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Abstract

Syntactic parsing technologies have become significantly
more robust thanks to advancements in their underlying sta-
tistical and Deep Neural Network (DNN) techniques: most
modern syntactic parsers can produce a syntactic parse tree
for almost any sentence, including ones that may not be
strictly grammatical. Despite improved robustness, such
parsers still do not reflect the alternatives in parsing that are
intrinsic in syntactic ambiguities. Two most notable such am-
biguities are prepositional phrase (PP) attachment ambigui-
ties and pronoun coreference ambiguities. In this paper, we
discuss PATCHCOMM, which uses commonsense knowledge
to help resolve both kinds of ambiguities. To the best of our
knowledge, we are the first to propose the general-purpose
approach of using external commonsense knowledge bases to
guide syntactic parsers. We evaluated PATCHCOMM against
the state-of-the-art (SOTA) spaCy parser on a PP attachment
task and against the SOTA NeuralCoref module on a coref-
erence task. Results show that PATCHCOMM is successful
at detecting syntactic ambiguities and using commonsense
knowledge to help resolve them.

1 Introduction
The central claim for this paper is that syntactic parsing is a
natural application and test bed for commonsense reasoning.

In this section starting with the next paragraph, we in-
troduce the basic notion of syntactic parsing. In section 2,
we explain PATCHCOMM, a commonsense-based approach
to tackling syntactic ambiguities in parsing. In section 3,
we show experimental results that provide evidence for our
central claim. In section 4, we survey some related work
on commonsense and knowledge bases, as well as the two
prevalent ambiguities in syntactic parsing that we tackle in
section 2. In section 5, we discuss future directions.

Syntactic parsing is the linguistic process of analyzing
the grammatical and syntactic information of a sentence
and compiling such information into a syntactic parse tree.
Two of the most popular paradigms for syntactic parsing
are dependency and constituency. Especially over the last
decade, syntactic parsing technologies have become signifi-
cantly more robust: Regardless of how ungrammatical a sen-
tence might be, a parser can be expected to produce a parse
tree for that sentence. In Figure 1, we provide examples of
syntactic parse trees produced by the parser of a state-of-the-
art (SOTA) and popular natural language processing (NLP)

(a) spaCy dependency parse of
“Jesse plays the guitar.”

(b) spaCy dependency parse of
“Me and my friends.”

Figure 1: Examples of syntactic parses.

toolkit, spaCy (Honnibal et al. 2020). Note that in Figures
1 (a) and (b), both parsers gave outputs to the ungrammati-
cal/incomplete sentence, “Me and my friends,” with correct
syntactic relations.

Despite this robustness, challenging linguistic ambigui-
ties abound. For the remainder of this paper, we focus on
and posit solutions to two such ambiguities – prepositional
phrase (PP) attachment ambiguities and pronoun corefer-
ence ambiguities. Because the coreference problem is less
constrained by linguistic structure and more constrained
by the underlying contextual and commonsense knowledge
(section 4.1), it is arguable that coreference resolution can
be more challenging.

2 Related Work
2.1 Syntactic Parsing Exposes the Need for

Underlying Commonsense Knowledge
The examples in Figure 3 (which we explain in Section 3)
demonstrate why parsers need to be helped with underlying
commonsense knowledge in order to parse “better.” Namely,
in those examples, the parser needs to know or be told that
people have arms but not wings, birds have wings but not
arms, ice is generally hard and butter is generally soft.

PP Attachment Ambiguities (Hamdan and Khan 2018),
in addition to enumerating an ontology of linguistic am-
biguities, comprehensively surveys what they refer to, in
their section 3, as earlier, corpus-based and statistical ap-
proaches to resolving sentence-level PP attachment ambigu-
ities, but these three approaches are not mutually exclusive.
Of all the surveyed works, we first highlight (Ratnaparkhi,
Reynar, and Roukos 1994); to the best of our knowledge,
they were the first to have proposed the syntactic constraint
of (V,N1, P,N2), where V is verb, N1 and N2 are nouns, P
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is preposition, and together (P,N2) is the PP. In addition, we
note that the corpus-based and statistical approaches have
been successful at unraveling and taking advantage of un-
derlying biases intrinsic to specific corpora and prepositions.
For example, (Cimiano and Minock 2010) discovers that, for
the 883 test questions from the GeoBase dataset1, always
attaching PPs and relative clauses to the last constituent2
gave rise to a baseline of 99.27% accuracy. This hack would
not generally work well for non-queries. Similarly, (Bailey,
Lierler, and Susman 2015) reiterates that, 99% of the times,
an “of” PP would be attached to N1 instead of V .

Pronoun Coreference Ambiguities In light of corefer-
ence ambiguities, (Kocijan et al. 2020) comprehensively
surveys a recently very hot series of works on tackling
a famous instance of coreference ambiguities: Winograd
Schemas. In its basic form, a Winograd Schema (WS)
(Winograd 1972) is a pair of sentences that look like the
pairs of sentences in Figure 3 for NeuralCoref, where there
is one ambiguous pronoun and two distinct entities, i.e.,
(· · ·Entity1· · ·Entity2· · · pronoun· · ·). Changing the de-
scription word (e.g., hard) to a word of the opposite meaning
(e.g., soft) leads to changing the pronoun’s (e.g., it) reference
from one entity (e.g., ice) to the other (e.g., butter).

The series of works started with (Levesque, Davis, and
Morgenstern 2012), which proposed the original Winograd
Schema Challenge (WSC) as an alternative to Turing Test
because, as Levesque et al. claimed, commonsense reason-
ing is a must for resolving WS. The series of works culmi-
nated in (Sakaguchi et al. 2020), which proposed the large-
scale crowdsourced dataset, WINOGRANDE, accompanied
by a dataset debiasing algorithm, AFLITE. The authors then
showed that transfer learning (Yosinski et al. 2014) from
WINOGRANDE to other WSC-related datasets boosts per-
formances on those datasets, including a human-level per-
formance of 93.1%. However, in a footnote, the authors ad-
mitted that SOTA models that were trained on the AFLITE-
debiased version of WINOGRANDE “showed only chance
level performance.” It is open to debate how much com-
monsense such WSC-inspired DNN models in fact exhibit.

2.2 Commonsense Knowledge
Although there is no unified definition of commonsense,
many have attempted at their own definitions that capture
at least aspects of commonsense. One such attempt is in
(Mueller 2014), which treats commonsense reasoning as a
logic-based process that “[takes] information about certain
aspects of a scenario in the world and [makes] inferences
about other aspects of the scenario,” and defines common-
sense knowledge as the prerequisite knowledge for common-
sense reasoning.

Another school of thought treats commonsense as an
emergent property of intricate interactions among “soci-
eties” of specialized software (Minsky 1986; Minsky 2006).

1Dataset: https://www.cs.utexas.edu/users/ml/nldata.html.
2For example, for the query “How many states in the U.S. does the
shortest river run through?,” the PP, in the U.S., would by default
be attached to the last constituent, states.

(a) ConceptNet knows people have arms and birds have wings.

(b) ConceptNet knows ice is hard and butter is soft.

Figure 2: Examples of commonsense assertions in ConceptNet.

By either definition, PATCHCOMM can be thought of as
an instance of commonsense reasoning, where a sentence is
a description of some scenario, and a parser (i.e., specialized
software) takes syntactic information about a sentence and,
with the help of a CSKB (i.e., another specialized software),
makes inferences about such information.

One notable effort in collecting commonsense knowl-
edge was the Open Mind Common Sense (OMCS) project
(Singh et al. 2002), which later conceived the ConceptNet
(Speer, Chin, and Havasi 2017) knowledge graph. Since
then, there have been other CSKBs resembling Concept-
Net in spirit; one example is WebChild (Tandon et al. 2014;
Tandon, De Melo, and Weikum 2017). At the time of this
writing, ConceptNet is in its version 5.8. At its core, Con-
ceptNet is a very-large-scale, directed graph whose nodes
represent concepts and directed, labeled edges represent re-
lations that relate one concept to another. Each such (con-
cept1, relation, concept2) triple in ConceptNet is called an
assertion. Figure 2 shows that ConceptNet knows people
have arms, birds have wings, ice is hard, and butter is soft.

Another notable effort in collecting large-scale common-
sense knowledge bases is ATOMIC (Sap et al. 2019), whose
nodes represent events, mental states, or personas, and di-
rected edges represent If-Then relations that relate an event
to a mental state, a persona, or another event.

3 PATCHCOMM

In this section, we discuss how PATCHCOMM guides the
spaCy parser3 on resolving PP attachment ambiguities and
compares with the SOTA, Deep Neural Network (DNN)
based NeuralCoref4 module5 (Clark and Manning 2016b;
Clark and Manning 2016a) on resolving coreference ambi-
guities.

Contrasting with many approaches that we survey in Sec-
tion 2, PATCHCOMM is a general-purpose framework that
modularizes syntactic parsing into a preliminary parser and
a commonsense knowledge base (CSKB). The CSKB serves
as a “critic” (Minsky 2006) that provides guidance for the
parser’s preliminary outputs.

3We used spaCy version 2.3.5.
4Source: https://github.com/huggingface/neuralcoref
5We used NeuralCoref version 4.1.0.
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Although all are knowledge-based approaches, PATCH-
COMM is distinguished from (Belinkov et al. 2014) and
(Nakashole and Mitchell 2015) in two main ways: (1) The
knowledge we use are commonsense plus linguistic knowl-
edge (because ConceptNet 5 contains both) rather than lin-
guistic knowledge alone; (2) instead of using knowledge in-
ternally to the parser to help generate feature vectors and
then treat the PP attachment problem as binary or multi-
class classification, we modularize knowledge into an ex-
ternal guiding module for the parser. That being said, we
concur that using knowledge both internally and externally
is a plausible approach for future work.

In its current version, in addition to spaCy and Neural-
Coref, PATCHCOMM uses the very-large-scale ConceptNet6
(Speer, Chin, and Havasi 2017) for the CSKB. See section
2.2 for details on ConceptNet.

3.1 System Details
PATCHCOMM makes full use of spaCy’s built-in parsing
mechanisms, including those for obtaining part-of-speech
tags, syntactic dependency labels, and child-head relations.

One Ambiguity per Sentence Abiding by the
(V,N1, P,N2) constraint for PP attachment (section
2.1.1), PATCHCOMM first checks whether spaCy has
attached the PP (i.e., (P,N2)) to V or N1, and then queries
ConceptNet with the pairs (subj, N2), (V , N2) and (N1,
N2) where subj is the subject of V . Oftentimes in a sen-
tence, subj contains useful information about V , therefore
PATCHCOMM checks for knowledge about the subject, too.
If ConceptNet indicates a stronger connection for (subj,
N2) or (V , N2) than for (N1, N2), PATCHCOMM informs
spaCy to attach the PP to V ; otherwise, PATCHCOMM
informs spaCy to attach the PP to N2.

When queried with a pair of concepts, (c1, c2), Concept-
Net returns all relations that start with either c1 or c2 and end
with either c2 or c1. Because ConceptNet is not omniscient,
whenever PATCHCOMM cannot find assertions (section 4.1)
from ConceptNet, it defaults back to spaCy’s attachment de-
cisions. But when successful at finding assertions, PATCH-
COMM takes the assertion with the highest weight and goes
on to process the next pair of concepts. Whenever there is a
mismatch between the CSKB’s knowledge and the parser’s
output, PATCHCOMM abides by the CSKB’s knowledge and
modifies the parser’s output accordingly.

For coreference resolution, PATCHCOMM obeys the con-
straint of (· · ·Entity1· · ·Entity2· · · pronoun· · ·) (section
2.1.2). PATCHCOMM finds the description of the pronoun
in the sentence, which is defined as the token that shares
the same head with the pronoun. Then, PATCHCOMM
queries ConceptNet with the pairs (Entity1, description)
and (Entity2, description).

Multiple Ambiguities per Sentence PATCHCOMM’s
mechanism even works in the cases of multiple PP attach-
ment ambiguities and multiple coreference ambiguities, re-
spectively.

6We used ConceptNet version 5.8; see http://blog.conceptnet.io/.

Figure 3: spaCy (top) and NeuralCoref (bottom) when faced with
PP attachment and coreference ambiguities, respectively.

Figure 4: PATCHCOMM resolves ambiguities from Figure 3.

For PP attachment, for a sentence with n(n ≥ 2) PPs and
for i ∈ [1,· · · , n], every time after PATCHCOMM resolves
the i-th PP and moves onto the (i+ 1)-th PP, PATCHCOMM
now treats all of (V , N1, {pobjj}i1) as candidates for attach-
ment, where pobjj is the object of preposition for the j-th
PP, where j ∈ [1,· · · , i].

For coreference, PATCHCOMM assumes that each pro-
noun can refer to any entity that occurs in the sentence,
and uses the same description-token-matching mechanism,
which is detailed in Section 3.1.1.

3.2 Working Examples
Figure 3 shows examples of PP attachments performed by
spaCy and coreference resolutions performed by Neural-
Coref without PATCHCOMM. Figure 4 shows how PATCH-
COMM helps improve some outputs in Figure 3. Note in
Figure 4 that PATCHCOMM embeds coreference informa-
tion into spaCy-style dependency parse, as shown by the red
highlighted coref label.

In addition, Figure 5 compares spaCy and PATCHCOMM
on resolving the same sentence for multiple PPs.
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Figure 5: spaCy (top) and PATCHCOMM (bottom) resolving PP
attachments in a sentence; first PP in blue, second PP in red.

3.3 Some Future Work for PATCHCOMM

There are two immediate next steps for PATCHCOMM:
For the linguistic step, PATCHCOMM is underway for re-

solving multiple ambiguous pronouns, as well as PP attach-
ment ambiguities and coreference ambiguities combined.

For the knowledge step, PATCHCOMM is underway for in-
corporating inference modules that embed ConceptNet into
DNN-based systems and querying these systems instead of
ConceptNet, in order to make up for ConceptNet’s sparse
and incomplete coverage. This approach resembles (Bosse-
lut et al. 2019) in spirit.

4 Experiments and Results
First, we summarize the most important result of our exper-
iments, in Table 1. Then, we explain the details of how the
experiments were performed. The bottom line is that our
system provided significant improvements over baselines,
especially for the coreference task.

Baseline PATCHCOMM
PP Attachment 57% 61%

Coreference 30.77% 51.65%

Table 1: Baselines are spaCy (top) and NeuralCoref (bottom).

4.1 PP Attachment
We created a small dataset that is partially based on that of
(Belinkov et al. 2014)7, with partial help from Write With
Transformer8. The dataset has 100 sentences, with distri-
bution of prepositions shown in Figure 6. The Y-axis is the
number of instances of that preposition in our 100-sentence
dataset. For baseline, we used spaCy (Honnibal et al. 2020).

Out of these 100 sentences, spaCy scored 57 correct by
itself and 61 correct using PATCHCOMM. There are 8 sen-
tences for which spaCy made different PP attachments than
PATCHCOMM, suggesting that (1) PATCHCOMM needs to
make fuller user of a sentence’s contextual information; (2)
PATCHCOMM also needs to use commonsense knowledge in
a context-dependent manner.

7Belinkov et al. dataset available: https://github.com/boknilev/
pp-attachment/tree/master/data/pp-data-english

8https://transformer.huggingface.co/

Figure 6: Distribution of prepositions in our PP attachment dataset.

4.2 Coreference Resolution
For coreference, we used the WSC273 dataset9
(Levesque, Davis, and Morgenstern 2012).
This dataset has 273 sentences of the format
(· · ·Entity1· · ·Entity2· · · pronoun· · ·). For base-
line, we used NeuralCoref (Clark and Manning 2016b;
Clark and Manning 2016a).

Out of these 273 sentences, NeuralCoref scored 30.77%
correct and PatchComm scored 51.65% correct. Very curi-
ously, the set of sentences scored by NeuralCoref was com-
pletely disjoint from the set of sentences scored by PATCH-
COMM. We suspect this might be because NeuralCoref has
a curious capability of overlooking “obvious” commonsense
that is naturally captured by CSKBs such as ConceptNet, but
capturing certain “obscure” commonsense that is not imme-
diately made clear in CSKBs.

5 Conclusion
We first introduced our vision that syntactic parsing is a nat-
ural application and test bed for commonsense reasoning.
To showcase this, we pointed out that syntactic parsers need
considerable commonsense knowledge to make good pars-
ing decisions, and that such knowledge can either stem in-
ternally from the parsers or come externally from CSKBs.
To showcase that external CSKBs do help, we introduced
PATCHCOMM, which uses an external CSKB, ConceptNet,
to provide commonsense knowledge for a parser, spaCy.
Our results encourage our vision.

We are also reminded of the necessity and urgency to in-
tegrate the research communities for knowledge representa-
tion and language understanding. Knowledge is an indis-
pensable element for language understanding; language is
an essential conveyance of knowledge, at least for people.
We believe this collaboration is necessary for building Arti-
ficial Intelligence (AI) systems that possess true communi-
cation capacity, which in turn is the foundation for AI trans-
parency, explainability, fairness, and safety.

9https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/
WSCollection.xml
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ska, M., eds., Natural Language Processing and Informa-
tion Systems, 192–206. Berlin, Heidelberg: Springer Berlin
Heidelberg.
Clark, K., and Manning, C. D. 2016a. Deep reinforcement
learning for mention-ranking coreference models. In Pro-
ceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, 2256–2262. Austin, Texas:
Association for Computational Linguistics.
Clark, K., and Manning, C. D. 2016b. Improving corefer-
ence resolution by learning entity-level distributed represen-
tations. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long
Papers), 643–653. Berlin, Germany: Association for Com-
putational Linguistics.
Hamdan, M., and Khan, I. 2018. An analysis of
prepositional-phrase attachment disambiguation. Interna-
tional Journal of Computational Linguistics Research 9:60.
Honnibal, M.; Montani, I.; Van Landeghem, S.; and Boyd,
A. 2020. spaCy: Industrial-strength Natural Language Pro-
cessing in Python.
Kocijan, V.; Lukasiewicz, T.; Davis, E.; Marcus, G.;
and Morgenstern, L. 2020. A review of winograd
schema challenge datasets and approaches. arXiv preprint
arXiv:2004.13831 [cs.CL].
Levesque, H.; Davis, E.; and Morgenstern, L. 2012. The
winograd schema challenge. In 13th International Confer-
ence on the Principles of Knowledge Representation and
Reasoning, KR 2012, Proceedings of the International Con-
ference on Knowledge Representation and Reasoning, 552–
561. Institute of Electrical and Electronics Engineers Inc.
13th International Conference on the Principles of Knowl-
edge Representation and Reasoning, KR 2012 ; Conference
date: 10-06-2012 Through 14-06-2012.
Minsky, M. 1986. The Society of Mind. USA: Simon Schus-
ter, Inc.

Minsky, M. 2006. The Emotion Machine: Commonsense
Thinking, Artificial Intelligence, and the Future of the Hu-
man Mind. USA: Simon Schuster, Inc.
Mueller, E. T. 2014. Commonsense Reasoning: An Event
Calculus Based Approach. San Francisco, CA, USA: Mor-
gan Kaufmann Publishers Inc., 2 edition.
Nakashole, N., and Mitchell, T. M. 2015. A knowledge-
intensive model for prepositional phrase attachment. In Pro-
ceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 1:
Long Papers), 365–375. Beijing, China: Association for
Computational Linguistics.
Ratnaparkhi, A.; Reynar, J.; and Roukos, S. 1994. A maxi-
mum entropy model for prepositional phrase attachment. In
Human Language Technology: Proceedings of a Workshop
held at Plainsboro, New Jersey, March 8-11, 1994.
Sakaguchi, K.; Le Bras, R.; Bhagavatula, C.; and Choi, Y.
2020. Winogrande: An adversarial winograd schema chal-
lenge at scale. Proceedings of the AAAI Conference on Arti-
ficial Intelligence 34(05):8732–8740.
Sap, M.; Le Bras, R.; Allaway, E.; Bhagavatula, C.; Lourie,
N.; Rashkin, H.; Roof, B.; Smith, N. A.; and Choi, Y. 2019.
Atomic: An atlas of machine commonsense for if-then rea-
soning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, 3027–3035.
Singh, P.; Lin, T.; Mueller, E. T.; Lim, G.; Perkins, T.; and
Li Zhu, W. 2002. Open mind common sense: Knowledge
acquisition from the general public. In Meersman, R., and
Tari, Z., eds., On the Move to Meaningful Internet Systems
2002: CoopIS, DOA, and ODBASE, 1223–1237. Berlin,
Heidelberg: Springer Berlin Heidelberg.
Speer, R.; Chin, J.; and Havasi, C. 2017. Conceptnet 5.5: An
open multilingual graph of general knowledge. Proceedings
of the AAAI Conference on Artificial Intelligence 31(1).
Tandon, N.; De Melo, G.; Suchanek, F.; and Weikum, G.
2014. Webchild: Harvesting and organizing commonsense
knowledge from the web. In Proceedings of the 7th ACM
international conference on Web search and data mining,
523–532.
Tandon, N.; De Melo, G.; and Weikum, G. 2017. We-
bchild 2.0: Fine-grained commonsense knowledge distilla-
tion. In Proceedings of ACL 2017, System Demonstrations,
115–120.
Winograd, T. 1972. Understanding natural language. Cog-
nitive Psychology 3(1):1–191.
Yosinski, J.; Clune, J.; Bengio, Y.; and Lipson, H. 2014.
How transferable are features in deep neural networks? In
Ghahramani, Z.; Welling, M.; Cortes, C.; Lawrence, N.; and
Weinberger, K. Q., eds., Advances in Neural Information
Processing Systems, volume 27. Curran Associates, Inc.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track - Short paper

716


	Introduction
	Related Work
	Syntactic Parsing Exposes the Need for Underlying Commonsense Knowledge
	Commonsense Knowledge

	PatchComm
	System Details
	Working Examples
	Some Future Work for PatchComm

	Experiments and Results
	PP Attachment
	Coreference Resolution

	Conclusion

