {s∗},
• B+Jα(i, s′) = B(i, s) if s′ 6= s∗,
• B+Jα(i, s∗) = B(i, s) if i 6∈ J ,
• B+Jα(i, s∗) = B(i, s) ∪ {α} if i ∈ J ,

• ⇒+Jα
i =⇒i∪{(s∗, s′) | s⇒i s

′} if i 6∈ J ,

• ⇒+Jα
i = ⇒i∪{(s∗, s′) | s ⇒i s

′ and (Ω, s′) |= α} if
i ∈ J ,

• τ+Jα(p) = τ(p) ∪ {s∗} if s ∈ τ(p),
• τ+Jα(p) = τ(p) if s 6∈ τ(p).

In particular, for every ϕ ∈ LB , it is shown in (Lorini
2020) that ϕ is satisfiable for the class of multi-agent belief
models M iff ϕ is satisfiable for the subclass of the previous
models such that, for every i ∈ Ag and for every s ∈ S,
⇒i (s) ⊆

⋂
α∈B(i,s) ||α||(Ω,s) with ||α||(Ω,s) = {s′ ∈ S |

(Ω, s′) |= α}. Such a subclass is called the class of “no-
tional” models and is noted N. Given the previous semantic
equivalence between the two classes M and N wrt language
LB , in the rest of the proof we simply need work with the
latter class.

We just need to show that ϕ is satisfiable for the class N
if and only if trBA(ϕ) is DEL-satisfiable. The left-to-right
direction of the proof is by induction on the structure of ϕ
and relies on a two-step transformation. The non-trivial case
is ψ = [+Jα]ϕ. Given a pointed notional model (Ω, s) sat-
isfying ϕ we transform it into an isomorphic pointed epis-
temic model M, w. Then, we compute the pointed no-
tional model (Ω+Jα, s∗) on the one hand, and the epistemic
modelM×A+Jα, (w, a1) on the other hand. We transform
(Ω+Jα, s∗) into an isomorphic pointed epistemic model
(M′, w′). We show that M′, w′ and M× A+Jα, (w, a1)
are bisimilar. The right-to-left direction is proved in an anal-
ogous way. �

4.2 From Action Models to Belief Base
Operations

In this section, we show how to polynomially translate a
DEL fragment into LB . We focus on the DEL fragment,
based on so-called ruby action models, that encompasses2

2if we ignore postconditions
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a :
pre : >
post :

a1 :
pre : β1

post : / an :
pre : βn

post : /
. . .

at :
pre : >
post : /

1 n

Ag Ag

Ag

Figure 3: Pointed ruby action model (A, a).

the action models A+Jα used in the translation trBA (see
Figure 2).

Ruby Action Models

Definition 10 A ruby action model A, a is a pointed ac-
tion model of the form given in Figure 3 where β1, . . . , βn
are propositional formulas (that is, boolean combinations of
propositional variables).

A ruby action model corresponds to the concurrent private
announcement of β1 to agent 1, . . . , of βn to agent n. Inter-
estingly, the action modelA+Jα of Figure 2 in which we ig-
nore the postcondition is equivalent to the ruby action model
with βi = trBA(α) for all i ∈ J and βi = > for all i 6∈ J .

In the definition of ruby action models, we suppose that
the root a0 is linked to a unique action ai for agent i. This
definition can be leveraged also if this uniqueness is not as-
sumed: several i-successors can be replaced by a single i-
successor whose precondition is the disjunction of the pre-
conditions. While, the absence of i-successors can be re-
placed by a single i-successor whose precondition is⊥. The
obtained ruby action model is equivalent to the original ac-
tion model3.

Note that ruby action models commute (M×A×A′ =
M×A′ ×A when A and A′ are ruby action models).

Translation We define a translation trAB from the DEL
language with only ruby action models into the languageLB
as follows:

trAB(p) := p

trAB(¬ϕ) := ¬trAB(ϕ)

trAB(ϕ ∧ ψ) := trAB(ϕ) ∧ trAB(ψ)

trAB(Kiϕ) := �iϕ

trAB([A, a]ϕ) := [trAct (A, a)]trAB(ϕ)

where trAct (A, a) is the sequence of operations that
[+1β1; . . . ; +nβn]; when A, a is the action model depicted
in Figure 3. Note that trAB is computable in polynomial
time.

Theorem 2 Let ϕ be a DEL formula only containing ruby
action models. Then: ϕ is DEL satisfiable iff trAB(ϕ) is
satisfiable for the class M.

3This is true because there is an emulation (see (van Eijck,
Ruan, and Sadzik 2012)) between the original action model and
the obtained ruby action model.

Before proving Theoreom 2, we need to make a detour
and explain how to encode tree-like epistemic models. For
the rest of the section, we suppose that Ap is finite and con-
tains the atomic propositions in ϕ.

Tree-like Epistemic Models When a DEL formula is sat-
isfiable, it is in a tree. This comes from the fact that epis-
temic logic has the tree-like model property (see Th. 5.2 in
(Vardi 1996), or Proposition 2.15 in (Blackburn, de Rijke,
and Venema 2001)), and that any DEL formula is equiva-
lent to a formula in standard epistemic logic (van Ditmarsch,
van der Hoek, and Kooi 2007a). We consider here tree-like
epistemic models, in which the actual world is the root of the
tree. Given a tree-like epistemic model τ with root w and a
ruby action model (A, a), we call τ × (A, a) the connected
component of τ ×A containing the world (w, a). This com-
ponent is still tree-like, and (τ × (A, a), (w, a)) is bisimilar
to (τ ×A, (w, a)).

We first give a function describing any tree-like epistemic
model. We define desc(τ) by induction on τ :

desc( w ) =Prop(w) ∧
∧
i∈Ag

�i⊥

desc(
w

τ1 τm. . .
J1 Jm ) =Prop(w) ∧

∧
i∈Ag

�i
∨

k|i∈Jk

desc(τk)

∧
∧

i,k|i∈Jk

♦idesc(τk)

where Prop(w) is
∧
p∈Ap|p is true in w p ∧∧

p∈Ap|p is false in w ¬p (we restrict to relevant atomic
propositions, so Ap is finite here). The formula desc( w )
intuitively describes the valuation in w and that there are

no successors in w. The formula desc(
w

τ1 τm. . .
J1 Jm )

intuitively describes the valuation w, says that successors
are among trees τ1, . . . , τk and finally says that each tree
τ1, . . . , τk is present as a successor.

It is known that the DEL version of this function, which
for any τ gives the formula trBA(desc(τ)), describes epis-
temic models up to depth(τ)-bisimulation (Moss 2007). We
first show that this description function similarly describes
belief bases up to bisimulation.

Proposition 1 For any DEL formulaϕ in which there are no
dynamic operators, for any state B, context Cxt and tree-
like epistemic model τ with root w, if B,Cxt |= desc(τ)
then B,Cxt |= trAB(ϕ) iff τ, w |= ϕ.

PROOF.
This is shown by induction on ϕ. Suppose τ is of the

form
w

τ1 τm. . .

J1 Jm .

The case of propositional variables is straightforward as
B,Cxt |= Prop(w). The cases of boolean operators are
standard.

If B,Cxt |= �itrAB(ϕ), consider w′ such that wRiw′.
Then w′ is the root of τk for some k such that i ∈ Jk.
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As B,Cxt |= desc(τ), we have in particular B,Cxt |=
♦idesc(τk). Hence there exists B′ such that BRiB′ and
B′,Cxt |= desc(τk). But then by the induction hypothe-
sis, B′,Cxt |= trAB(ϕ) iff τk, w′ |= ϕ, and B′,Cxt |=
trAB(ϕ) as BRiB′. Hence τ, w′ |= ϕ and τ, w |= Kiϕ.

If τ, w |= Kiϕ, consider B′ such that BRiB′. Then there
exists k such that i ∈ Jk and B′,Cxt |= desc(τk). Call w′
the root of τk in τ . Then wRiw′ so τ, w′ |= ϕ, and by the
induction hypothesis B′,Cxt |= trAB(ϕ) iff τk, w′ |= ϕ,
the latter being equivalent to τ, w′ |= ϕ. Hence B′,Cxt |=
trAB(ϕ) and B,Cxt |= �itrAB(ϕ). �

In order to generalize this correspondence to formu-
las which do include dynamic operators, we must first
establish that the translation of ruby action models ef-
fectively simulates the effects of these actions in belief
bases. More precisely, the formula trBA(desc(τ)) →
[(A, a)]trBA(desc(τ × (A, a))) is valid in DEL for any
tree-like epistemic model τ and pointed ruby action model
(A, a); we show a corresponding property for belief bases.
Proposition 2 For any tree-like epistemic model τ , for any
ruby action model (A, a), state B and context Cxt , if B |=
desc(τ) then Btr(A,a),Cxt |= desc(τ × (A, a)).

PROOF.
We show this by induction on the height on τ . Consider

a ruby-like action model such as the one in Figure 3.
If τ = w , then τ × (A, a) is equal to τ and desc(τ) =

desc(τ × (A, a)) = Prop(w) ∧
∧
i∈Ag�i⊥. Consider

then B and Cxt such that B,Cxt |= desc(τ). As
BtrAct (A,a) and B agree on all propositional variables, we
have BtrAct (A,a),Cxt |= Prop(w). Moreover, suppose that
BtrAct (A,a)RiB′ for some agent i and some B′ in Cxt : then
BRiB′ as Bi ⊆ B

trAct (A,a)
i . But B,Cxt |= �i⊥, so there

can be no such state B′, and therefore BtrAct (A,a),Cxt |=
�i⊥ for all i. Hence BtrAct (A,a),Cxt |= desc(τ).

Suppose now that τ is of the form
w

τ1 τm. . .

J1 Jm , and call

wk the root of τk for 1 6 k 6 m. Then τ × (A, a) is

bisimilar to
w

τ1 τm. . .

G1 Gm where for every k 6 m, Gk =

{i ∈ Jk | τ, wk |= βi}; and

desc(τ × (A, a)) =Prop(w) ∧
∧
i∈Ag

�i
∨

k|i∈Gk

desc(τk)

∧
∧

i,k|i∈Gk

♦idesc(τk).

Consider B and Cxt such that B,Cxt |= desc(τ). Once
again, it is clear that BtrAct (A,a),Cxt |= Prop(w). Consider
now a state B′ ∈ Cxt such that BtrAct (A,a)RiB′. Then as
before, BRiB′,and therefore B′,Cxt |=

∨
k|i∈Jk desc(τk),

that is, there exists a k 6 m such that i ∈ Jk and B′,Cxt |=
desc(τk). Moreover, as βi ∈ BtrAct (A,a), it must be the
case that B′,Cxt |= βi. Then by Proposition 1, we have
τk, wk |= βi, hence τ, wk |= βi and i ∈ Gk. Therefore
BtrAct (A,a),Cxt |= �i

∨
k|i∈Gk desc(τk) for all i in Ag.

It remains to show that BtrAct (A,a),Cxt |= ♦idesc(τk)
for all i and k such that i ∈ Gk. Consider such a
i and k: then i ∈ Jk and τ, wk |= βi. As i ∈
Jk and B,Cxt |= desc(τ), we know that B,Cxt |=
♦idesc(τk), that is, there exists some B′ such that BRiB′
and B′,Cxt |= desc(τk). But then by Proposition 1,
B′,Cxt |= βi as τ, wk |= βi. Hence BtrAct (A,a)RiB′,
and BtrAct (A,a),Cxt |= ♦idesc(τk). We conclude that
BtrAct (A,a),Cxt |= desc(τ × (A, a)). �

We can now extend the result of Proposition 1 to any for-
mulas of the DEL language in which all actions are ruby
action models.

Proposition 3 For any formula ϕ of the DEL language in
which all action models are ruby action models, for any state
B, context Cxt and tree-like epistemic model τ with root w,
if B,Cxt |= desc(τ) then B,Cxt |= trAB(ϕ) iff τ, w |= ϕ.

PROOF.
We show this by induction on ϕ. We have shown all

cases in the proof of Proposition 1 except for that of dynamic
operators.

If B,Cxt |= desc(τ), then:

B,Cxt |= [trAct (A, a)]trAB(ϕ)

iff BtrAct (A,a),Cxt |= trAB(ϕ)

iff τ ×A, (w, a) |= ϕ (by IH with Proposition 2)
iff τ, w |= [A, a]ϕ.

This ends the proof. �

Correctness of the Translation We are now ready to
prove Theorem 2. We show both directions of the equiva-
lence separately.

Proposition 4 For any formula ϕ containing only ruby ac-
tion models, if ϕ is DEL-satisfiable then trAB(ϕ) is B-
satisfiable.

PROOF.
Suppose that ϕ is DEL-satisfiable. Then by the tree-

like model property, ϕ is satisfied in a tree-like epistemic
model τ = (W, (Ri)i∈Ag, V ) with root w: τ, w |= ϕ.
For each v ∈ W , consider a fresh variable pv (appear-
ing neither in ϕ not in V (w) for w ∈ W ) and define the
model τ ′ = (W, (Ri)i∈Ag, V

′) such that for all v ∈ W ,
V ′(v) = V (v) ∪ {pv}. Then we also have τ ′, w |= ϕ. Now
define the state Bv =

(
(Bv

i )i∈Ag,V
v
)

as follows:

Bv
i = {

∨
u|vRiu

pu}

V v = V ′(v)

Consider the context CxtW = {Bv | v ∈ W}. Then
Bw,CxtW |= desc(τ ′). Hence Bw,CxtW |= trAB(ϕ)?
by Proposition 3. �

Proposition 5 For any formula ϕ containing only ruby ac-
tion models, if trAB(ϕ) is B-satisfiable then ϕ is DEL satis-
fiable.
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PROOF.
For any state B and context Cxt , define the epis-

temic modelMB,Cxt = (WB,Cxt , (RB,Cxt
i )i∈Ag, V

B,Cxt),
where:

WB,Cxt ={B} ∪ Cxt ;

RB,Cxt
i ={(B,B′) | B′ ∈ Cxt and BRiB′}

∪ {(B′, B′′) | B′, B′′ ∈ Cxt and B′RiB′′}
for all i ∈ Ag;

V B,Cxt(B′) ={p | B′ |= p} for all B′ ∈W.
An induction on ϕ proves that for any formula ϕ of the

DEL language containing no dynamic operators, for any B
and Cxt , B,Cxt |= trAB(ϕ) iff MB,Cxt , B |= ϕ. (For
the proof, remark that given B, Cxt , and any B′ ∈ Cxt ,
(MB,Cxt , B′) and (MB′,Cxt , B′) are equal when B ∈ Cxt
and bisimilar when B 6∈ Cxt .)

Consider now a formula ϕ of the DEL language only con-
taining ruby action models, and suppose that B,Cxt |= ϕ
for some B and Cxt . We know that MB,Cxt , B is md(ϕ)-
bisimilar to some tree-like epistemic model (τ, w) (consider
the unravelling of MB,Cxt , B up to depth md(ϕ)), where w
is the root of τ . In particular,MB,Cxt , B |= trBA(desc(τ)),
hence B,Cxt |= desc(τ) as trBA(desc(τ)) contains no dy-
namic operators. By Proposition 3, this implies that for any
formula ψ of the DEL language only containing ruby action
models, B,Cxt |= trAB(ψ) iff τ, w |= ψ. In particular,
τ, w |= ϕ, hence ϕ is DEL satisfiable. �

5 Introspective Variant
In this section, we explain the changes to make to keep trans-
lations from LB into LDEL, and from LDEL into LB wrt. to
the introspective variant. The latter translation will however
require some technical restrictions. The underlying epis-
temic logic is K45: the epistemic relations are transitive and
Euclidean (see Def. 2.13 of (Van Ditmarsch, van Der Hoek,
and Kooi 2007b)).

5.1 Definition
In (Lorini 2020) an alternative definition of the epistemic
indistinguishability relation is given. It works for introspec-
tive agents that have perfect knowledge of their belief bases.
Specifically, for a state to be considered possible by an in-
trospective agent, (i) it must satisfy all information in the
agent’s actual belief base, and (ii) the agent should have the
same belief base in the actual state and in the epistemically
accessible state.
Definition 11 (Epistemic alternatives) The introspec-
tive variant of the epistemic indistinguishability relation
is the binary relation Ri ⊆ S × S such that, for all
B =

(
(Bi)i∈Ag,V

)
, B′ =

(
(B ′i)i∈Ag,V

′) ∈ S:

BRInt
i B′ if and only if (i)∀α ∈ Bi : B′ |= α,

(ii)Bi = B′i.

In other words, the previous definition adds to Definition 3
the introspection condition (ii). It is easy to verify that the
relationRInt

i so defined is transitive and Euclidean.

a :
pre : >
post : p4iα ← > for all i ∈ J

ai1 :
pre : trBA(α)

post : / aik :
pre : trBA(α)

post : /

. . .

at :
pre : >
post : /

i1 ik

Ag\{i1} Ag\{ik}

i1 ik

Ag

Ag \ J

Figure 4: Action model Aintr
+Jα that simulates adding α in

bases of agents in J = {i1, . . . , ik} in the introspective vari-
ant.

a :
pre : >
post :

a1 :
pre : β1

post : / an :
pre : βn

post : /
. . .

at :
pre : >
post : /

1 n

Ag\{1} Ag\{n
}

1 n

Ag

Figure 5: Introspective ruby action model.

5.2 From Belief Base Operations to Action
Models

When considering introspective agents (i.e., when the epis-
temic indistinguishability relations are defined according to
Definition 11), we need to slightly redefine the translation
from the language LB to the language LDEL given in Sec-
tion 4.1. In particular, we need to define a new translation
tr intrBA whose lines 1-5 are identical to lines 1-5 of translation
trBA and whose line 6 is:

tr intrBA ([+Jα]ϕ) = [Aintr
+Jα, a]tr intrBA (ϕ),

whereAintr
+Jα is the action model for introspective agents de-

picted in Figure 4. The following theorem is the analog of
Theorem 1 for introspective agents. We omit its proof since
it is similar to that of Theorem 1.
Theorem 3 Let the epistemic indistinguishability relation
Ri be defined according to Definition 11 and let ϕ ∈ LB .
Then, ϕ is satisfiable for the class M if and only if tr intrBA (ϕ)
is DEL-satisfiable.

5.3 From Action Models to Belief Base
Operations

In this section, we discuss the natural generalisation of trAB
to the introspective case.

Introspective Ruby Action Models
Definition 12 An introspective ruby action model A, a is a
pointed action model of the form given in Figure 5 where
β1, . . . , βn are propositional formulas.

The translation trintrAB differs from trAB given in Subsec-
tion 4.2 in two aspects. First the language is the DEL one
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with introspective ruby action models. Second, we need to
add a special variable for each action model A. We define:

trintrAB ([A, a]ϕ) := [trAct (A, a)]trintrAB (ϕ)

where trAct (A, a) is the sequence of operations that
[+1β1; . . . ; +nβn; +1pA; . . . ; +npA; +1p

1
A; . . . ; +np

n
A];

when A, a is the action model depicted in Figure 5, and
where pA and all piA are fresh atomic propositions. Note
that trintrAB is still computable in polynomial time.

Just like the ruby action models of Definition 10, intro-
spective ruby action models commute. Thus, the sole infor-
mation of action model A being executed is sufficient; the
order of the executions is not important. In other words, the
propositions pA are sufficient to represent the list of already
executed actions. Also, as the variables pA are fresh, they
are supposed to be initially false.

Theorem 4 Let ϕ be a DEL formula only containing in-
trospective ruby action models. Then: ϕ is DEL K45-
satisfiable implies trintrAB (ϕ) is satisfiable for the class M
with the introspective relations.

The proof of Theorem 4 is involved. We start by giv-
ing some definitions and notations surrounding introspec-
tive ruby action models. For any formula ϕ containing only
introspective ruby action models, we call Seq(ϕ) the set
of sequences of pointed action models corresponding to se-
quences of actions found in ϕ, defined inductively as:

Seq(p) = {ε} (ε is the empty sequence)
Seq(ϕ ∧ ψ) = Seq(ϕ) ∪ Seq(ϕ)

Seq(¬ϕ) = Seq(ϕ)

Seq([A, a]ϕ) = {(A, e)σ | σ ∈ Seq(ϕ)

and e is an event in A}

Example 4 For example, given two pointed action
models (A, a) and (A′, a′), we have Seq([A, a]p ∧
[A′, a′](q ∧ ¬[A, a]p)) = {(A, e), (A′, e′), (A′, e′)(A, e) |
e is an event of A and e′ is an event of A′}.

If w is a world in an epistemic model M and σ is a se-
quence (A1, e1) . . . (Am, em) of pointed action models, we
abbreviate the model (M×A1)× · · · ×Am toM× σ and
the world ((w, e1), . . . , em) inM× σ to (w, σ), when that
world is defined inM× σ.

As ruby action models commute, the order of the ruby ac-
tion models of a sequence σ does not matter when construct-
ingM× σ; we will therefore be identifying any sequence
σ of actions with the set of actions found in σ. In particu-
lar, two sequences σ and σ′ are considered equal when they
consist of the same actions.

Finally, given a sequence σ of introspective ruby action
models, we call Add i(σ) the set of formulas β such that +iβ
appears in trAct (A, a) for some action (A, a) or (A, ai)
in σ. Formally:

Add i(σ) = {β | ∃(A, e) ∈ σ, e ∈ {a, ai}
and preA(ai) = β}

From Epistemic Models to Contexts Remark that intro-
spective ruby action models preserve the K45 properties: the
product of a K45 epistemic model with an introspective ruby
action model is again a K45 epistemic model.

We now define contexts simulating the effects of actions
in an epistemic model. Given a formula ϕ containing only
introspective ruby action models and a K45 epistemic model
(M, r) withM = (W, (Ri)i∈Ag, V ), we take for every ac-
tion model A in ϕ three fresh variable pA, piA and ptA ap-
pearing neither in ϕ nor in V (w) for any w ∈ W , and we
similarly take for every w ∈ W a fresh variable pw. We
define the following context:

Cxtϕ,M = {Bw,σ |σ ∈ Seq(ϕ) and
(w, σ) is a world ofM× σ}

where for all w ∈ W and σ ∈ Seq(ϕ), Bw,σ =(
(Bw,σ

i )i∈Ag,,V
w,σ
)

with:

Bw,σ
i ={

∨
v|wRiv

pv} ∪ {pA | (A, e) ∈ σ} ∪ Add i(σ)

∪ {piA | (A, e) ∈ σ, e ∈ {a, ai}}
∪ {ptA | (A, e) ∈ σ, e 6∈ {a, ai}}

V w,σ =V (w) ∪ {pw} ∪ {pA | (A, e) ∈ σ}
∪ {piA | i ∈ Ag, (A, ai) ∈ σ} ∪ {ptA | (A, at) ∈ σ}.

Intuitively, we want every state Bw,σ to correspond to the
world (w, σ). The fresh variables identify the worlds of w,
the actions models in σ, as well as instances of events ai
and at. The constraints in Bw,σ

i correspond to the following
properties:
• from the definition of product updates, it follows that is

(w, σ)Ri(w
′, σ′) then wRiw′;

• the inclusion of pA for all (A, e) ∈ σ identify the world
as being part of the modelM× σ;

• Add i(σ) corresponds to the new beliefs introduced for i
by σ in (w, σ);

• when e∈{a, ai} for some (A, e) ∈ σ then eRie′ iff e′=ai;
• when e 6∈{a, ai} for some (A, e) ∈ σ then eRie′ iff e′=at.

We are now going to show that this context corresponds to
the collection of all modelsM× σ for σ ∈ Seq(ϕ), which
will then allow us to simulate model checking of ϕ inM.

Proposition 6 Let ϕ be a DEL formula containing only in-
trospective ruby action models. Let (M, r) be a K45 epis-
temic model , and Cxtϕ,M be the corresponding context.
ThenM, r |= ϕ iff Br,Cxtϕ,M |= trintrAB (ϕ).

Proof of Theorem 4 Suppose that ϕ is K45-satisfiable.
Then ϕ is satisfiable in a K45 epistemic model. Consider
a K45 epistemic model (M, r) satisfying ϕ. By Proposi-
tion 6, we have Br,ε,Cxtϕ,M |= trintrAB (ϕ).

Other Direction Suppose that trintrAB (ϕ) is satisfiable. To
adapt the proof of Proposition 5, we need to construct a K45
epistemic model for ϕ from the unravelling of the belief base
inferred epistemic model for trintrAB (ϕ). The issue will be
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that the application of ai must exactly correspond to the ad-
dition of the βi in the belief bases. And the obtained state
must be in the context. To cope with that, we simply suppose
that the context is the set S of all states.

Theorem 5 trintrAB (ϕ) is satisfiable for the class of states
whose context is S implies ϕ is DEL K45-satisfiable.

6 Related Work
Let us mention syntactic approaches for describing epis-
temic actions. Action models of DEL are captured up
to n-bisimilarity by a language of programs introduced in
(French, Hales, and Tay 2014). A logical language for
capturing specific kinds of private/public announcements in
which propositions expressing which agents are listening to
the source is introduced in (Bolander et al. 2016). However
in all of these approaches only actions are syntactic, while
the underlying models remain Kripke structures.

As emphasized in the introduction, the multi-agent se-
mantics for epistemic logic using belief bases was first intro-
duced in (Lorini 2018; 2020). It allows us to represent both
agents’ beliefs about propositional facts and their higher-
order beliefs (i.e., an agent i’s belief about an agent j’s be-
lief).4 It was applied to the formalization of a large variety of
epistemic concepts and of aspects of both individual and col-
lective epistemic reasoning including graded belief (Lorini
and Schwarzentruber 2021a), distributed belief (Herzig et
al. 2020), common belief (Lorini and Rapion 2022), multi-
agent belief revision and planning (Lorini and Schwarzen-
truber 2021b; Davila et al. 2021). A preliminary comparison
of this semantics and the DEL update semantics was given in
(Lorini 2020) in which it was shown that private belief base
expansion corresponds to a specific kind of DEL private an-
nouncement represented through arrow models (Kooi and
Renne 2011). In particular, it was shown that the epistemic
model obtained via private belief expansion is bisimilar to
the epistemic model obtained via private announcement rel-
ative to the language of standard of epistemic logic.

The semantics for epistemic logic using belief bases can
be seen as a way of defining a single ‘canonical’ model from
the description of a state. This point was explored in (Lorini
2019) in the static setting of epistemic logic. In this paper,
we extend the analysis to the dynamic setting (Theorem 2).

In the belief base approach, as seen in Definition 1, the
state contains a set of formulas for each agent, and then a
‘canonical’ model is inferred by the relations of Definition 3.
There are other approaches that define a ‘canonical’ model
based on what agents see. The description of what agents see
is either given by positions of agents in a geometrical en-
vironment (Balbiani, Gasquet, and Schwarzentruber 2013;
Gasquet, Goranko, and Schwarzentruber 2016), or given by
an abstract specification (Cooper et al. 2021). A similar idea

4Related work on the connection between the syntactic repre-
sentation of preferences based on priority graphs and Kripke mod-
els for preference representation can be found in (de Jongh and Liu
2009; Liu 2011; Souza and Moreira 2021). It was extended to de-
ontic logic in (van Benthem, Grossi, and Liu 2014). This work is
focused on the single-agent case and does not consider reasoning
about higher-order beliefs or preferences.

is at the center of symbolic model checking for epistemic
logic (van Benthem et al. 2015). Techniques described in
Section 4 and 5 may also be applied to the comparison of
these frameworks with action models.

7 Conclusion

This paper is about a seminal bridge between two opposite
approaches for dynamic knowledge change: the syntactic
one with belief base operations, and the semantic one with
DEL action models (see Theorems 1 and 2). We also dis-
cussed the introspective case (see Theorems 3, 4, 5).

For going from belief bases to action models, we pro-
posed action models for simulating the operation of privately
expanding belief bases of some agents by an input α (see
Figures 2 and 4). For the other direction, we restricted to
so-called ruby action models (see Figures 3 and 5). For
going from (ruby) action models to belief base operations,
we adopted two different proof techniques. For the non-
introspective case, we simply add each formula βj to the
base of agent j for simulating a ruby action model. We were
also able to fully describe (tree-like) epistemic models ob-
tained by product as a formula of LB . For the introspective
case, the simulation of a ruby action model is more involved
and requires the use of fresh atomic propositions.

Our work leaves many open questions for future work.
Modal Formulas. Currently, formulas in ruby action

models are Boolean. We plan to generalize to any modal
formulas. This is challenging because formulas in action
models can only be about implicit beliefs, and the transla-
tion from implicit to explicit beliefs is not straightforward.

Belief Revision. Belief bases form an elegant formalism
for bringing belief revision in a multi-agent context (Lorini
and Schwarzentruber 2021b). We aim at studying the link
with the plausibility models for multi-agent belief revision
(Baltag and Smets 2006).

Epistemic Planning. On the one hand, multi-agent epis-
temic planning with belief bases is decidable, even with
belief revision (Lorini and Schwarzentruber 2021b). On
the other hand, epistemic planning in DEL when mod-
els are trees and propositional is also decidable (Bolander,
Holm Jensen, and Schwarzentruber 2015). Future work will
be devoted to investigate the connection between the two ap-
proaches to epistemic planning.

Public Announcement. Recently, the belief base ap-
proach was extended to capture a notion of public announce-
ment (Lorini and Rapion 2022). This paper paves the way
for investigating the connection between DEL-notions of
public and semi-private announcement and corresponding
notions expressed the belief base semantics.
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