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Abstract
Norms have been widely proposed to coordinate and regu-
late behaviour in multi-agent systems (MAS). We consider
the problem of synthesising and revising the set of norms in
a normative MAS to satisfy a design objective expressed in
Alternating Time Temporal Logic (ATL∗). ATL∗ is a well-
established language for strategic reasoning, which allows the
specification of norms that constrain the strategic behaviour
of agents. We focus on dynamic norms, that is, norms corre-
sponding to Mealy machines, that allow us to place different
constraints on the agents’ behaviour depending on the state of
the norm and the state of the underlying MAS. We show that
synthesising dynamic norms is (k+1)-EXPTIME where k is
the alternation depth of quantifiers in the ATL∗ specification.
Note that for typical cases of interest, k is either 1 or 2. We
also study the problem of removing existing norms to satisfy
a new objective, which we show to be 2EXPTIME-complete.

1 Introduction
Norms have been widely proposed as a way of coordinat-
ing and regulating behaviour in multi-agent systems (MAS)
(Chopra et al. 2018). Intuitively, a norm expresses a pattern
of desired or undesired behaviour. Examples of norms in-
clude traffic laws stating how an agent should drive, hygiene
rules introduced during a pandemic, and social conventions,
such as greeting someone the first time you see them each
day. Norms may be generated by the designer or admin-
istrator of a MAS (prescriptive norms), e.g., traffic laws,
or emerge spontaneously from interactions between agents
(emergent norms) (Haynes et al. 2017). In what follows, we
focus on prescriptive norms designed by the developer or
administrator of a normative MAS, rather than norms that
emerge spontaneously.

Norms may be implemented in a MAS through regimen-
tation or enforcement (Grossi, Aldewereld, and Dignum
2006). A regimented norm is impossible to violate due to
the design of the MAS. For example, only authorised users
can login to the system. Enforcement imposes a sanction on
an agent when a norm is violated, e.g., a fine or social dis-
approval. In the interests of brevity, we focus on regimented
norms, however our approach can be easily modified to pro-
duce norms where sanctions are imposed when the norm is
violated.

Rather than modelling norms as forbidding some actions
in a given state of the environment (static norms), we model

them as automata (Mealy machines), as this allows us to take
into account the relevant history of the system. In general, it
is not reasonable to assume that the entire history of a MAS
is recorded in the state of the environment. For example,
we may consider a norm that forbids greeting someone the
agent already met on the same day, or making more than n
support requests in a fixed period of time, or performing an
experiment before ethical approval has been obtained, etc.
We refer to such automata-based norms as dynamic norms.
Such dynamic norms were introduced in (Huang et al. 2016;
Perelli 2019).

We focus on the problem of the automated synthesis of
dynamic norms: given a multi-agent system and an objec-
tive (a formula in ATL∗), is there a dynamic norm that,
when implemented in the MAS, ensures the objective is
satisfied? We also consider a problem of removing dy-
namic norms in order to satisfy ATL∗ objectives. There
has been considerable work on norm synthesis for static
norms, e.g., (Morales et al. 2015; Morales et al. 2018;
Bulling and Dastani 2016). For example, Bulling and Das-
tani (2016) consider norm synthesis for LTL objectives. In
their approach, agents are assumed to have LTL-defined
preferences with numerical values and the aim of the synthe-
sis is to produce a norm that enforces the objective for some
Nash equilibrium. There has been less work on the synthe-
sis of dynamic norms. In (Huang et al. 2016) the synthesis
of dynamic norms to satisfy Computation Tree Logic (CTL)
objectives is considered, and in (Perelli 2019), the synthesis
of dynamic norms for LTL objectives and Nash equilibria.

In this paper, we present a new approach to the automated
synthesis of dynamic norms to satisfy objectives expressed
in ATL∗. In contrast to objectives expressed in LTL, ATL∗
allows us to place constraints on the strategies of particu-
lar groups of agents. We consider a very general setting of
norm synthesis in multi-agent systems, in which only the
actions the agents may perform, the norms already in force,
and the system objective to be achieved are specified. In
particular, we make no assumptions about the goals, prefer-
ences or states of agents, as in designing open multi-agent
systems where agents are developed by different organisa-
tions or developers, such information is often unavailable.
The system objectives and norms we consider are also very
general. We show that synthesising dynamic norms in this
setting is (k + 1)-EXPTIME where k is the alternation of
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quantifiers in the ATL∗ specification. Note that for typical
cases of interest, k is either 1 or 2. We also study the prob-
lem of removing existing norms to satisfy a new objective,
which we show to be 2EXPTIME-complete.

2 Framework
In this section we introduce our framework for reasoning
about dynamic norms in multi-agent systems, and briefly re-
call some necessary preliminaries.

2.1 System Models
We model a normative multi-agent system as a particular
kind of game, similar to concurrent game structures, but ex-
tended with norms. For example, if the MAS is a city, then
norms are things like traffic laws, hygiene rules, social con-
ventions, etc. that apply there. Norms do not have to apply
to all agents in the same way. For example, some traffic
gets priority; small children are exempt from wearing face
masks; children are not allowed to drive a car. These con-
siderations are reflected in the definition below.

A k-normed Multi-Agent System (k-MAS), sometimes
also called game, G is a tuple:

〈Ag,Ac,AP,Cap, (Nrmi)i≤k,~q0, tr, (illegali)i≤k, (ηi)i≤k〉
where:
• Ag = {1, . . . , N} is a finite set of N agents, denoted by

natural numbers;
• Ac is a finite set of actions that agents can perform (in

some state of the environment);
• AP is a finite set of atomic propositions; an assignment

of truth values to AP determines environment states of
the system;

• Cap : Ag × 2AP → 2Ac is a capability function that as-
signs to each agent in each environment state the set of
actions it is capable of performing in that state;

• Nrmi is a finite set of normative states, one for each i ≤
k, with ~Nrm = Nrm1× . . .×Nrmk, being the normative
vector state space;

• ~q0 ∈ ~Nrm is a designated initial normative state;

• tr : 2AP×AcAg → 2AP is a transition function that deter-
mines the next state of the environment given the current
state of the environment and the actions performed by the
agents;

• illegali : Nrmi× 2AP → 2Ac×Ag is the illegality function
that returns a set pairs of actions and agents that are illegal
given the current state of a norm and the environment;

• ηi : Nrmi × 2AP → Nrmi is a normative function that
determines the next state of a norm given the current state
of the norm and the environment.
Intuitively, starting from the empty set of atomic propo-

sitions1 and from the initial vector of normative states ~q0,
1The assumption that the initial state is empty is made for con-

venience; the developments below would go through for an arbi-
trary initial state.

a game moves forward according to the transition function,
triggered by an action tuple ~a ∈ AcAg, changing the under-
lying evaluation of the propositions in AP. Simultaneously,
each normative component is updated by the corresponding
normative function.

A configuration of G is a tuple c = (π,~q) ∈ 2AP ×
~Nrm. Sometimes, with an abuse of notation, we denote by

illegali(qi, π, j)
.
= {a ∈ Ac : (a, j) ∈ illegali(qi, π)} the

set of actions that are made illegal for agent j by the i-th
normative component. Analogously, for a configuration c =
(π,~q), by AvlG(c, j)

.
= Cap(j, π) \ (∪i≤killegali(qi, π, j)),

we denote the set of actions available to agent j in configu-
ration c, where ~qi is the i-th component of ~q.

The set AvlG(c)
.
= AvlG(c, 1)× . . .×AvlG(c,N) denotes

the action vectors that are available in a configuration c.
Note that agents can select only actions that are in their ca-

pability and that are allowed by each normative component.
More precisely, at each configuration c = (π,~q), each agent
j can select only an action aj ∈ AvlG(c, j). Once each agent
j has chosen an available action aj and the corresponding
action vector ~a = (a1, . . . , ak) is formed, the system moves
its components forward to the configuration (π′,~q′), with
π′ = tr(π,~a) and ~q′ = (η1(q1, π), . . . , ηk(qk, π)).

A legal run, or simply run is an infinite sequence r ∈
(2AP × ~Nrm)ω such that, for each n ∈ N, there exists an
action vector ~an ∈ AvlG(rn), such that

rn+1 = (tr(πn,~an), η1(q1n, πn), . . . , ηk(qkn, πn))

with rn = (πn,~qn). We use the notation r≤n to denote the
prefix of r up to and including rn. Similarly, r≥n is the

suffix of r starting from rn. Moreover, we write c ~a−→ c′ to
denote that the action vector ~a determines a transition from
configuration c to configuration c′.

Intuitively, a run is an infinite sequence that, starting from
a given configuration, evolves according to the action vec-
tors as the agents select them. A run is initial if it starts from
the initial configuration, that is, r0 = (∅,~q0).

A strategy for agent j in the game G is a Mealy machine
of the form

σj = (Sj , s
0
j ,

~Nrm× 2AP,Ac, δj , τj).

Intuitively, a strategy is a machinery that, for each internal
state s ∈ Sj and a configuration c = (π,~q) of G, selects
an action in Ac determined by τj(s, (π,~q)) and updates its
internal state δj(s, (π,~q)) accordingly. Clearly, not every
strategy is available in the game, only those that comply with
the normative requirements specified by the game itself. We
say that a strategy σj is legal with respect to G if, and only
if, τj(s, (π,~q)) ∈ Avl(~q, π, j). From now on, we restrict our
attention to legal strategies, and, unless otherwise stated, we
refer to them simply as strategies. Moreover, for simplicity,
for a given strategy σj and a finite sequence r̂ ∈ (2AP ×
~Nrm)∗, by σj(r̂) ∈ Ac we denote the action determined by

the action function τj in σj after the sequence r̂ has been fed
to the internal transition function δj .2

2Note that any conventional strategy σ : (2AP)∗ → Ac has a
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Consider a subsetA ⊆ Ag of agents and a set of strategies
σA, one for each agent j ∈ A. We say that a run r is com-
patible with σA if, for every n ∈ N, it holds that there exists
an action vector ~an, with ajn = σj(r≤n) for each j ∈ A and
σj ∈ σA, such that rn+1 is obtained from rn by applying~an.
Essentially, a run r is compatible with σA if it can be gener-
ated when the agents in A play according to their respective
strategies. The set of runs starting from a given configura-
tion c and compatible with σA is denoted by outG(c, σA).
Observe that the set of runs of a given k-MAS G starting
from a configuration c, sometimes denoted PathsG(c), can
also be written as outG(c, ∅). Moreover, when it is clear
from the context, we omit the subscript and simply write
Paths(c) or out(c, σA).

2.2 ATL∗– Alternating-Time Temporal Logic
We use Alternating-Time Temporal Logic (ATL∗) to express
system objectives. For example, we may want a particular
group of agents to be able to achieve a temporal goal, such as
provide timely assistance to sick people or respond to other
emergencies. Or, we may want to preclude a group of agents
from achieving a goal, such as having a road race on a res-
idential street. Norms are synthesised and added to the sys-
tem in order to satisfy new objectives. Note that this means
that new norms may make previous objectives unachievable
(e.g. if speeds over 20 mph are made uniformly illegal, then
ambulances also cannot drive at more than 20 mph). How-
ever, we can always add old objectives conjunctively to the
new one when synthesising norms.

We now recall the syntax of ATL∗ and provide a definition
of its semantics over a k-MAS. We start with the definition
of the syntax.

ATL∗ formulas are built inductively from the set of atomic
propositions AP and agents Ag, by using the following
grammar, where p ∈ AP and A ⊆ Ag:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | 〈〈A〉〉ϕ.

As syntactic sugar we also use ϕ1∨ϕ2
.
= ¬(¬ϕ1∧¬ϕ2),

ϕ1 → ϕ2
.
= ¬ϕ1 ∨ ϕ2, ϕ1 ↔ ϕ2

.
= (ϕ1 → ϕ2) ∧ (ϕ2 →

ϕ1), [[A]]ϕ
.
= ¬〈〈A〉〉¬ϕ, Fϕ .

= trueUϕ, and Gϕ
.
= ¬F¬ϕ.

Intuitively, 〈〈A〉〉ψ means that each agent in A has a strat-
egy such that, whatever the agents Ag \ A do, the resulting
outcome satisfies ψ. This translates into the semantics as
follows. For a given k-MAS G and a run r over it, the se-
mantics of an ATL∗ formula ϕ, denoted G, r |= ϕ, is given
recursively as follows:

• G, r |= p iff p ∈ π0, with r0 = (π0,~q0) for some ~q0 ∈
~Nrm;

• G, r |= ¬ϕ iff G, r 6|= ϕ;

corresponding strategy of the form σ : (2AP × ~Nrm)∗ → Ac, be-
cause the system is deterministic and the next normative state can
be computed from the previous normative and environment state.
Here we consider regular strategies, that is, those that can be rep-
resented as a Mealy machines. This is not a limitation, as, when
the specification language is ω-regular, if a strategy satisfying the
specification exists, then a regular strategy also exists. Moreover,
this representation means strategies have a compact form, and is
similar to the form of dynamic norms introduced later.

• G, r |= ϕ1 ∧ ϕ2 iff both G, r |= ϕ1 and G, r |= ϕ2.

• G, r |= 〈〈A〉〉ϕ iff there is a strategy σA such that G, r′ |=
ϕ, for all r′ ∈ out(r0, σA);

• G, r |= Xϕ iff G, r≥1 |= ϕ;

• G, r |= ϕ1Uϕ2 iff there exists j ∈ N such that G, r≥i |=
ϕ1, for all i < j, and G, r≥j |= ϕ2.

The model-checking problem for ATL∗ is: given a struc-
ture G, a run r and an ATL∗ formula ϕ, does it hold that
G, r |= ϕ? Although the result below was established for
concurrent game structures (essentially, 0-MAS without nor-
mative components), it also holds for k-MAS.

Theorem 1. (Alur, Henzinger, and Kupferman 2002,
Theorem 5.6) The model-checking problem for ATL∗ is
2EXPTIME-complete.

2.3 ATL∗ for Strategic Permission and
Prohibition

In this section, we introduce two important classes of norma-
tive specifications, strategic permissions and strategic prohi-
bitions, which can be expressed in ATL∗ in a simple way.

Definition 1 (Strategic Permission). A strategic permission
is a positive Boolean combination of formulas of the form
〈〈A〉〉ϕ, where ϕ is a purely temporal formula (not contain-
ing any strategy quantification 〈〈A′〉〉).

Intuitively, a strategic permission objective 〈〈A〉〉ϕ ensures
that the agent(s) A have the strategic ability to bring about
ϕ. Strategic permissions are a form of reachability property
that specify that agents should have the freedom to do some-
thing if they wish. Note that a norm satisfying a strategic
permission may restrict the actions of agents not in A, that
is, that the agents Ag \ A may be constrained so that they
not have a strategy to prevent A achieving φ. For example,

Example 1 (Strategic Permission). The property that ambu-
lances should be able to park in their designated places at a
hospital can be expressed in ATL∗ as

∧
i∈A 〈〈i〉〉G(readyi →

X parki), where A is the set of ambulances, readyi stands
for ‘ambulance i is ready to park’ and parki stands for ‘am-
bulance i is parked in its designated place’.

This property can be enforced by making it illegal for all
agents different from i to park in i’s place.

Definition 2 (Strategic Prohibition). A strategic prohibition
is a positive Boolean combination of formulas of the form
¬〈〈A〉〉ϕ, where ϕ is a purely temporal formula.

A strategic prohibition objective ¬〈〈A〉〉ϕ ensures that the
agent(s) A do not have the strategic ability to bring about ϕ.
Strategic prohibitions are a form of safety property that spec-
ify that agents should not have the freedom to bring some-
thing about even if they wish to. In general, a norm satis-
fying a strategic prohibition restricts the actions of agents in
A. For example,

Example 2 (Strategic Prohibition). The property that a set
of juvenile delinquents D should not be able to organise a
road race can be expressed in ATL∗ as ¬〈〈D〉〉F road race.
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This property can be enforced by making it illegal for
all agents to drive fast, but such a blanket prohibition may
conflict with a strategic permission allowing ambulances to
drive fast:

∧
i∈A 〈〈i〉〉G X speed

≥20
i . A norm that makes driv-

ing fast illegal only for agents in D will not violate the latter
property.

2.4 ATL∗ with Strategy Context
For technical purposes, we also make use of an extension
of ATL∗, namely ATL∗ with strategy context (Laroussinie
and Markey 2015), denoted ATL∗sc, in which another form of
quantification 〈〈·A·〉〉ϕ is used, together with its dual [[·A·]]ϕ,
defined as ¬〈〈·A·〉〉¬ϕ. Formulas of ATL∗sc are interpreted
over the same structures as ATL∗ together with a strategy
context. More formally, for a given k-MAS G and a set of
strategies σB for the subset B ⊆ Ag of agents, we write:

• G, r |=σB
〈〈·A·〉〉ϕ if there is a strategy σA such that

G, r′ |=σB◦σA ϕ, for all r′ ∈ out(r0, σB ◦ σA);

where σB ◦ σA
.
= σB ∪ σA\B denotes the set of strategies

obtained from σB by adding strategies of σA that are for
agents in A but not in B.

The quantifier alternation, or simply alternation of a
ATL∗sc formula ϕ is the number of times an existential quan-
tification 〈〈···〉〉 is followed by a universal one [[···]], and vice-
versa. The model checking problem for ATL∗sc was shown
to have a TOWER-complete complexity in (Laroussinie and
Markey 2015), whose height depends on the number of alter-
nations in the formula. More precisely, they show that model
checking an ATL∗sc formula with h alternations is (h + 1)-
EXPTIME-complete.

Theorem 2. (Laroussinie and Markey 2015, Corollary 14)
The model-checking problem for an ATL∗sc formula with h
nested strategy quantifiers is (h+ 1)-EXPTIME-complete.

2.5 Norms
A Norm over a k-MAS G is a Mealy machine of the form

N =〈Nrm, q0, 2
AP, 2Ac×Ag, η, illegal〉

A norm takes a state of the world as input and returns a set
pairs of actions and agents that are illegal given the current
state of a norm and the environment. N is well-defined on
every k-MAS G having the same set Ag of agents, Ac of
actions and AP of propositions.

Example 3. A trivial norm (that does not impose any
restrictions) can be defined as follows: Nrm = {q0},
η(q0, π) = q0 for all π ∈ 2AP, and illegal(q0, π) = ∅ for all
π.

Example 4. A norm that forbids agent j executing action
a after encountering proposition p twice can be defined as
Nrm = {q0, q1, q2}, where for i ∈ {0, 1}, η(qi, π) = qi if
p 6∈ π, η(qi, π) = qi+1 if p ∈ π, illegal(qi, π) = ∅ for all π;
and η(q2, π) = q2 for all π, illegal(q2, π) = {(a, j)}.

The following example is adapted from (Huang et al.
2016) (slightly simplified for brevity).

Example 5. In a system consisting of n producers and m
consumers, the norm prevents producers failing to supply
consumers whose ‘turn’ it is to be served. Actions of each
producer j are of the form B ⊆ {1, . . . ,m}, correspond-
ing to serving the set of consumers B. If it is the turn of
consumer i, then illegal actions are B such that i 6∈ B.
This norm can be defined as follows: Nrm = {q1, . . . , qm},
(the states of the norm correspond to which consumer’s turn
it is), η(qi, π) = qi+1(mod m) for all π, illegal(qi, π) =
{(B, j) | i 6∈ B}.

Conditional prohibition norms introduced in (Tinnemeier
et al. 2009) are tuples of the form (condition, prohibited
property, deadline, sanction). Condition is a propositional
formula that describes states after which the prohibition
comes into effect (until a state satisfying the deadline is
reached). Sanction is either a negative utility or an indica-
tion that violating the norm is impossible (the norm is reg-
imented). A regimented conditional prohibition norm can
also be defined in our formalism.
Example 6. A norm which prohibits agent j moving be-
tween the start and the end of some procedure can be defined
as follows. Nrm = {q1, q2}, η(q1, π) = q1 if start 6∈ π
and η(q1, π) = q2 otherwise. illegal(q1, π) = ∅ and
illegal(q2, π) = {move}.

Consider a norm Nk+1 whose components are all in-
dexed with k + 1. We can implement Nk+1 on a k-
MAS G to obtain a (k + 1)-MAS defined as the tu-
ple G ⊕ Nk+1 = 〈Ag,Ac,AP,Cap, (Nrmi)i≤k+1,~q0, tr,
(illegali)i≤k+1, (ηi)i≤k+1〉, containing an extra normative
state component, which are the states of Nk+1, and whose
evolution is determined by its normative function ηk+1.

Intuitively, Nk+1 introduces more restrictions on the ac-
tions for the agents when implemented in a given k-MAS
G. Indeed, for every configuration c in the original game
and its extension with the state of Nk+1, c′, it holds that
AvlG⊕Nk+1

(c′, j) ⊆ AvlG(c, j) for every agent j ∈ Ag.
Observe also that every normative state component i

of a k-MAS G can be regarded as a norm Ni =
〈Nrmi, e

i
0, 2

AP, 2Ac×Ag, ηi, illegali〉 and so G can be ob-
tained from a 0-MAS where the norms N1 . . . ,Nk have
been applied one by one. A norm Ni can also be removed
from G, denoted G 	Ni, resulting in a (k − 1) MAS.

2.6 Norm Synthesis and Revision
We can now define the two problems addressed in this paper.
The first is Norm Synthesis, which is the problem of finding
a norm N for a k-MAS G that, if implemented, makes a
given ATL∗ formula ϕ true over G ⊕N .
Definition 3 (Norm Synthesis). For a given k-MAS G and
an ATL∗ formula ϕ, determine whether there exists a norm
Nk+1 such that G ⊕Nk+1 |= ϕ.

On the other hand, Norm Removal is the opposite prob-
lem. That is, given a k-MAS G, to identify a subset
{Nι1 , . . .Nιh} of the already implemented norms that, if re-
moved, make a given ATL∗sc formula true.
Definition 4 (Norm Removal). For a given k-MAS G and
an ATL∗ formula ϕ, determine whether there exists a subset
{Nι1 , . . .Nιh} of norms such that G	Nι1	 . . .	Nιh |= ϕ.
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3 Automated Norm Synthesis
We start by solving Norm Synthesis. We do this by reinter-
preting norms of a given k-MAS G as strategies of an ac-
cessory k-MAS G′, reducing the norm synthesis to strategy
synthesis in this accessory game.

In order to simplify our reasoning, first observe that a k-
MAS G can always be regarded as a 1-MAS where the only
applied norm is the product of the k norms given in G. For
this reason, from now on, we assume without loss of gener-
ality that G is a 1-MAS.

To illustrate Norm Synthesis, we use the following run-
ning example.

Example 7. Gex has two agents, 1 and 2, two actions wait
and ask , two propositions rest and work . Agent 1 can only
do wait . Agent 2 can always do wait and ask . The tran-
sition function is: if both agents perform wait , then rest
becomes true. If agent 2 performs ask , then work becomes
true. The initial norm is trivial (it has one state and no ille-
gal actions). The task is to synthesise a norm that will enable
agent 1 to have two consecutive moments of rest after work
becomes true: ϕrest = 〈〈1〉〉G(work → X(rest ∧ Xrest)).

Consider, for instance, a strategy for Agent 2 defined
as σ2 = 〈S2, s

0
2, 2

AP,Ac, δ2, τ2〉,3 with S2 = {s02},
δ2(s02, π) = s02 and τ2(s02, π) = ask , for each π ∈ 2AP.
Note that this strategy prevents ϕrest from becoming true,
as there is no strategy for Agent 1 that, combined with σ2,
makes the temporal part satisfied. To prevent Agent 2 from
repeatedly executing ask , we can implement a norm that
works as a counter: once the proposition work becomes true,
Agent 2 is not allowed to execute action ask twice in a row.

In the following, we show how to solve Norm Synthe-
sis automatically, by employing the construction of an ac-
cessory game. The definitions are inspired by the encoding
game defined in (Perelli 2019).

Construction 1 (Accessory game). Consider a 1-MAS G =
〈Ag,Ac,AP,Cap,Nrm1, q

1
0, tr, illegal1, η1〉 and define the

accessory 1-MAS as:

G′ =〈Ag′,Ac′,AP′,Cap′,Nrm1, q
1
0, tr

′, illegal′1, η
′
1〉,

where

• Ag′ = {0}∪Ag includes a 0-agent, sometimes called the
normative agent;

• Ac′ = Ac ∪ (2Ac×Ag) includes all possible sets of pairs
of actions and agents as possible actions;

• AP′ = AP∪(Ac×Ag) includes the set of pairs of actions
and agents in the atomic propositions;

• Cap′(j, π′) =

{
2Ac×Ag, if j = 0

Cap(j, π′�AP) \ ({j} ∩ π′), o/w

• tr′(π′,~a) = tr(π′�AP,~a−0) ∪ ~a0;

• illegal′(q1, π
′) = illegal(q1, π

′
�AP);

• η′(q1, π′) = η(q1, π
′
�AP).

3Note that we consider only 2AP as input alphabet, since only
the trivial norm is currently implemented in the game.

The idea of this construction is to embed the reasoning
about the existence of norms in terms of a strategy in the
accessory game. To do so, we add to G an extra agent, the
normative agent, whose capability is precisely that of pre-
venting actions of other agents. To suitably encode this ca-
pability, we also expand the state and action spaces of the
game with all possible subsets of pairs of agents and actions.
The transition function τ ′ mimics τ with regards to the eval-
uation of AP and copies the action taken by the normative
agent into the next state. The capability function Cap′ is
also extended accordingly. It prescribes agent 0 to take ac-
tions that correspond to the output of the norm for G (the set
of pairs of actions and agents that are illegal according to the
norm). Regarding the other agents, it assigns the subset of
actions originally available in G which are not prevented by
the action taken by the normative agent in the previous step.

Example 8. The accessory game corresponding to Gex is G′
where:

• Ag′ = {0, 1, 2};
• Ac′ = {wait , ask} ∪ 2{wait,ask}×{1,2};
• AP′ = {work , rest} ∪ {(wait , 1), (wait , 2), (ask , 1),

(ask , 2)};
• Cap′(0, π′) = 2{wait,ask}×{1,2}, and Cap′(j, π′) =
Cap(j, π′�AP) \ ({j} ∩ π′), for j = 1, 2. For instance,
it holds that Cap′(2, {work , (2, ask)}) = {wait}.

• tr′(π′,~a) = tr(π′�AP,~a−0) ∪ ~a0. For instance,
it holds that tr′({work}, (wait ,wait , {(2, ask)})) =
{rest , (2, ask)};

• illegal′(q1, π
′) and η′(q1, π

′) defined as in Construc-
tion 1.

We can now make a connection between norms for G
and strategies of agent 0 in G′. Indeed, a strategy for
the normative agent is of the form σ0 = 〈S0, s

0
0,Nrm1 ×

2AP′
,Ac′, δ0, τ0〉. Observe that Cap′(0, π′) = 2Ac×Ag,

and the set 2AP′
= 2AP∪(Ac×Ag) is isomorphic to 2AP ×

2Ac×Ag. This allows us to rewrite the strategy as σ0 =
〈S0, s

0
0,Nrm1×2AP×2Ac×Ag, 2Ac×Ag, δ0, τ0〉, from which

a corresponding norm can be constructed.

Construction 2 (Norm construction). For a given strategy
σ0 = 〈S0, s

0
0,Nrm1 × 2AP × 2Ac×Ag, 2Ac×Ag, δ0, τ0〉 of

agent 0 in G′, the norm Nσ0
for G is defined as:

〈S0 ×Nrm1 × 2Ac×Ag, (s0, q0, ∅), 2AP, 2Ac×Ag, η, illegal〉,

where η((s, q1, A), π) = (s′, q′1, A
′), with

• s′ = δ0(s, (q1, π ∪A)),
• q′1 = η1(q1, π), and
• A′ = τ0(s, (q1, π ∪A), π),

and illegal((s, q1, A), π) = τ0(s, (q1, π ∪ A), π), for every
s ∈ S0, q1 ∈ Nrm1, and A ∈ 2Ac×Ag.

On the other hand, we can generate a strategy for the nor-
mative agent.
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Construction 3 (Strategy construction). For a given norm
N2 = 〈Nrm2, q

2
0, 2

AP, 2Ac×Ag, η2, illegal2〉 in G, the strat-
egy σN2 for agent 0 in G′ is defined as:

〈S, s0,Nrm1 × 2AP′
,Ac′, δ, τ〉,

where S = Nrm2, s0 = q20, and the internal and output
functions are defined as:
• δ(q2, (q1, π′)) = η2(q2, π

′
�AP),

• τ(q2, (q1, π
′)) = illegal2(q2, π

′
�AP),

for every q2 ∈ Nrm2 and π′ ∈ 2AP′
.

Note that a run r in G′ belongs to the set (2AP′×Nrm1)ω .
By r�AP we denote the sequence in (2AP)ω obtained from r
by projecting out everything but the sequence of evaluations
in AP. Analogously, such projection can be extended to sets
of runs. In particular, we consider PathsG′(c)�AP to be the
set of projections over all possible paths in G′ starting from
configuration c, and outG′(σA, c)�AP as the projections of
outcomes in G′ with initial configuration c, with σA be the
strategy profile for the set A of agents.

There is a connection between σ0 and the corresponding
norm. Precisely, they produce runs in games that relate to the
same projections over AP, as stated by the lemma below.
Lemma 1. For a given 1-MAS G, its accessory game G′,
and a state π ∈ 2AP, the following two statements hold:

1. For every strategy σ0 of agent 0 in G′, it holds that
outG′(σ0, (π, q

1
0))�AP = PathsG⊕Nσ0 (π,~q0)�AP;

2. For every norm N on G, it holds that
PathsG⊕N (π,~q0)�AP = outG′(σN , (π, q

1
0))�AP.

Proof. We prove the two statements separately.
1. The proof proceeds by double inclusion. For

the left to right direction, consider a sequence r′�AP ∈
outG′(σ0, (π, q

1
0))�AP and let r′ be a run in G′ from which

r′�AP is obtained by projection. By contradiction, let us as-
sume that r′AP does not belong to PathsG⊕Nσ0 (π,~q0)�AP

and let h ∈ N be the greatest natural number for which
(r′≤h)�AP · r′′ ∈ PathsG⊕Nσ0 (π,~q0)�AP, for some sequence
r′′. More specifically, there does not exist any sequence r̂
such that (r′≤h+1)�AP · r̂ ∈ PathsG⊕Nσ0 (π,~q0)�AP. Now,
consider a sequence of action vectors ~a0, . . . ,~ah in G′ such

that, for every h′ ≤ h, it holds that r′h′
~ah

′

−−→ r′h′+1 and ~ah
′

0
is always the action selected by σ0 as the execution evolves.
Note that such a sequence exists, as the run r′ belongs to
outG′(σ0, (π, q

1
0))�AP. By the construction of Nσ , we ob-

tain that the sequence (~a0)−0, . . . , (~a
h)−0 generates a par-

tial run in G ⊕ Nσ0 , denoted r0, . . . , rh+1 that can be ex-
tended to a run r ∈ PathsG⊕Nσ0 (π,~q0)�AP in a way that
(rh≤h+1)�AP = (r′h≤h+1)�AP, resulting in a contradiction
with h being the greatest number for which such property
holds, and subsequently that r′AP /∈ PathsG⊕Nσ0 (π,~q0)�AP.

For the right to left direction, consider a sequence r′�AP ∈
PathsG⊕Nσ0 (π,~q0)�AP and let r′ be a run in G ⊕ Nσ0 from
which r′�AP is obtained by projection. By contradiction, let
us assume that r′AP does not belong to outG′(σ0, (π, q

1
0))�AP

and let h ∈ N be the greatest natural number for which
(r′≤h)�AP · r′′ ∈ outG′(σ0, (π, q

1
0))�AP, for some sequence

r′′. More specifically, there does not exist any sequence r̂
such that (r′≤h+1)�AP · r̂ ∈ outG′(σ0, (π, q

1
0))�AP. Now,

consider a sequence of action vectors ~a0, . . . ,~ah in G ⊕ N

such that, for every h′ ≤ h, it holds that r′h′
~ah

′

−−→ r′h′+1

Note that such sequence exists as the run r′ belongs to
PathsG⊕Nσ0 (π,~q0)�AP. By the construction of Nσ , we ob-
tain that the sequence (~a0, a00), . . . , (~ah, ah0 ), with a00, . . . a

h
0

being the sequence of actions generated by σ0 generates
a partial run in G′, denoted r0, . . . , rh+1 that can be ex-
tended to a run r ∈ outG′(σ0, (π, q

1
0))�AP in a way that

(rh≤h+1)�AP = (r′h≤h+1)�AP, resulting in a contradiction
with h being the greatest number for which such property
holds, and subsequently that r′AP /∈ outG′(σ0, (π, q

1
0))�AP.

2. The proof proceeds by double inclusion. For
the left to right direction, consider a sequence r′�AP ∈
PathsG⊕N (π,~q0)�AP and let r′ be a run in G ⊕ N
from which r′�AP is obtained by projection. By con-
tradiction, let us assume that r′AP does not belong to
outG′(σN , (π, q

1
0))�AP and let h ∈ N be the greatest natural

number for which (r′≤h)�AP · r′′ ∈ outG′(σN , (π, q
1
0))�AP,

for some sequence r′′. More specifically, there does
not exist any sequence r̂ such that (r′≤h+1)�AP · r̂ ∈
outG′(σN , (π, q

1
0))�AP. Now, consider a sequence of ac-

tion vectors ~a0, . . . ,~ah in G ⊕ N such that, for every

h′ ≤ h, it holds that r′h′
~ah

′

−−→ r′h′+1 Note that such a se-
quence exists, as the run r′ belongs to PathsG⊕N (π,~q0)�AP.
By the construction of σN , we obtain that the sequence
(~a0, a00), . . . , (~ah, ah0 ), with a00, . . . a

h
0 being the sequence

of actions generated by σN generates a partial run in
G′, denoted r0, . . . , rh+1 that can be extended to a run
r ∈ outG′(σN , (π, q

1
0))�AP in a way that (rh≤h+1)�AP =

(r′h≤h+1)�AP, resulting in a contradiction with h being the
greatest number for which the property holds, and subse-
quently that r′AP /∈ outG′(σN , (π, q

1
0))�AP.

For the right to left direction, consider a sequence r′�AP ∈
outG′(σN , (π, q

1
0))�AP and let r′ be a run in G′ from which

r′�AP is obtained by projection. By contradiction, let us
assume that r′AP does not belong to PathsG⊕N (π,~q0)�AP

and let h ∈ N be the greatest natural number for which
(r′≤h)�AP · r′′ ∈ PathsG⊕N (π,~q0)�AP, for some sequence
r′′. More specifically, there does not exist any sequence r̂
such that (r′≤h+1)�AP · r̂ ∈ PathsG⊕N (π,~q0)�AP. Now,
consider a sequence of action vectors ~a0, . . . ,~ah in G′ such

that, for every h′ ≤ h, it holds that r′h′
~ah

′

−−→ r′h′+1 and
~ah

′

0 is always the action selected by σN as the execution
evolves. Note that such a sequence exists, as the run r′

belongs to outG′(σN , (π, q
1
0))�AP. By the construction of

σN , we obtain that the sequence (~a0)−0, . . . , (~a
h)−0 gen-

erates a partial run in G ⊕ N , denoted r0, . . . , rh+1 that
can be extended to a run r ∈ PathsG⊕N (π,~q0)�AP in
such a way that (rh≤h+1)�AP = (r′h≤h+1)�AP, resulting
in a contradiction with h being the greatest number for
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which such property holds, and subsequently that r′AP /∈
PathsG⊕N (π,~q0)�AP.

Lemma 1 establishes the equivalence between norms in
G and their corresponding strategies in G′, in the sense that
they allow/disallow the same set of possible outcomes.

We now show that, once a norm N is implemented, it is
also possible to establish a correspondence between agents’
strategies in G ⊕ N and G′, when agent 0 is employing the
corresponding strategy σN . Indeed, consider again a 1-MAS
G and the accessory G′ as defined above. We have the fol-
lowing:

Construction 4 (Outgoing strategy mapping). Consider a
norm N2 over G with σN being the corresponding strat-
egy in G′ for the normative agent. Moreover, consider an
agent j ∈ Ag and a strategy σj for j in G ⊕ N2 of the form
σj =〈Sj , s0k,Nrm1 ×Nrm2 × 2AP,Ac, δj , τj〉. The outgo-
ing strategy σ′j for agent j ∈ Ag in G′ is defined as

〈S′j , s0k
′
,Nrm1 × 2AP′

,Ac′, δ′j , τ
′
j〉,

where S′j = Sj × Nrm2, s0k
′

= (s0k, q
0
2), and the internal

and output functions are defined as:

• δ′j((s, q2), (q1, π
′)) =

(δj(s, (q1, q2, π
′
�AP)), η2(q2, π

′
�AP));

• τ ′j((s, q2), (q1, π
′)) = τj(s, (q1, q2, π

′
�AP)).

On the other hand, we can map a strategy in G′ back to a
strategy in G ⊕N .

Construction 5 (Incoming strategy mapping). Consider a
strategy σ′j in G′ for agent j, given as σ′j =〈S′j , s0k

′
,Nrm1×

2AP′
,Ac′, δ′j , τ

′
j〉.

The incoming strategy for agent j in G ⊕N2 is defined as

σj =〈Sj , s0k,Nrm1 ×Nrm2 × 2AP,Ac, δj , τj〉,

where Sj = S′j , s
0
k = s0k

′, and the internal and output func-
tions are defined as:

• δj(s, (q1, q2, π)) = δ′j(s, (q1, π ∪ illegal2(q2, π)));
• τj(s, (q1, q2, π)) = τ ′j(s, (q1, π ∪ illegal2(q2, π))).

As for norms and strategies for agent 0, the same kind
of correspondence holds between strategies for the agents in
the two structures, as the following lemma states.

Lemma 2. For a given 1-MAS G, its accessory game G′,
a pair (N , σ0) of the corresponding norm and normative
agent strategy, a setA ⊆ Ag of agents, and a state π ∈ 2AP,
the following two statements hold:

1. For every strategy σA in G ⊕ N it holds that
outG⊕N (π,~q0, σA)�AP = outG′((π, q10), σ0 ∪ σ′A)�AP;

2. For every strategy σ′A in G′ it holds that
outG′((π, q10), σ0 ∪ σ′A)�AP = outG⊕N (π,~q0, σA)�AP.

Proof. We prove the two statements separately.
1. The proof proceed by double inclusion. For

the left to right direction, consider a sequence r′�AP ∈
outG⊕N (π,~q0, σA)�AP with r′ being a run in G ⊕ N from

which r′�AP is obtained by projection. By contradiction, let
us assume that r′AP does not belong to outG′((π, q10), σ0 ∪
σ′A)�AP and let h ∈ N be the greatest natural number for
which (r′≤h)�AP ·r′′ ∈ outG′((π, q10), σ0∪σ′A)�AP, for some
sequence r′′. More specifically, there does not exist any se-
quence r̂ such that (r′≤h+1)�AP · r̂ ∈ outG′((π, q10), σ0 ∪
σ′A)�AP. Now, consider a sequence of action vectors
~a0, . . . ,~ah in G ⊕ N such that, for every h′ ≤ h, it

holds that r′h′
~ah

′

−−→ r′h′+1 and ~ah
′

j is always the action se-
lected by σj , for each j ∈ A, as the execution evolves.
Note that such a sequence exists, as the run r′ belongs
to outG⊕N (π,~q0, σA)�AP. By the construction of σN and
σ′A, we obtain that the sequence (~a0, a00), . . . , (~ah, ah0 ) with
a00, . . . , a

h
0 being he sequence of actions generated by σN ,

generates a partial run in G′, denoted r0, . . . , rh+1 that can
be extended to a run r ∈ outG′((π, q10), σ0 ∪ σ′A)�AP in
such a way that (rh≤h+1)�AP = (r′h≤h+1)�AP, resulting
in a contradiction with h being the greatest number for
which such property holds, and subsequently that r′AP /∈
outG′((π, q10), σ0 ∪ σ′A)�AP.

For the right to left direction, consider a sequence
r′�AP ∈ outG′((π, q10), σ0 ∪ σ′A)�AP with r′ being a run
in G′ from which r′�AP is obtained by projection. By
contradiction, let us assume that r′AP does not belong to
outG⊕N (π,~q0, σA)�AP and let h ∈ N be the greatest natural
number for which (r′≤h)�AP · r′′ ∈ outG⊕N (π,~q0, σA)�AP,
for some sequence r′′. More specifically, there does
not exist any sequence r̂ such that (r′≤h+1)�AP · r̂ ∈
outG⊕N (π,~q0, σA)�AP. Now, consider a sequence of ac-
tion vectors ~a0, . . . ,~ah in G′ such that, for every h′ ≤ h, it

holds that r′h′
~ah

′

−−→ r′h′+1 and ~ah
′

j is always the action se-
lected by σj , for each j ∈ A∪{0}, as the execution evolves.
Note that such a sequence exists, as the run r′ belongs to
outG′((π, q10), σ0 ∪ σ′A)�AP.

By the construction of σN and σ′A of Construction 3
and Construction 4, respectively, we obtain that the se-
quence (~a0)−0, . . . , (~a

h)−0 generates a partial run in G⊕N ,
denoted r0, . . . , rh+1 that can be extended to a run r ∈
outG⊕N (π,~q0, σA)�AP in such a way that (rh≤h+1)�AP =
(r′h≤h+1)�AP, resulting in a contradiction with h being the
greatest number for which such property holds, and subse-
quently that r′AP /∈ outG⊕N (π,~q0, σA)�AP.

2. Note that the proof of this statement is identical to
the previous one, except for the fact that this time we use
Construction 2 and Construction 5 for Nσ0

and σA, respec-
tively.

An immediate consequence of Lemma 1 and Lemma 2
is that the existence of a norm in G can be restated as the
existence of the corresponding strategy for agent 0 in G′.
Lemma 3. For a given 1-MAS G and an ATL∗ formula ϕ,
the following two statements are equivalent:

1. There exists a norm N over G such that G ⊕N |= ϕ

2. G′ |= 〈〈·0·〉〉ϕ′, where ϕ′ is obtained from ϕ by replacing
all strategy quantifiers 〈〈A〉〉 with 〈〈·A·〉〉.
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Proof. We prove the equivalence by double implication.
Both directions proceed by structural induction on the for-
mula ϕ. Here, for simplicity, we show only the base case of
ϕ = 〈〈A〉〉ψ, with ψ ∈ LTL, as all the others are a simple
variant of this.

To prove that Statement 1 implies Statement 2, assume
that G⊕N |= ϕ. Therefore, there exists σA such that r |= ψ
for every r ∈ (outG⊕N (σA, ∅))�AP.4 Then, consider the
strategy σ′A in G′ obtained from σA by applying Construc-
tion 4. By Lemma 2, we obtain that (outG⊕N (σA, ∅))�AP =
(outG′(σ′A ∪ σN , ∅))�AP with σN obtained from N by ap-
plying Construction 3, which in turns implies that G′ |=
〈〈·0·〉〉ϕ′.

The other direction proceeds as follows. Assume that
G′ |= 〈〈·0·〉〉〈〈A〉〉ψ. Therefore, there exists a strategy σ0
for agent 0 and a strategy profile σ′A, such that r |= ψ for
every r ∈ (outG′(σ′A ∪ σN , ∅))�AP. Now consider the norm
Nσ0

obtained from Construction 2 and the strategy profile
σA obtained from Construction 5. By Lemma 2, we obtain
that (outG′(σ′A ∪ σN , ∅))�AP = (outG⊕Nσ0 (σA, ∅))�AP and
so that G ⊕Nσ0

|= 〈〈A〉〉ψ.

Example 9. The formula from Example 7 is translated into
ATL∗sc as 〈〈·0·〉〉〈〈·1·〉〉G(work → X(rest ∧ Xrest)). A pos-
sible norm (corresponding to a strategy for 0) is: Nrm =
{q0, q1, q2}, where η(q0, π) = q0 if work 6∈ π, else
η(q0, π) = q1; η(q1, π) = q2 and η(q2, π) = q0 if rest ∈
π, else η(q1, π) = q1 and η(q2, π) = q2. illegal(q0, π) = ∅
and illegal(q1, π) = illegal(q2, π) = {(2, ask)}.

As a consequence of the lemma, the norm synthesis prob-
lem for a MAS G and an ATL∗ objective ϕ can be reduced to
the model-checking of an ATL∗sc formula over the accessory
game G′. The complexity of such a procedure depends on
the number h of alternation quantifiers in the formula and
the first quantifier modality. More precisely, it is (h + 1)-
EXPTIME for existential ATL∗, that is, the fragment of
ATL∗ with formulas starting with an existential quantifica-
tion, and (h+2)-EXPTIME for universal ATL∗. The reason
for this is that the resulting ATL∗sc formula comes with an
extra alternation, if the original ATL∗ formula ϕ begins with
a universal quantification.
Theorem 3. The following two statements hold:

1. Norm Synthesis for a k-MAS for an existential ATL∗
formula with alternation quantifier h can be solved in
(h+ 1)-EXPTIME.

2. Norm Synthesis for a k-MAS for a universal ATL∗ formula
with alternation quantifier h can be solved in (h + 2)-
EXPTIME.

Notice that the two fragments introduced in Section 2.3
are both of alternation 1. In particular, formulas for strategic
permission (Cf. Definition 1) are in the existential ATL∗
fragment, whereas formulas for strategic prohibition (Cf.
Definition 2) are in the universal ATL∗ fragment. Therefore,
combining this with the complexity results of Theorem 3,
we obtain the following corollary.

4Note that we can consider the projection over AP as the for-
mula ψ ranges over the same set of atomic propositions.

Corollary 1. The following two hold:

1. Norm Synthesis for a k-MAS for a strategic permission
specification can be solved in 2-EXPTIME.

2. Norm Synthesis for a k-MAS for a strategic prohibition
specification can be solved in 3-EXPTIME.

It is worth mentioning a further special case that arises
with strategic prohibition specifications, when every agent
is mentioned in the universal quantification. In this case,
the alternation of the formula is 0, as there is no implicit
existential quantification, as in Example 2. For this case, the
complexity is 2EXPTIME.

Observe that we can obtain a Norm Synthesis algorithm
by the following steps. First, we use Construction 1 to re-
duce from Norm Synthesis to model checking ATL∗sc. Note
that such translation is both effective and polynomial in the
size of the original k-MAS G. Then, we solve the corre-
sponding model checking instance by employing any appli-
cable procedure, returning a normative strategy σ0, if avail-
able. Finally, by employing Construction 2 on σ0, we ob-
tain a norm for G. Again, the construction is both effective
and polynomial in the size of σ0. Moreover, Lemma 3 and
Theorem 3 combined guarantee the procedure to solve the
original Norm Synthesis problem correctly.

4 Norm Removal
Regarding Norm Removal, note that the solution space is fi-
nite, as it is given by the 2k possible subsets of norms that are
implemented in a k-MAS. Therefore, it suffices to model-
check the ATL∗ formula ϕ against all possible 2k removals
of norms.
Theorem 4. The norm removal problem is 2EXPTIME-
complete w.r.t. the size of the ATL∗ formula and EXPTIME
w.r.t. the number of norms implemented.

5 Related Work
There is an extensive literature on using norms of differing
types for the formal analysis and design of single- and multi-
agent systems. In some approaches, norms correspond to la-
belling some states in a state transition system as ‘violating’,
e.g., (Meyer and Wieringa 1993). For example, in (Aste-
fanoaei et al. 2009; Dennis, Tinnemeier, and Meyer 2010;
Dastani, Grossi, and Meyer 2013), norms are represented
by “counts-as” rules characterising violation states (e.g., a
state where an agent exceeds the speed limit “counts as”
a violation). Other kinds of norms label some transitions
as violating, e.g., (Ågotnes, van der Hoek, and Wooldridge
2010), or label particular paths through the system as vi-
olating, e.g., (Bulling, Dastani, and Knobbout 2013). For
example, conditional prohibitions with deadlines and sanc-
tions (Dignum et al. 2004; Boella and van der Torre 2004;
Boella, Broersen, and van der Torre 2008; Tinnemeier et al.
2009) are of the form P (c, ϕ, d, s) where c is the detach-
ment condition (when a state satisfying c is encountered the
prohibition becomes active), ϕ is the state property which
is prohibited to bring about, and d is the deadline (after a
state satisfying d is encountered, the prohibition is no longer
active), and s is a sanction (explained below). Modulo a
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translation between state-based and action-based prohibi-
tions (Alechina, Dastani, and Logan 2018), regimented con-
ditional prohibitions are clearly a special case of the norms
considered in this paper.

What happens as a result of implementing a norm also
varies. For example, in some approaches the violating
states or transitions are removed (norm regimentation). We
can then check whether some desirable properties (objec-
tives) are satisfied in the resulting smaller system, see, e.g.,
(Ågotnes et al. 2007). In other approaches, violating states
or paths are labelled with sanctions (norm enforcement).
Sanctions are ‘fines’ applied to violating traces (in the spe-
cial case of regimented norms, like the ones we consider in
this paper, the trace is terminated). Again, we can check
whether it is possible to execute a ‘good’ behaviour without
incurring a sanction, or it is impossible to execute a ‘bad’
behaviour without incurring a sanction, see, e.g., (Alechina,
Dastani, and Logan 2013). However, the aim in such ap-
proaches is to verify whether some property is true after im-
plementing a norm, rather than to synthesise a norm, that, if
implemented, will satisfy the property as in our approach.

The first formal treatment of norm synthesis (social laws
to coordinate agents’ behaviour) was proposed in (Shoham
and Tennenholtz 1995), see also (Fitoussi and Tennenholtz
2000). There, norms are constraints on agent behaviours
of the form (a, ϕ), which are interpreted as: in a state sat-
isfying ϕ action a is prohibited. The objectives are es-
sentially strategy existence properties (or strategic permis-
sions in our terminology). The decision form of the syn-
thesis problem of ‘useful social laws’ (enabling the objec-
tives) is shown to be NP-complete. In (Christelis and Rovat-
sos 2009), an EXPTIME algorithm for synthesising state-
based prohibitions was proposed. In a somewhat different
approach to norm synthesis, (Corapi et al. 2011) use ILP to
synthesise norms from use cases. In (Morales et al. 2015;
Morales et al. 2018) on-line norm synthesis is proposed as
a more feasible way of synthesising norms when the state
space is not known in advance. In (van der Hoek, Roberts,
and Wooldridge 2007), the problem of synthesising norms
is reduced to model-checking in ATL (a fragment of ATL∗).
In (Bulling and Dastani 2016), norm synthesis is studied in
a setting similar to ours, but where agent preferences are
known and it is possible to consider Nash equilibria. The
system is represented as a CGS. Agents’ preferences are
represented by a list of pairs (ϕj , uj), where ϕj is an LTL
formula and uj is a natural number (utility). Nash equi-
librium is defined in terms of the utilities obtained by the
agents when adopting a given strategy. The system objec-
tive is represented by a normative choice function, which is
also an LTL formula. Their ‘regimenting norms’ are clos-
est to norms considered in this paper, and are of the form
(ϕ,A,⊥) where ϕ is a propositional formula andA ⊆ Actn
is a set of joint actions. The norm makes A illegal in
states satisfying ϕ. Rather than removing illegal actions,
they are redirected to loop in the same state (have no ef-
fect).5 Clearly, such norms are less expressive than the dy-

5The authors mention that in previous work they removed ille-
gal joint actions entirely. However this caused problems with ac-

namic norms in our approach. The problems considered in
(Bulling and Dastani 2016) are weak and strong implemen-
tation, and norm-based mechanism design. A norm weakly
implements a normative behaviour function if there exists
a Nash equilibrium that satisfies the LTL formula. A norm
strongly implements iff all Nash equilibria satisfy the for-
mula. Weak implementation is ΣP2 -complete in the size
of the CGS, preferences, objective and norm. The strong
implementation problem can be solved by a deterministic
polynomial-time oracle Turing machine that can make two
non-adaptive queries to an oracle in ΣP2 and is both ΣP2 -
hard and ΠP

2 -hard. Weak implementation existence is ΣP2 -
complete. Strong implementation existence is ΣP3 -complete.

Dynamic norms were introduced in (Huang et al. 2016;
Perelli 2019). In (Huang et al. 2016), dynamic absolute
or regimented prohibitions similar to the ones in this paper
are considered. The illegality function returns a joint action
rather than a set of pairs of an action and agent, as in (Bulling
and Dastani 2016). The language for specifying objectives is
Computation Tree Temporal Logic (CTL). The main result
is that the norm synthesis problem is EXPTIME-complete.
Other problems considered are two versions of norm recog-
nition problem. In (Perelli 2019), the synthesis of dynamic
norms for LTL objectives and Nash equilibria is shown to
be 2EXPTIME-complete when considering the existence of
a Nash equilibrium satisfying the objective, and in 3EXP-
TIME for enforcing all Nash equilibria to satisfy the objec-
tive. Since our language for objectives is more expressive,
it is not surprising that the complexity of synthesis for our
setting is higher.

6 Conclusion
We proposed a framework for modelling dynamic norms
that enforce constraints on agent strategies in multi-agent
systems in order to satisfy system objectives stated in ATL∗.
These norms are more general than regimented state-based
prohibitions and conditional prohibitions, and are dynamic,
so can constrain strategies in a more flexible way. We prove
that the norm synthesis problem is decidable in (k + 1)-
EXPTIME; however for two important classes of objectives,
strategic permissions and strategic prohibitions, it is in 2EX-
PTIME and 3EXPTIME, respectively. We conjecture that
the (k + 1)-EXPTIME bound is tight, but leave the proof of
hardness for future work. Another possible direction of fu-
ture research is synthesis of minimally constraining norms.
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tions still being available to individual agents, while a joint action
was impossible. In our approach, we avoid this problem by making
individual rather than joint actions illegal.
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