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Abstract

We study the problem to decide, given sets T1, T2 of tuple-
generating dependencies (TGDs), also called existential rules,
whether T2 is a conservative extension of T1. We consider two
natural notions of conservative extension, one pertaining to
answers to conjunctive queries over databases and one to ho-
momorphisms between chased databases. Our main results are
that these problems are undecidable for linear TGDs, undecid-
able for guarded TGDs even when T1 is empty, and decidable
for frontier-one TGDs.

1 Introduction
Tuple-generating dependencies (TGDs) are an expressive
constraint language that emerged in database theory, where
it has various important applications (Abiteboul, Hull, and
Vianu 1995). In knowledge representation, TGDs are used
as an ontology language under the names of existential
rules and Datalog± (Baget et al. 2011; Calı̀ et al. 2010).
For the purposes of this paper, however, we stick with the
name of ‘TGDs’. A major application of TGDs in KR is
ontology-mediated querying where a database query is en-
riched with an ontology, aiming to deliver more complete
answers and to extend the vocabulary available for query
formulation (Bienvenu et al. 2014; Bienvenu and Ortiz 2015;
Calvanese et al. 2009). The semantics of ontology-mediated
querying can be given in terms of homomorphisms and the
widely known chase procedure that makes explicit the logical
consequences of a set of TGDs and a database.

As the use of unrestricted TGDs makes the evaluation of
ontology-mediated queries undecidable, various computation-
ally more well-behaved fragments have been identified. We
consider linear TGDs, guarded TGDs, and frontier-one TGDs
(Calı̀, Gottlob, and Lukasiewicz 2012; Baget et al. 2011;
Calı̀, Gottlob, and Kifer 2013). For all of these, ontology-
mediated query evaluation is decidable. Deferring a formal
definition to Section 2 of this paper, we remark that guarded
generalizes linear, and that frontier-one is orthogonal to both
linear and guarded. Moreover, linear TGDs generalize de-
scription logics (DLs) of the DL-Lite family (Artale et al.
2009), while both guarded and frontier-one TGDs generalize
DLs of the ELI family (Baader et al. 2017).

On top of bare-bones query evaluation, there are other natu-
ral problems that are suggested by the framework of ontology-
mediated querying. Consider the following: given sets of

TGDs T1 and T2 (formulated in any, potentially different
schemas), a database schema ΣD, and a query schema ΣQ,
decide whether T2 is a ΣD,ΣQ-CQ-conservative extension
of T1, that is, whether for all ΣD-databases D and conjunc-
tive queries (CQ) q(x̄) in schema ΣQ, every tuple c̄ that
is an answer to q on D given T1 is also an answer to q
on D given T2 (Botoeva et al. 2016). Note that this is a
very relevant problem. If, for instance, T2 is a ΣD,ΣQ-
CQ-conservative extension of T1 and vice versa, then we
can safely replace T1 with T2 in any application where
databases are formulated in schema ΣD and queries in
schema ΣQ. CQ-conservative extensions have been stud-
ied for various DLs and are decidable for many mem-
bers of the DL-Lite and ELI families (Konev et al. 2011;
Jung et al. 2020). In this paper, we address the naturally
emerging question whether decidability extends to the more
general settings of linear, guarded, and frontier-one TGDs.

A natural problem related to CQ-conservative extensions
is ΣD,ΣQ-hom-conservative extension which asks whether
for every ΣD-database, there is a ΣQ-homomorphism1 from
the chase chaseT2(D) of D with T2 to chaseT1(D) that is
the identity on all constants in D. In fact, this problem cor-
responds to CQ-conservative extensions when CQs may be
infinitary, and it is known that these two problems do not coin-
cide even in the case of DLs (Botoeva et al. 2016). We study
hom-conservative extensions along with CQ-conservative
extensions. In addition, we consider the variant of CQ/hom-
conservative extensions where the set of TGDs T1 is re-
quired to be empty. We refer to this as ΣD,ΣQ-CQ/hom-
triviality. Note that triviality is also a very natural problem
as it asks whether the given set of TGDs T2 says anything
at all about ΣD-databases as far as conjunctive queries and
homomorphisms over schema ΣQ are concerned. We ob-
serve that ΣD,ΣQ-CQ-triviality and ΣD,ΣQ-hom-triviality
coincide even for unrestricted TGDs, and thus we only speak
of ΣD,ΣQ-triviality. Our main results are as follows.

1. For linear TGDs, CQ- and hom-conservative extensions
are undecidable, but triviality is decidable.

2. For guarded TGDs, triviality is undecidable.

3. For frontier-one TGDs, CQ- and hom-conservative exten-
sions are decidable.

1A homomorphism that disregards symbols outside of ΣQ.
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We consider it remarkable that undecidability already ap-
pears for a class as restricted as linear TGDs. Regarding
Point 1, we also determine the exact complexity of triviality
for linear TGDs as being PSPACE-complete, and CONP-
complete when the arity of relation symbols is bounded
by a constant. Regarding Point 3, our algorithms yield
3EXPTIME upper bounds, while 2EXPTIME lower bounds
can be imported from the DL ELI, a fragment of frontier-
one TGDs (Gutiérrez-Basulto, Jung, and Sabellek 2018;
Jung et al. 2020). The exact complexity remains open.

Our undecidability results are proved by reductions from a
convergence problem that concerns Conway functions (Con-
way 1972). In a database theory context, such a technique has
been used in (Gogacz and Marcinkowski 2014). As the reader
shall see, the reductions take place in the setting of Pyramus
and Thisbe (Ovid 2008), a mythological couple that could
only communicate through a crack in the wall and whose fate
it was to never meet again in person. Bring some popcorn.
The decidability result for hom-conservative extensions for
frontier-one TGDs rests on the observation that whenever
there is a database that witnesses non-conservativity, then
there is such a database of bounded treewidth. This enables a
decision procedure based on alternating tree automata. The
case of CQ-conservative extensions is more intricate as it
requires the use of homomorphism limits, that is, families of
homomorphisms that can only look n steps ‘into the model’,
for any n. It is not clear how the existence of homomorphism
limits can be verified by tree automata. Our solution gener-
alizes the approach to CQ-conservative extensions in ELI
pursued in (Jung et al. 2020). In short, the idea is to push the
use of homomorphism limits to parts of the chase that are
ΣQ-disconnected from the database and regular in shape, and
to then characterize homomorphism limits from/into such
regular (infinite) databases in terms of unbounded homomor-
phisms.

Related Work. We already mentioned the work on DLs
from the DL-Lite and ELI families (Konev et al. 2011;
Jung et al. 2020). For description logics such as ALC that
support negation and disjunction, CQ- and hom-conservative
extensions are undecidable (Botoeva et al. 2019). A dif-
ferent kind of conservative extension is obtained by re-
placing databases and query answers with logical conse-
quences formulated in the ontology language (Ghilardi, Lutz,
and Wolter 2006). While such conservative extensions
are decidable in ALC (Ghilardi, Lutz, and Wolter 2006;
Lutz, Walther, and Wolter 2007), they are undecidable in
the guarded fragment and in the two-variable fragment of
first-order logic (Jung et al. 2017). For existential rule lan-
guages, the difference between this version of conservative
extensions and CQ-conservative extensions tends to be small
(depending on the class of rules considered).

2 Preliminaries
Relational Databases. Fix countably infinite and pairwise
disjoint sets of constants C and N and variables V. We
refer to the constants in N as nulls. A schema Σ is a set
of relation symbols R with associated arity ar(R) ≥ 1. A
Σ-fact is an expression of the form R(c̄) with R ∈ Σ and c̄ is

an ar(R)-tuple of constants from C ∪N. A Σ-instance is a
possibly infinite set of Σ-facts, and a Σ-database is a finite Σ-
instance that uses only constants from C. We write adom(I)
for the set of constants from C∪N used in instance I . For an
instance I and a schema Σ, I|Σ denotes the restriction of I
to Σ, that is, the set of all facts in I that use a relation symbol
from Σ. We say that I is connected (resp., Σ-connected) if
the Gaifman graph of I (resp., I|Σ) is connected and that I
is of finite degree if the Gaifman graph of I has finite degree.

For a schema Σ, a Σ-homomorphism from instance I to
instance J is a function h : adom(I) → adom(J) such that
R(h(c̄)) ∈ J for every R(c̄) ∈ I with R ∈ Σ. We say that
h is database-preserving if it is the identity on all constants
from C (but not necessarily from N) and write I →Σ J if
there is a database-preserving Σ-homomorphism from I to J .
Conjunctive Queries. A conjunctive query (CQ) over a
schema Σ takes the form ∃ȳ ϕ(x̄, ȳ) where x̄ and ȳ are tuples
of variables from V, ϕ is a set of atoms R(z̄) with R ∈ Σ
and z̄ a tuple of variables of length ar(R). We refer to the
variables in x̄ as the answer variables of q and denote a CQ
with q(x̄) to emphasize that it has answer variables x̄. The
arity of q is the length |x̄| of x̄, and q is Boolean if it is of
arity 0.

Every CQ q(x̄) gives rise to a database Dq, known as the
canonical database of q, by viewing variables as constants
and atoms as facts. A Σ-homomorphism h from q to an
instance I is a Σ-homomorphism from Dq to I . A tuple c̄ ∈
adom(I)|x̄| is an answer to q on I if there is a homomorphism
h from q to I with h(x̄) = c̄. The evaluation of q(x̄) on I ,
denoted q(I), is the set of all answers to q on I .

For a CQ q, but also for any other syntactic object q, we
use ||q|| to denote the number of symbols needed to write q
encoded as a word over a suitable alphabet.
TGDs. A tuple-generating dependency (TGD) ϑ is a first-
order sentence ∀x̄∀ȳ

(
ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)

)
such that qφ =

∃ȳ ϕ(x̄, ȳ) and qψ = ∃z̄ ψ(x̄, z̄) are CQs. We call ϕ and
ψ the body and head of ϑ. The body may be the empty
conjunction, that is, logical truth. The variables in x̄ are the
frontier variables. We may write ϑ as ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄).
An instance I satisfies ϑ, denoted I |= ϑ, if qϕ(I) ⊆ qψ(I).
It satisfies a set of TGDs T if I |= ϑ for each ϑ ∈ T . We
then also say that I is a model of T .

A TGD ϑ is frontier-one if it has exactly one frontier
variable (Baget et al. 2011). It is guarded if its body is empty
or contains a guard atom α that contains all variables in the
body (Calı̀, Gottlob, and Kifer 2013). A TGD is linear if its
body contains at most one atom. Clearly, every linear TGD is
guarded. The body width of a set T of TGDs is the maximum
number of variables in a rule body of a TGD in T , and the
head width is defined accordingly.

Throughout this paper, we are going to make use of
the well-known chase procedure for making explicit the
consequences of a set of TGDs (Johnson and Klug 1984;
Fagin et al. 2005; Calı̀, Gottlob, and Kifer 2013). Let I
be an instance and T a set of TGDs. A TGD ϕ(x̄, ȳ) →
∃z̄ ψ(x̄, z̄) ∈ T is applicable at a tuple c̄ of constants in I if
ϕ(c̄, c̄′) ⊆ I for some c̄′ and there is no homomorphism h
from ψ(x̄, z̄) to I such that h(x̄) = c̄. In this case, the result
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of applying the TGD in I at c̄ is the instance I ∪ {ψ(c̄, c̄′′)}
where c̄′′ is the tuple obtained from z̄ by replacing each vari-
able z with a fresh null, that is, a null that does not occur in I .
We also refer to such an application as a chase step.

A chase sequence for I with T is a sequence of instances
I0, I1, . . . such that I0 = I and each Ii+1 is the result of
a chase step from Ii. The result of the chase sequence is
the instance J =

⋃
i≥0 Ii. The chase sequence is fair if

whenever a TGD from T is applicable to a tuple c̄ in some Ii,
then this application is a chase step in the sequence. Every
fair chase sequence for I with T has the same result, up to
homomorphic equivalence. Since for our purposes all results
are equally useful, we use chaseT (I) to denote the result of
an arbitrary, but fixed chase sequence for I with T and call
chaseT (I) the result of chasing I with T . This version of the
chase is often called the restricted chase and it ensures that
chaseT (D) has finite degree, which shall be important for
our proofs.

Lemma 1. Let T be a set of TGDs and I an instance. Then
for every model J of T with I ⊆ J , there is a homomor-
phism h from chaseT (I) to J that is the identity on adom(I).

Note that if T is a set of frontier-one TGDs, then for
any database D the instance chaseT (D) can be obtained
from D by ‘glueing’ a (potentially infinite) instance onto
each constant c ∈ adom(D). We denote this instance with
chaseT (D)|↓c . A precise definition is given in the appendix.

Let T be a set of TGDs, q(x̄) a CQ and D a database.
A tuple c̄ ∈ adom(D)|x̄| is an answer to q on D w.r.t. T ,
written D,T |= q(c̄), if q(c̄) is logically follows from D ∪ T
or, equivalently, if there is a homomorphism h from q to
chaseT (D) with h(x̄) = c̄. The evaluation of q onD w.r.t. T ,
denoted qT (D), is the set of all answers to q on D w.r.t. T .

3 Conservative Extensions
We introduce the notions of conservative extension that are
studied in this paper and the associated decision problems.

Definition 1. Let T1, T2 be sets of TGDs and let ΣD,ΣQ be
schemas called the data schema and query schema. Then

• T2 is ΣD,ΣQ-hom-conservative over T1, written
T1 |=hom

ΣD,ΣQ
T2, if there is a database-preserving ΣQ-

homomorphism from chaseT2
(D) to chaseT1

(D) for all
ΣD-databases D;

• T2 is ΣD,ΣQ-CQ-conservative over T1, written
T1 |=CQ

ΣD,ΣQ
T2, if qT2

(D) ⊆ qT1
(D) for all ΣD-

databases D and all CQs q over schema ΣQ.
• T1 is ΣD,ΣQ-hom-trivial if T1 is ΣD,ΣQ-hom-

conservative over the empty set of TGDs, and likewise
for ΣD,ΣQ-CQ-triviality.

It is easy to see that logical entailment T1 |= T2
implies T1 |=hom

ΣD,ΣQ
T2 for all schemas ΣD and ΣQ,

and that ΣD,ΣQ-hom-conservativity implies ΣD,ΣQ-CQ-
conservativity. The following example from (Botoeva et al.
2016) shows that the converse fails.

Example 1. Consider the following sets of TGDs that are
both linear and frontier-one:

T1 = {A(x) → ∃y S(x, y), B(y),

B(x) → ∃y R(x, y), B(y) }

T2 = {A(x) → ∃y S(x, y), B(y),

B(x) → ∃y R(y, x), B(y) }.

Let ΣD = {A} and ΣQ = {R}. We recommend to the
reader to verify that T2 is not ΣD,ΣQ-hom-conservative over
T1 by trying to find a database-preserving homomorphism
from chaseT2

(D) to chaseT1
(D), and that it is ΣD,ΣQ-CQ-

conservative.

However, ΣD,ΣQ-hom-conservativity is equivalent to
ΣD,ΣQ-CQ-conservativity with infinitary CQs. We refrain
from making this precise and instead consider the converse,
that is, ΣD,ΣQ-CQ-conservativity is equivalent to ΣD,ΣQ-
hom-conservativity when the latter is defined in terms of a
finitary version of homomorphisms that we introduce next.

Let I1, I2 be instances and n ≥ 0, and let Σ be a schema.
We write I1 →n

Σ I2 if for every induced subinstance I of
I1 with |adom(I)| ≤ n, there is a database-preserving Σ-
homomorphism from I to I2. We further write I1 →lim

Σ I2 if
I1 →n

Σ I2 for all n ≥ 1.

Theorem 1. Let T1 and T2 be sets of TGDs and ΣD,ΣQ
schemas. Then T1 |=CQ

ΣD,ΣQ
T2 iff chaseT2(D) →lim

ΣQ

chaseT1
(D).

For triviality, the hom- and CQ-version coincide.

Lemma 2. Let T1, T2 be sets of TGDs and ΣD,ΣQ schemas.
Then T1 and T2 are ΣD,ΣQ-hom-trivial if and only if they
are ΣD,ΣQ-CQ-trivial.

Because of Lemma 2, we from now on disregard ΣD,ΣQ-
CQ-triviality and refer to ΣD,ΣQ-hom-triviality simply as
ΣD,ΣQ-triviality. We thus obtain the three decision prob-
lems hom-conservativity, CQ-conservativity, and triviality,
defined in the obvious way. For instance, hom-conservativity
means to decide, given finite sets of TGDs T1, T2 and finite
schemas ΣD,ΣQ, whether T2 is ΣD,ΣQ-hom-conservative
over T1.

We note that Lemma 2 is an immediate consequence of
Theorem 1 and the following observation.

Lemma 3. Let I1, I2 be instances such that I1 is countable
and I2 is finite, and let Σ be a schema. If I1 →lim

Σ I2, then
I1 →Σ I2.

We sketch the proof of Lemma 3, details are in the ap-
pendix. If I1 →lim

Σ I2, then we find database-preserving
Σ-homomorphisms h1, h2, . . . from finite subinstances
J1 ⊆ J2 ⊆ . . . of I1 to I2 such that I1 =

⋃
i≥1 Ji. If

h1, h2, . . . are compatible in the sense that hi(c) = hj(c)
whenever hi(c), hj(c) are both defined, then

⋃
i≥1 hi is a

Σ-homomorphism that witnesses I1 →Σ I2. If this is not the
case, however, we can still manipulate h1, h2, . . . into a com-
patible sequence g1, g2, . . . by ‘skipping homomorphisms’,
which is used in several proofs in this paper. We start with
h1 and observe that since J1 and I2 are finite, there are only
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Thisbe
Pyramus

Encounter
Channel

c0

c′0

Figure 1: Chase generated by Tmyth.

finitely many homomorphisms h from J1 to I2. Some such
homomorphism must occur infinitely often in the restrictions
of h1, h2, . . . to adom(J1) and thus we find a subsequence
h′1, h

′
2, . . . of h1, h2, . . . in which h′1 is compatible with all

of h′2, h
′
3, . . . . We proceed in the same way for h′2, then for

h′3, ad infinitum, finding the desired sequence g1, g2, . . . .

4 Undecidability
The aim of this section is to prove the following results.

Theorem 2. The following problems are undecidable:

1. hom-conservativity for linear TGDs;
2. CQ-conservativity for linear TGDs;
3. triviality for guarded TGDs.

We give a single proof that establishes Points 1 and 2.
Attaining Point 3 requires a non-trivial modification of the
proof. We start with the former, first highlighting the main
mechanism that we use in our reduction.

4.1 The Main Mechanism
Consider the set of rules Tmyth. It comprises three TGDs:

Encounter(p, t) → ∃p′, c, t′ M(p, p′, c, t′, t)

M(p, p′, c, t′, t) → ∃p′′, c′, t′′ M(p′, p′′, c′, t′′, t′)

M(p, p′, c, t′, t) → Pyramus(p, p′),Thisbe(t, t′),

Channel(c, p′),Channel(c, t′).

Now consider the database D = {Encounter(c0, c′0)}.
The instance chaseTmyth

(D), shown in Figure 1, will play
an important role. Its intuitive meaning is that ‘after an ini-
tial brief encounter, Pyramus and Thisbe have never met
again, but forever remained able to connect via an (indirect)
channel.’ Notice that we do not explicitly show relation M
in Figure 1 as M is only a construction aid, needed to ensure
that the TGDs in Tmyth are linear. As ΣQ, we will use the set
of relation symbols in Tmyth except M , plus a unary relation
symbol Mouth. We advise the reader to not worry about the
schema ΣD at this point (it will actually be empty).

Let κ = ⟨[p1, . . . , pn], [t1, . . . , tn]⟩ be a pair of sequences
of positive integers of the same length n. By Riverκ, we mean
the database that contains the following facts, an example
being displayed in Figure 2:

e1

e2

b0 b1 b2 b3 b4

Figure 2: The database Riverκ for κ = ⟨[4, 7, 7, 1], [7, 4, 6, 2]⟩.

• There are 3 kinds of constants. The eternities are e1 and e2.
The channel is c, not shown in the picture. All remaining
constants are called worldly.

• For 1 ≤ i ≤ n there is a Pyramus path of length pi from
bi to bi−1 as well as a Thisbe path of length ti from bi to
bi−1. Constants bi are called bridges.

• There is Thisbe(a, e1) for each non-bridge constant a on
each of the Thisbe-paths and there is Pyramus(a, e2) for
each non-bridge constant a on each of the Pyramus-paths.
There are also Thisbe(a, e2) and Pyramus(a, e1) for each
bridge constant a. In addition (and not in Figure 2), there
are Pyramus(ei, ei) and Thisbe(ei, ei) for i ∈ {1, 2}.

• For each worldly constant a, there is Channel(c, a). More-
over, there are facts Channel(ei, ei), for i ∈ {1, 2}. These
facts are not shown in Figure 2.

• There are Encounter(bn, bn−1) and Mouth(b0).

It is easy to see that chaseTmyth
(Riverκ) is obtained from

Riverκ by adding a copy of the instance shown in Figure 1,
glueing the Encounter fact to the Encounter fact in Riverκ
(and adding some M -facts that are not important here). Now,
let us leave to our readers the pleasure to notice that:

Observation 1. There is a database-preserving ΣQ-
homomorphism from chaseTmyth

(Riverκ) to Riverκ if and only
if there exists m ∈ {1, . . . , n− 1} such that tm ̸= pm+1.

Hint: As long as Pyramus and Thisbe walk down their respec-
tive river banks they are connected via the constant c. But for
their union to last forever they need, at some point, to enter
one of the eternities. Since eternity has no channel with the
worldly constants (and the two eternities are not connected
by a channel either), Pyramus and Thisbe both need to enter
the same eternity, and they need to do it simultaneously. But
this can only happen when one of them is in a bridge constant
and the other in a non-bridge. □

That’s nice, isn’t it? But where could undecidability be
lurking here?
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4.2 Conway Functions
Let γ, α0, β0, . . . , αγ−1, βγ−1 be positive integers such that
βk|γ and βk|kαk for 0 ≤ k < γ where as usual ‘|’ denotes
divisibility without remainder. For a positive integer n, define
𭟋(n) by setting 𭟋(n) = nαk/βk for k = n mod γ. Thus,
the remainder of n when dividing by γ determines the pair
(αk, βk) used to compute the value 𭟋(n). Note that due to
the two divisibility conditions, the range of 𭟋 contains only
positive integers.

The function 𭟋 is called the Conway function defined
by γ, α0, β0, . . . , αγ−1, βγ−1. We say that 𭟋 stops if there
exists an n ∈ N such that 𭟋n(2) = 1, where 𭟋n is 𭟋 com-
posed with itself, n times. There is no special meaning to the
numbers 1 and 2 used here, we could choose otherwise. The
following is well-known, see also (Gogacz and Marcinkowski
2014).

Theorem 3. It is undecidable whether the Conway function
defined by a given sequence γ, α0, β0, . . . , αγ−1, βγ−1 stops.

Take a sequence γ, α0, β0, . . . , αγ−1, βγ−1 defining a
Conway function 𭟋. We prove Points 1 and 2 of Theorem 2
by showing how to compute, given the sequence, sets T1 and
T2 of linear TGDs along with schemas ΣD,ΣQ such that 𭟋
does not stop if and only if T2 is ΣD,ΣQ-hom-conservative
over T1 if and only if T2 is ΣD,ΣQ-CQ-conservative over T1.
We assume without loss of generality that 𭟋(1) = 1 and
𭟋(2) = 3.

4.3 The Reduction
We say that κ = ⟨[p1, . . . , pn], [t1, . . . , tn]⟩ (or Riverκ) is

• locally correct if the following conditions hold:

1. p1 = 2 and pn = 1;
2. 𭟋(pi) = ti for 1 ≤ i < n;

• correct if it is locally correct and ti = pi+1 for 1 ≤ i < n.

The database Riverκ shown in Figure 2 is not locally correct
because p1 ̸= 2 and tn ̸= 1 (which must be the case as we
assume 𭟋(1) = 1).

Clearly, 𭟋 does not stop if and only if every locally
correct Riverκ is incorrect, and by Observation 1 this is
the case if and only if for each locally correct sequence κ
there exists a database-preserving ΣQ-homomorphism from
chaseTmyth

(Riverκ) to Riverκ.
Now the plan is as follows. Take ΣD = ∅. We define

T1 such that chaseT1
(∅) is the ‘disjoint union’ of all locally

correct databases Riverκ. Our T2 will be the union of T1 and
Tmyth. A careful reader can notice that if this plan succeeds,
then the proof of Point 1 of Theorem 2 will be completed.
And it will indeed succeed, but not without one little nuance.
This is the reason why we used quotations mark around the
term ‘disjoint union’ above.

The set of TGDs T1 is the union of two sets of linear TGDs
Trec and Tproj. As intended, T1 generates the union of all lo-
cally correct databases Riverκ. The mentioned nuance is that
the union is not disjoint, but massively overlapping. However,
this does not compromise correctness of the reduction.

The rules of Trec will not mention symbols from ΣQ. They
instead use a schema Σ𭟋 that consists of high arity relation

symbols used as construction aids. We later use Tproj to relate
these symbols to those in ΣQ. More precisely, Σ𭟋 contains
relation symbols Start of arity 8, End of arity 5, Bridge
of arity 4, WHik (for WorkHorse) of arity αk + βk + 5 for
0 ≤ k, i < γ, and BHk (for BridgeHead) of arity αk+βk+5
for 0 ≤ k < γ. In what follows, we use † to denote the list
of variables ‘c, e1, e2’. With +γ and −γ , we denote addition
and subtraction in the ring Zγ .

Since ΣD = ∅, first of all we need a rule that will create
something out of nothing:

→ ∃†, b0, x1, y1, y2, b1 Start(†, b0, x1, y1, y2, b1).
Later, Tproj will generate a Pyramus-path from b1 via x1 to b0
and a Thisbe-path from b1 via y2 and y1 to b0, determining
the lengths p1 = 2 and t1 = 3 of the river. Recall that local
correctness prescribes p1 = 2 and we assume 𭟋(2) = 3. We
need to know that b1 is a bridge:

Start(†, b0, x1, y1, y2, b1) → Bridge(†, b1).
We now put our horses to work by adding, for 0 ≤ k < γ:
Bridge(†, b) → ∃x1, . . . , xβi , y1, . . . , yαi

WHβk

k (†, b, x1, . . . , xβk
, b, y1, . . . , yαk

)

and for 0 ≤ k, i < γ:

WHik(†, x0, x1, . . . , xβk
, y0, y1, . . . , yαk

) →
∃z1, . . . , zβk

, u1, . . . , uαk

WH
i+γβk

k (†, xβk
, z1, . . . , zβk

, yαk
, u1, . . . , uαk

).

WHik(†, c0, c1, . . . , xβk
, y0, y1, . . . , yαk

) promises to gener-
ate, via Tproj, a Pyramus-path of length βk from xβk

to x0 and
a Thisbe-path of length αk from yαk

to y0. The above two
rules thus patiently produce Pyramus- and Thisbe-paths that
lead to b. The superscript ·i remembers how many Pyramus-
edges have been produced since the last bridge, modulo γ,
and the subscript ·k chooses a remainder class, that is, it ex-
presses the promise that the Pyramus-path between the two
bridges is of length n, for some number n with nmod γ = k.

Then, at some point, the next bridge can be reached:

WH
k−γβk

k (†, x0, x1, . . . , xβk
, y0, y1, . . . , yαk

) →
∃z1, . . . , zβk−1, u1, . . . , uαk−1, b

BHk(†, xβk
, z1, . . . , zβk−1, b, yαk

, u1, . . . , uαk−1, b)

BHk(†, xβk
, z1, . . . , zβk−1, b, yαk

, u1, . . . , uαk−1, b) →
Bridge(†, b).

In the first rule above, relation WH
k−γβk

k indicates that we
have seen m Pyramus-edges, for some m with m mod γ =
k −γ βk, and that BHk will generate βk more Pyramus-edges,
thus arriving at the promised remainder of k. It is also easy
to see that if the chosen remainder class was k and the length
of the Pyramus-path between two bridges produced by the
above rules is n, then the length of the Thisbe-path is 𭟋(n) =
nαk/βk. Thus, Point 2 of local correctness is satisfied.

Finally, we want to produce the last2 segment of the river:

Bridge(†, b) → ∃b′ End(†, b, b′)
2Orographically the first, as we generate the river from the mouth

to the source.
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This will generate direct Pyramus- and Thisbe-edges from b′

to b (recall that 𭟋(1) = 1).

The TGDs in Trec generate the actual rivers as projections
of the template produced by Trec. We start at the mouth:

Start(†, b0, x1, y1, y2, b1) →
Mouth(b0),

Pyramus(x1, b0),Pyramus(b1, x1),Pyramus(x1, e2),

Thisbe(y1, b0),Thisbe(y2, y1),Thisbe(b1, y2),

Thisbe(y1, e1),Thisbe(y2, e1),

Channel(c, x1),Channel(c, y1),Channel(c, y2),

Channel(e1, e1),Pyramus(e1, e1),Thisbe(e1, e1)

Channel(e2, e2),Pyramus(e2, e2),Thisbe(e2, e2).

The rules for WHik are then as expected:

WHik(†, x0, x1, . . . , xβk
, y0, y1, . . . , yαk

) →
Pyramus(x1, x0), . . . ,Pyramus(xβk

, xβk−1),

Pyramus(x1, e2), . . . ,Pyramus(xβk
, e2),

Thisbe(y1, y0), . . . ,Thisbe(yαk
, yαk−1),

Thisbe(y1, e1), . . . ,Thisbe(yαk
, e1),

Channel(c, x1), . . . ,Channel(c, xβk
),

Channel(c, y1), . . . ,Channel(c, yαk
).

Rules for the relations BHi are analogous, so we skip them.
There are also rules for projecting relations Bridge and End:

Bridge(†,b)→Channel(c,b),Pyramus(b,e1),Thisbe(b,e2)

End(†,b,b′)→Pyramus(b′, b),Thisbe(b′, b),

Encounter(b, b′).

In the appendix, we show that:

Lemma 4. 𭟋 does not stop iff T2 = T1 ∪ Tmyth is ΣQ,ΣD-
hom-conservative over T1 = Trec ∪ Tproj.

This establishes Point 1 of Theorem 2. For the “if” direc-
tion, one shows that if chaseT2

(∅) →ΣQ
chaseT1

(∅), then
every locally correct river is incorrect, and thus 𭟋 stops.
Since rivers may be long, but are finite, it actually suffices
that chaseT2

(∅) →lim
ΣQ

chaseT1
(∅) for 𭟋 to stop, which by

Theorem 1 gives Point 2 of Theorem 2.
For Point 3 of Theorem 2, we again want to use the toolkit

above, in particular Tmyth and Observation 1. But the situa-
tion is a bit different now. In the above reduction, we had at
our disposal T1 which was able to produce, from nothing, all
the rivers we needed. So we could afford to have ΣD = ∅.
Now, however, we no longer have T1, but only T2, and our
strategy is as follows. Recall that 𭟋 stops if and only if there
is a locally correct Riverκ that is correct, and that Riverκ is
correct if there is no database-preserving ΣQ-homomorphism
from chaseTmyth

(Riverκ) to Riverκ. We use the database D
to guess a Riverκ that admits no such homomorphism. More
precisely, we design T2 so that it verifies the existence of
a (single) locally correct river in D and only if successful
generates a chase with Tmyth at the Encounter fact of that
river. Details are in the appendix.

5 Triviality for Linear TGDs
We show that for linear TGDs, ΣD,ΣQ-triviality is decid-
able and PSPACE-complete, while it is only CONP-complete
when the arity of relation symbols is bounded by a constant.
The upper bounds crucially rely on the observation that non-
triviality is always witnessed by a singleton database, that
is, a database that contains at most one fact. This was first
noted (for CQ-conservative extensions) in the context of the
decription logic DL-Lite (Konev et al. 2011).

Lemma 5. Let T be a set of linear TGDs and ΣD,ΣQ
schemas. Then T is ΣD,ΣQ-trivial iff chaseT (D) →ΣQ

D
for all singleton ΣD-databases D.

So an important part of deciding triviality is to decide,
given a set of TGDs T and a singleton database D, whether
chaseT (D) ̸→ΣQ

D. The basis for this is the subsequent
lemma.

Lemma 6. Let T be a set of linear TGDs and D a singleton
database. Then chaseT (D) ̸→ΣQ

D implies that there is a
connected database C ⊆ chaseT (D) that contains at most
two facts and such that C ̸→ΣQ

D.

Lemmas 5 and 6 provide us with a decision procedure
for triviality for linear TGDs. Given a finite set of linear
TGDs T and finite schemas ΣD and ΣQ, all we have to do
is iterate over all singleton ΣD-databases D and over all
C ⊆ chaseT (D) that contain at most two facts and check (in
polynomial time) whether C →ΣQ

D. To identify the sets C,
we can iterate over all exponentially many candidates and
check for each of them whether D,T |= qC , where qC is C
viewed as a Boolean CQ. This entailment check is possible
in PSPACE (Gottlob, Manna, and Pieris 2015). This yields
the PSPACE upper bound in the following result.

Theorem 4. For linear TGDs, triviality is PSPACE-complete.
It is CONP-complete if the arity of relation symbols is
bounded by a constant.

To obtain the CONP upper bound, we recall that when the
arity of relation symbols is bounded by a constant, then the
entailment check ‘D,T |= qC ’ is in NP (Gottlob et al. 2014).
To decide non-triviality, we may thus guess D and C and
verify in polynomial time that C ̸→ΣQ

D and in NP that
D,T |= qC . For the lower bounds, we reduce entailments of
the form D,T |= ∃xA(x), with T a set of linear TGDs, to
non-triviality for linear TGDs. This problem is PSPACE-hard
in general (Casanova, Fagin, and Papadimitriou 1984) and
it is common knowledge that it is NP-hard when the arity
of relation symbols is bounded by a constant. The reduction
goes as follows. Let D, T , and ∃xA(x) be given. Introduce
a fresh binary relation symbol R, set ΣD = ΣQ = {R}, and
let T ′ be the extension of T with the TGDs

→ qD
A(u) → ∃x∃y∃z R(x, y), R(y, z)

where qD is D viewed as a Boolean CQ. Note that there is
no homomorphism from R(x, y), R(y, z) into the singleton
ΣD-database {R(c, c′)}. Based on this, it is easy to verify
that T ′ is ΣD,ΣQ-trivial iff D,T ̸|= ∃xA(x).
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6 Frontier-One TGDs
The purpose of this section is to show the following.

Theorem 5. For frontier-one TGDs, CQ-conservativity
and hom-conservativity are decidable in 3EXPTIME (and
2EXPTIME-hard).

2EXPTIME lower bounds carry over from the descrip-
tion logic ELI, see (Gutiérrez-Basulto, Jung, and Sabellek
2018) for hom-conservativity and (Jung et al. 2020) for CQ-
conservativity. They already apply when only unary and
binary relation symbols are admitted. In the remainder of the
section, we thus concentrate on the upper bounds.

Both in the case of hom-conservativity and CQ-
conservativity, we first provide a suitable model-theoretic
characterization and then use it to find a decision procedure
based on tree automata. The case of CQ-conservativity is
significantly more challenging because of the appearance of
homomorphism limits.

6.1 Deciding Hom-Conservativity
We show that to decide hom-conservativity, it suffices to
consider databases of bounded treewidth. Instead of using the
standard notion of a tree decomposition, however, it is more
convenient for us to work with so-called tree-like databases.
Variations of these have been used for instance in (Benedikt,
Bourhis, and Senellart 2012; Jung et al. 2018).

A Σ-instance tree is a triple T = (V,E,B) with (V,E) a
directed tree andB a function that assigns a Σ-databaseB(v)
to every v ∈ V such that the following conditions hold:

1. for every a ∈
⋃
v∈V adom(B(v)), the restriction of (V,E)

to the nodes v ∈ V such that a ∈ adom(B(v)) is a tree of
depth at most one;

2. for every (u, v) ∈ E, |adom(B(u)) ∩ adom(B(v))| ≤ 1.

The width of the instance tree is the supremum of the cardi-
nalities of adom(B(v)), v ∈ V . A Σ-instance tree T defines
an associated instance IT =

⋃
v∈V B(v). A Σ-instance I is

tree-like of width k if there is a Σ-instance tree T of width k
with I = IT .

Instance trees of width k are closely related to tree decom-
positions of width k in which the bags overlap in at most
one constant. Condition 1, however, strengthens the usual
connectedness condition to trees of depth 1. This strengthen-
ing is crucial for our constructions and not possible for other
classes of TGDs such as guarded TGDs.

Theorem 6. Let T1 and T2 be sets of frontier-one TGDs, and
ΣD and ΣQ schemas. Let k be the body width of T1. Then
the following are equivalent:

1. T1 |=hom
ΣD,ΣQ

T2;

2. chaseT2
(D) →ΣQ

chaseT1
(D), for all tree-like ΣD-

databases D of width at most k.

The “1 ⇒ 2”-direction is a direct consequence of the
definition of hom-conservativity. For the “2 ⇒ 1”-direction,
let D be a ΣD-database witnessing T1 ̸|=hom

ΣD,ΣQ
T2, that is,

chaseT2
(D) ̸→ΣQ

chaseT1
(D). We show in the appendix

that the unraveling U of D into a (potentially infinite) tree-
like ΣD-instance of width k also satisfies chaseT2

(U) ̸→ΣQ

chaseT1(U). Compactness then yields a finite subset U ′ of
U that still satisfies chaseT2(U

′) ̸→ΣQ
chaseT1(U

′).
We show in the appendix how Theorem 6 can be used to re-

duce ΣD,ΣQ-hom-conservativity to the EXPTIME-complete
emptiness problem of two-way alternating tree automata
(2ATAs) and in this way obtain a 3EXPTIME upper bound.
Here, we only give a sketch. Let T1 and T2 be sets of frontier-
one TGDs, ΣD and ΣQ schemas, k the body width of T1,
and ℓ the head width of T1.

The 2ATA works on input trees that encode a tree-like
database D of width at most k along with a tree-like model
I0 of D and T1 of width at most max{k, ℓ}. It verifies
that chaseT2

(D) ̸→ΣQ
I0. If such an I0 is found, then

chaseT2(D) ̸→ΣQ
chaseT1(D) because chaseT1(D) → I0.

The converse is also true since chaseT1(D) is tree-like of
width max{k, ℓ}. In fact, the instance chaseT1(D)|↓c that the
chase generates below each c ∈ adom(D) (see Section 2) is
tree-like of width ℓ.

Since our homomorphisms are database-preserving and
T2 is a set of frontier-one TGDs, chaseT2

(D) ̸→ΣQ
I0

if and only if there is a c ∈ adom(D) such that
chaseT2

(D)|↓c ̸→ΣQ
I0. The 2ATA may thus check this latter

condition, which it does by relying on the notion of a type.
Since types also play a role in the subsequent sections, we
make this precise.

Let T be a set of frontier-one TGDs. We use bodyCQ(T )
to denote the set of unary or Boolean CQs that can be ob-
tained by starting with the Boolean CQ ∃y∃z̄ ϕ(y, z̄) with
ϕ(y, z̄) the body of some TGD in T , then dropping any num-
ber of atoms, and then identifying variables. Finally, we may
choose a variable as the answer variable and rename it to the
fixed variable x (or stick with a Boolean CQ). A T -type is a
subset t ⊆ bodyCQ(T ) such that for some instance I that is
a model of T and some c ∈ adom(I),

1. q(x) ∈ t iff c ∈ q(I) for all unary q(x) ∈ bodyCQ(T ) and
2. q ∈ t iff I |= q for all Boolean q ∈ bodyCQ(T ).
We then also use tpT (I, c) to denote t. We assume that every
type contains the additional formula true(x) (so that x is
guaranteed to occur free in t). We may then view t as a unary
CQ with free variable x and thus as a (canonical) database.
For brevity, we use t also to denote both of these. TP(T )
is the set of all T -types. Note that the number of types is
double exponential in ||T ||. The type tpT (chaseT (D), c)
tells us everything we need to know about c in the chase of a
database D with T , as follows.
Lemma 7. Let T be a set of frontier-one TGDs, I an instance,
and c ∈ adom(I). Then chaseT (I)|↓c and chaseT (J)|↓c
are homomorphically equivalent, where J is obtained from
tpT (chaseT (I), c) by replacing the free variable x with c.

The proof of Lemma 7 is straightforward by reproducing
chase steps from the construction of chaseT (I) in chaseT (J)
and vice versa. Details are omitted.

So to verify that chaseT2
(D) ̸→ΣQ

I0, a 2ATA may guess
a constant c in the database D represented by the input tree,
and it may also guess the type tpT2

(chaseT2
(D), c). It then

goes on to verify that tpT2
(chaseT2

(D), c) was guessed cor-
rectly (which is not entirely trivial as chaseT2

(D) is not en-
coded in the input). Exploiting Lemma 7, it then starts from
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type tpT2
(chaseT2(D), c) to construct ‘in its states’ the in-

stance chaseT2(D)|↓c , simultaneously walking through the
instance I0 encoded by the input tree to verify that, as de-
sired, chaseT2(D)|↓c ̸→ΣQ

I0 (we actually build a 2ATA for
verifying chaseT2

(D)|↓c →ΣQ
I0 and then complement).

6.2 Deciding CQ-Conservativity
We start with showing that, also for deciding CQ-
conservativity, it suffices to consider tree-like databases. In
addition, it suffices to consider CQs q of arity 0 or 1.
Theorem 7. Let T1 and T2 be sets of frontier-one TGDs, and
ΣD and ΣQ schemas. Let k be the body width of T1. Then
the following are equivalent:

1. T1 |=CQ
ΣD,ΣQ

T2;

2. qT2(D) ⊆ qT1(D), for all tree-like ΣD-databases D of
width at most k and connected ΣQ-CQs q of arity 0 or 1.
The proof of Theorem 7 first concentrates on restricting

the shape of the database, using unraveling and compactness
as in the proof of Theorem 6. In a second step, it is then not
difficult to restrict also the shape of the CQ.

The following refinement of Theorem 1 is a straightfor-
ward consequence of Theorem 7.
Theorem 8. Let T1 and T2 be sets of frontier-one TGDs,
ΣD and ΣQ schemas, and k the body width of T1. Then the
following are equivalent:

1. T1 |=CQ
ΣD,ΣQ

T2;

2. chaseT2(D) →lim
ΣQ

chaseT1(D), for all tree-like ΣD-
databases D of width at most k.
Although Theorem 8 looks very similar to Theorem 6, it

does not directly suggest a decision procedure. In particular,
it is not clear how tree automata can deal with homomorphism
limits. We next work towards a more operative characteriza-
tion that pushes the use of homomorphism limits to parts of
the chase that are ΣQ-disconnected from the database and
regular in shape. As we shall see, this allows us to get to
grips with homomorphism limits.

For a databaseD, with chaseT (D)|conΣ we denote the union
of all maximally Σ-connected components of chaseT (D) that
contain at least one constant from adom(D).
Theorem 9. Let T1 and T2 be sets of frontier-one TGDs,
ΣD and ΣQ schemas, and k the body width of T1. Then
T1 |=CQ

ΣD,ΣQ
T2 iff for all tree-like ΣD-databases D of width

at most k, the following holds:
1. chaseT2(D)|conΣQ

→ΣQ
chaseT1(D);

2. for all maximally ΣQ-connected components I of
chaseT2

(D) \ chaseT2
(D)|conΣQ

, one of the following holds:

(a) I →ΣQ
chaseT1

(D);
(b) I →lim

ΣQ
chaseT1(D)|↓c for some c ∈ adom(D).

The subsequent example illustrates the theorem.
Example 2. Consider the sets of TGDs T1, T2 and the
schemas ΣD,ΣQ from Example 1. Recall that T2 is ΣD,ΣQ-
CQ-conservative over T1. Since ΣD contains only the unary

relation A, we may w.l.o.g. concentrate on the ΣD-database
D = {A(c)}. Clearly, Point 1 of Theorem 9 is satisfied.

For Point 2, observe that chaseT2
(D) \ chaseT2

(D)|conΣQ

contains only one maximally ΣQ-connected component,
which is of the form

I = {R(c1, c0), R(c2, c1), . . . }.

Moreover, I →lim
ΣQ

chaseT1
(D)|↓c and thus Point 2(b) is satis-

fied. Point 2(a) is not satisfied since I ̸→ΣQ
chaseT1(D).

The easier ‘if’ direction of the proof of Theorem 9 relies
on the fact that, as per Theorem 7, we can concentrate on
connected CQs of arity 0 or 1. The interesting direction
is ‘only if’, distinguishing several cases and using several
‘skipping homomorphism’ arguments (see Lemma 3).

Points 1 and 2(a) of Theorem 9 are amenable to the
same tree automata techniques that we have used for hom-
conservativity. Point 2(b) achieves the desired expulsion
of homomorphism limits, away from the database D to in-
stances of regular shape. In fact, the number of possible
T1-types is independent of D and thus by Lemma 7 the num-
ber of distinct instances chaseT1

(D)|↓c in Point 2(b) that have
to be considered is also independent ofD. Moreover, these in-
stances are purely chase-generated and thus regular in shape.
The same is true for the instances I in Point 2. We next take
a closer look at the latter.

Let T be a set of frontier-one TGDs. A T -labeled database
is a pair A = (D,µ) with D a database and µ : adom(D) →
TP(T ). We associate A with a database DA that is obtained
by starting with D and then adding, for each c ∈ adom(D),
a disjoint copy D′ of the type µ(c) viewed as a database and
glueing the copy of x in D′ to c in DA. We use T -labeled
databases to describe fragments of chase-generated instances,
and thus assume that DA contains only null constants. We
also associate A with a Boolean CQ qA, obtained by viewing
DA as such a CQ.

A labeled Σ-head fragment of T2 is a T2-labeled database
(F, µ) such that F can be obtained by choosing a TGD
ϕ(x, ȳ) → ∃z̄ ψ(x, z̄) ∈ T2 and taking a maximally Σ-
connected component of ψ that does not contain the frontier
variable. The following lemma follows from an easy analysis
of the chase procedure. Proof details are omitted.
Lemma 8. Let I be a maximally ΣQ-connected component
of chaseT2

(D) \ chaseT2
(D)|conΣQ

, as in Point 2 of Theorem 9.
Then for some labeled ΣQ-head fragment A = (F, µ) of T2,
1. chaseT2(D) |= qA, and
2. I is homomorphically equivalent to chaseT (DA)|conΣQ

.

Clearly, the number of labeled Σ-head fragments of T2
is independent of D, just like the number of T1-types. It
thus follows from Lemma 8 and what was said before it that
the number of checks ‘I →lim

ΣQ
chaseT1

(D)|↓c ’ in Point 2(b)
of Theorem 9 does not depend on D: there is at most one
such check for every labeled Σ-head fragment of T2 and
every T1-type. We can do all these checks in a preprocessing
step, before starting to build 2ATAs for CQ-conservativity
that implement the characterization provided by Theorem 9.
Whenever the 2ATA needs to carry out a check ‘I →lim

ΣQ
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chaseT1(D)|↓c ’ to verify Point 2(b), we can simply look up
the precomputed result and let the 2ATA reject immediately
if it is negative. Thus, the automata are completely freed
from dealing with homomorphism limits.

6.3 Precomputing Homomorphism Limits
It remains to show how to actually achieve the precomputa-
tion of the tests ‘I →lim

ΣQ
chaseT1(D)|↓c ’ in Point 2(b) of The-

orem 9. This is where we finally deal with homomorphism
limits. The following theorem makes precise the problem
that we actually have to decide.

Theorem 10. Given two sets of frontier-one TGDs T1 and T2,
a schema Σ, a labeled Σ-head fragment A = (D,µ) for T2,
and a T1-type t̂, it can be decided in time triple exponential
in ||T1||+ ||T2|| whether chaseT2

(DA)|conΣ →lim
Σ chaseT1

(t̂).

We invite the reader to compare the decision problem
formulated in Theorem 10 with Point 2(b) of Theorem 9 in
the light of Lemmas 7 and 8. The decision procedure used to
prove Theorem 10 is again based on tree automata. To enable
their use, however, we first rephrase the decision problem
in Theorem 10 in a way that replaces homomorphism limits
with unbounded homomorphisms.

Let T1, T2, Σ, A = (D,µ), and t̂ be as in Theorem 10.
Recall thatA is associated with a databaseDA and a Boolean
CQ qA. Here, we additionally use unary CQs qcA, for every
c ∈ adom(D), which are defined exactly like qA except that
c is now the answer variable.

The main idea for proving Theorem 10 is to replace homo-
morphism limits into chaseT1

(t̂) with homomorphisms into
a class of instances R(T1, t̂) whose disjoint union should
be viewed as a relaxation of chaseT1

(t̂). In particular, this
relaxation admits a homomorphism limit to chaseT1(t̂), but
not a homomorphism. Let us make this precise.

We again use instance trees. This time, however, they are
not based on directed trees, but on directed pseudo-trees, that
is, finite or infinite directed graphs G = (V,E) such that
every node v ∈ V has at most one incoming edge and G is
connected and contains no cycle.3 Note that infinite directed
pseudo-trees need not have a root. For example, a two-way
infinite path qualifies as a directed pseudo-tree.

A T1-labeled instance tree has the form T = (V,E,B, µ)
with T ′ = (V,E,B) an instance tree (based on a directed
pseudo-tree) and µ : adom(IT ′) → TP(T1) a function that
assigns a T1-type to every element in IT ′ . For v ∈ V , we use
µv to denote the restriction of µ to adom(B(v)). Moreover,
we set IT = IT ′ . We say that T is t̂-proper if the following
conditions are satisfied:

1. for every v ∈ V , one of the following holds:

(a) v is the root of (V,E), B(v) has the form {true(c0)},
and µ(c0) = t̂;

(b) there is a TGD ϑ in T1 such that B(v) is isomorphic to
the head of ϑ and t̂, T1 |= q(B(v),µv);

3Neither in the directed nor in the undirected sense, which is
equivalent if every node has at most one incoming edge.

2. for every (u, v) ∈ E such that B(u) ∩ B(v) contains a
(single) constant c, we have µu(c), T1 |= qc(B(v),µv)

(x).
That is: the constant x from the type µu(c) viewed as a
database is an answer to the unary CQ qc(B(v),µv)

w.r.t. T1.

The announced class R(T1, t̂) consists of all instances I
such that I = IT for some t̂-proper T1-labeled instance
tree T . It is easy to see that chaseT1(t̂) ∈ R(T1, t̂) as there
is a t̂-proper T1-labeled instance tree T such that IT =
chaseT1(t̂). However, there are also instances I ∈ R(T1, t̂)

that do not admit a homomorphism to chase(t̂, T1). The
following example illustrates their importance.
Example 3. Consider T1, T2,ΣD,ΣQ from Example 1 and
I,D, c from Example 2. Let t̂ = tpT1

(chaseT1
(D), c), that

is, t̂ = {A(x), ∃xA(x), ∃xB(x)}. Then I ̸→ chaseT2(t̂).
However, we find a t̂-proper T1-labeled instance tree T =
(V,E,B, µ) such that I → IT .

We may construct T by starting with a single node v0,
B(v0) = {R(c1, c0)}, and

µ(c0) = µ(c1) = {B(x), ∃xA(x), ∃xB(x)}.
Then repeatedly add a predecessor vi+1 of vi, with
B(vi+1) = {R(ci+1, ci)} and µ(ci+1) = µ(c0), ad infini-
tum. The resulting tree T is t̂-proper and satisfies IT = I .
Note that it does not have a root.

The next lemma is the core ingredient to the proof of The-
orem 10. Informally, it states that when replacing chaseT1

(t̂)

with instances from R(T1, t̂), we may also replace homomor-
phism limits with homomorphisms.
Lemma 9. Let I be a countable Σ-connected instance such
that adom(I) contains only nulls. Then I →lim

Σ chaseT1
(t̂)

iff there is an Î ∈ R(T1, t̂) with I → Î .
In the proof of Lemma 9, the laborious direction is ‘only

if’, where one assumes that I →lim
Σ chaseT1

(t̂) and then uses
finite subinstances J1 ⊆ J2 ⊆ · · · of I with I =

⋃
i≥1 Ji

and homomorphisms hi from Ji to chaseT1
(t̂), i ≥ 1, to iden-

tify the desired instance Î ∈ R(T1, t̂). This again involves
several ‘skipping homomorphisms’ type of arguments.

Using Lemma 9, we give a decision procedure based on
2ATAs that establishes Theorem 10. The 2ATA accepts input
trees encoding an instance I ∈ R(T1, t̂) that admits a Σ-
homomorphism from chaseT2

(DA)|conΣ .

7 Future Work
It would be interesting to determine the exact complexity
of hom- and CQ-conservativity for frontier-one TGDs. We
tend to think that these problems are 3EXPTIME-complete.
Note that in the description logic ELI , they are 2EXPTIME-
complete (Jung et al. 2020).

It would also be interesting to study conservative exten-
sions and triviality for other classes of TGDs that have been
proposed in the literature. Of course, it would be of partic-
ular interest to identify decidable cases. Classes for which
undecidability does not follow from the results in this pa-
per include acyclic and sticky TGDs, which exist in several
forms, see for instance (Calı̀, Gottlob, and Pieris 2010).
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