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Abstract

Technology has sufficiently matured to enable, in principle,
flexible and autonomous robotic assembly systems. However,
in practice, it requires making all the relevant (implicit) knowl-
edge that system engineers and workers have – about products
to be assembled, tasks to be performed, as well as robots and
their skills – available to the system explicitly. Only then
can the planning and execution components of a robotic as-
sembly pipeline communicate with each other in the same
language and solve tasks autonomously without human inter-
vention. This is why we have developed the Factory of the
Future (FoF) ontology. At its core, this ontology models the
tasks that are necessary to assemble a product and the robotic
skills that can be employed to complete said tasks. The FoF
ontology is based on existing standards. We started with theo-
retical considerations and iteratively adapted it based on prac-
tical experience gained from incorporating more and more
components required for automated planning and assembly.
Furthermore, we propose tools to extend the ontology for spe-
cific scenarios with knowledge about parts, robots, tools, and
skills from various sources. The resulting scenario ontology
serves us as world model for the robotic systems and other
components of the assembly process. A central runtime inter-
face to this world model provides fast and easy access to the
knowledge during execution. In this work, we also show the
integration of a graphical user front-end, an assembly planner,
a workspace reconfigurator, and more components of the as-
sembly pipeline that all communicate with the help of the FoF
ontology. Overall, our integration of the FoF ontology with
the other components of a robotic assembly pipeline shows
that using an ontology is a practical method to establish a
common language and understanding between the involved
components.

1 Introduction
Flexible and autonomous robotic assembly systems promise
to make the production of small lot sizes more affordable. To
automate robotic assembly efficiently, all components of that
robotic assembly pipeline need to communicate in a common
formal language. With robots and their interfaces slowly be-
coming standardized as well as digital twins and knowledge
about processes becoming further advanced, communication
between the components is in principle feasible. However, a
lot of knowledge – about products to be assembled, tasks to
be performed, and robots with their different configurations
and skills – only exists implicitly, for example in the form of

Figure 1: A rendering from the CAD model of our Factory of the
Future lab, used to automate the assembly of a chain saw.

manually written code or as knowledge of system engineers.
Only if this knowledge is made formal and explicit, a com-
puter can reason about it and flexible robotic assembly can
be done autonomously. A formal model enables all compo-
nents within the robotic assembly pipeline – from workcell
configuration over planning to execution – to communicate
with each other in the same language and to have a common
understanding of the world.

As such a common formal model, our first contribution is
the Factory of the Future (FoF) ontology (published in OWL
format with documentation (Schäfer et al. 2021)) that brings
all aspects of the assembly process together based on the ex-
isting standard IEEE Standard Ontologies for Robotics and
Automation (IEEE1872). At its core, this ontology models
the tasks that are necessary to assemble a product (e. g. con-
nections) and – as counterpart – the robotic skills with their
preconditions and effects that can be employed for their com-
pletion. We use the FoF ontology as a basis for scenario
specific ontologies, that model concrete workcells, skills,
tasks, and artifacts. As our second contribution, we demon-
strate how a scenario ontology is filled from various sources,
with its contents being generated predominantly automated.
This scenario ontology then serves as the initial content of
a knowledge base that supplies all components of a robotic
assembly pipeline with the required information. Our third
contribution is the World Interface, a component offering fast
and abstract access to the knowledge base at runtime through
multiple protocols. It is connected with all components of our
robotic assembly pipeline, such as the front-end for graphical
task definition, the planner for skill sequence generation, and
a reconfigurator for workcell layout optimization.
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As a development goal, the knowledge base formed from
the FoF and scenario ontologies shall provide a common
source for reasoning in the overall pipeline. In this paper,
we present our recent developments and activities towards
that vision. At first, we present related ontologies in Section
2, followed by a description of our ontology in Section 3
and its application in the robotic assembly pipeline in Sec-
tion 4. The approach is discussed in Section 5. We finish
with conclusions and a brief outlook on future work in 6.

2 Related Work
In recent years, multiple initiatives were started to formalize
knowledge in the robotic domain. The standard IEEE1872
provides a very basic ontology for robotics and automation
(IEE 2015). While being very general, it stays abstract in
many aspects and the level of detail is insufficient to apply
it in a realistic scenario. At least two study groups are cur-
rently working on further standards based on IEEE1872, one
for tasks (Balakirsky et al. 2017) and one for autonomous
robotics (Olszewska et al. 2017).

(Beßler et al. 2018) presents assembly planning through
reasoning over an ontology. The approach proofs to be very
efficient in solving complex assembly tasks. Nevertheless,
the overall production environment with multiple workcells
is not represented.

(Jacobsson 2015; Jacobsson et al. 2016; Järvenpää et al.
2018; Perzylo et al. 2019) cover different aspects of model-
ing skills and capabilities of robotic devices and served as
inspiration for FoF ontology’s skill component. In particu-
lar, we chose a comparable approach in the representation of
skills and expanded up on it.

(Wildgrube et al. 2019) presents a semantic model for con-
nections between objects through so called semantic mates,
similar to FoF ontology’s connectable elements in the con-
nection component.

(Perzylo et al. 2015) presents, similar to this paper, the
use of ontologies for semantic representation of much of the
robotic process and its environment (ubiquitous semantics).
While the focus lies on object detection and pose estimation,
task execution, and human-friendly interfaces, the paper does
not go into detail how the system components communicate
with each other.

3 Ontology
The FoF ontology is a domain ontology (Section 3.1). For
specific assembly scenarios we create scenario ontologies
(Section 3.2) based on the FoF ontology. These serve as
a basis for the application ontology, axioms created during
runtime of the robotic assembly pipeline (Section 4).

We base FoF on the ontologies of IEEE1872 (IEE 2015),
which themselves are based on the Suggested Upper Merged
Ontology (SUMO) (Niles and Pease 2001). SUMO is an up-
per ontology. IEEE1872 extends SUMO with the ontology
CORAX and defines its core ontology, Core Ontology for
Robotics & Automation (CORA), on top of them. It also
defines POS for spatial information and RPARTS for parts
of robots. To specify units of parameter values, we use the

Figure 2: Ontology Hierarchy. Each box represents an ontology,
building on all ontologies to the left of it. Ontologies written in
bold are described in this paper.

Ontology of units of Measure (OM)1. Fig. 2 shows the hier-
archy of the involved ontologies.

3.1 FoF Ontology
As a basis for the FoF ontology, we define robotic assembly
to be the process of assembling artifacts by robotic work-
cells completing tasks through their skills. In our terminol-
ogy, a task defines a goal that can be fulfilled by executing
a sequence of skills. We split the ontology into multiple
components, which are briefly introduced in the following
paragraphs.

To represent parts and products as well as devices (e. g.
robots) of the assembly process, we use subclasses of
Design and Artifact, defined by the CORAX, respec-
tively the SUMO ontology. We differentiate between repre-
sentations of object types and representations of individual
objects. Furthermore, individuals can be defined to be ab-
stract (name prepended with an underscore) to refer to any
individual of that type, i. e. to serve as a placeholder.

We developed the connection component to represent con-
nections between artifacts. As with artifacts and designs,
there are two levels of classes and properties: one for the ab-
stract types of connections and one for concrete connections
between artifacts.

We annotate artifacts in general and storage devices in par-
ticular with classes and properties from the grasp set com-
ponent and place set component, respectively. The former
models knowledge about how grippers can grasp artifacts,
while the latter models knowledge about where and how we
can place artifacts in a storage device.

The workcell component models robotic workcells. A
robotic workcell is an environment, in which robotic systems
assemble artifacts with the help of other devices. Storage
devices, located in robotic workcells, hold the resources of
an assembly process, i. e. artifacts that may colloquially be
called parts, products, and tools.

With the classes and properties of the state component, we
represent snapshots of the state of one or more robotic work-
cells. A state consists of arbitrary individuals that are part
of or exist within a robotic workcell. Because of this, there
might be multiple individuals within the knowledge base rep-
resenting the same physical object in different states. With
state constraints, we added classes that resemble statements
of predicate logic about the individuals comprising a state.
They are used to express preconditions, goals, and effects of
tasks and skill.

Assembly tasks for robotic workcells are represented by
classes and properties of the task component. Tasks are de-

1https://github.com/HajoRijgersberg/OM/
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fined by preconditions and goals through state constraints.
We group tasks into task containers, which are intended to
be assigned to a robotic workcell. There are two versions of
tasks and task containers. The plain versions may reference
abstract artifacts in their preconditions and goals and serve
as templates (e. g. Task). From these so called runnable ver-
sions can be created (e. g. RunnableTask). Those have
to reference concrete artifacts and are assigned to robotic
workcells for execution.

We represent skills of robotic systems through classes and
properties of the skill component. Skills are defined by pre-
conditions and effects through state constraints. There are
three versions of skills. Plain skills represent abstract skills
of robotic systems, parameterized skills are skills parameter-
ized for solving a specific task, and runnable parameterized
skills are skills that are fully specified for a given runnable
task and associated robotic workcell. We group parameter-
ized skills into skill sequences, each skill sequence being
able to solve a task.

The parameter component provides classes and properties
to represent skill parameters of various types. A parameter
type specifies, among other things, its value type. The value
of a parameter is only assigned for the parameterized and
runnable versions of a skill.

In addition to the robotic assembly related components,
we extended the POS ontology of IEEE1872 with data prop-
erties for concrete coordinate values through the posx compo-
nent and added properties for sequences (first*/next*)
in the sequence component.

3.2 Scenario Ontology
The FoF ontology defines classes and properties required for
representing any robotic assembly scenario. Based on this
domain ontology, for each scenario a specific scenario ontol-
ogy can be described by subclasses, properties, individuals,
and property axioms. In particular, artifacts, workcells, and
their skills must be represented.

We fill our scenario ontologies from various sources of ex-
isting knowledge, which is converted into an Web Ontology
Language (OWL) representation. Representations of parts,
products, and devices (e. g. robots) are converted from an ex-
isting object database (Leidner et al. 2012). Further informa-
tion about these artifacts, including connections, place sets,
and how they form workcells, are extracted using a custom
script from the FoF computer-aided design (CAD) model of
the lab shown in Fig. 1. Information about skills is converted
from data from RAFCON (Brunner et al. 2016), a graphical
user interface (GUI) application for the development of skills
using hierarchical state machines. Also, a certain degree of
manual editing is still involved.

Such a scenario ontology, together with the ontologies it
is based on, forms the initial knowledge base at runtime of a
robotic assembly pipeline.

4 Robotic Assembly Pipeline
In the following, we describe the robotic assembly pipeline
components’ use of the FoF ontology. It serves three pur-
poses: it (i) models the knowledge about the assembly envi-

Figure 3: Architecture of the Robotic Assembly Pipeline

ronment and process, (ii) serves as the basis for the knowl-
edge base that centrally holds the information about a con-
crete scenario, and (iii) defines how to share information
between pipeline components.

In Fig. 3, the communication architecture of the robotic as-
sembly pipeline is schematized. All components read from,
add to, or update the knowledge base. World Interface de-
scribed in Section 4.1 serves as the central interface. When
components communicate with each other about individuals
(e. g. to schedule a task), they reference them using their
Internationalized Resource Identifier (IRI).

After the description of World Interface, the front-end
(Section 4.2), planner (Section 4.3), and reconfigurator (Sec-
tion 4.4) components are show-cased. The factory scheduler
forwards tasks to the different workcell schedulers, which,
for example, order artifacts required for a task from the logis-
tics scheduler and run a generated plan using the Execution.

4.1 World Interface
Typical triplestores, used for holding ontological data, usu-
ally offer the query language SPARQL Protocol and RDF
Query Language (SPARQL) as an interface. The result of
those queries is a plain table, which makes the access to hier-
archical data difficult. As an example for hierarchical struc-
tures in the FoF ontology, consider task container sequences
that contain a list of task containers which themselves each
contain a list of tasks.

To mitigate this and further issues, we developed World
Interface using a patched version of the Object-RDF Map-
ping (ORM) library SuRF2. World Interface serves as the
central runtime interface to the knowledge base. It offers an
application programming interface (API) for the basic create,
read, update, and delete (CRUD) operations, which can be
accessed using different protocols. Currently, WebSocket
and OPC Unified Architecture (OPC UA) are supported, an
HTTP-based Representational state transfer (REST) inter-
face is planned.

World Interface parses the ontology and dynamically cre-
ates Python classes with attributes corresponding to the on-
tology’s classes and their properties. For example, the prop-
erty hasGoal with domain Task becomes an attribute
hasGoal of the Task class. As a special case, sequences,
which are represented using first/next properties in the ontol-
ogy, are converted into lists.

2https://github.com/franzlst/surfrdf
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Figure 4: Illustrative image of of the HFI front-end. It shows a task
defined by an effect (a connection) and a skill sequence that has
been calculated to fulfill the task.

For communication between the pipeline’s components
and World Interface, the generated class instances are JSON-
serialized. When a read operation is performed (e. g. a re-
quest for certain individual), instances of the Python classes
get recursively populated with the information from the on-
tology. If, for example, a certain TaskContainer is re-
quested, an on-the-fly created instance of the Python class
TaskContainer is returned, with the tasks attribute
filled with corresponding Task instances, each again having
all attributes set. Likewise, when adding or updating entities,
World Interface takes instances of the Python classes as input
and converts them into triples.

As this process is computational heavy, entities are cached.
Changes are only written back to the ontology on command.

4.2 Front-end
The front-end is a GUI (see Fig. 4 for a screenshot) to the
assembly process in form of a web application. Users can
intuitively define tasks in terms of their goals. They can
then assign these tasks to a robotic workcell, which triggers
a message to the execution component with the task’s IRI.
The front-end also provides information about the progress
of each task, periodically querying World Interface for new
information. In addition, it allows to control the execution.

4.3 Planner
The purpose of our planner is to create a skill sequence that
solves a given task (Sürig 2021). It translates all necessary
entities from the ontology into a Planning Domain Definition
Language (PDDL) domain and problem representation. A
skill in the ontology, for example, is translated into an action
in PDDL. Given the PDDL representation, a PDDL plan-
ner generates a sequence of parameterized actions (a plan)
that solves the problem. Subsequently, the plan is converted
back to an ontological representation in the form of a skill
sequence consisting of parameterized skills.

4.4 Reconfigurator
The reconfigurator allows for automated planning of an op-
timal workcell layout. It optimizes the location of fixtures
for skill sequences with fast execution times, while meeting
reachability and collision constraints. The approach is based
on minimizing path lengths (Bachmann et al. 2021) and ob-
tains all required information from the ontology.

5 Discussion
We showed that IEEE1872 is a useful basis for a robot ontol-
ogy in practice. We expanded upon it with knowledge of the
robotic assembly domain.

The resulting FoF ontology is not only based on theoret-
ical considerations and related literature, but has been iter-
atively improved by practical needs during the integration
of the robotic assembly pipeline. A common theme of our
adaptations was the need to differentiate between knowledge
available at different points of a pipeline’s runtime.

We needed to differentiate between abstract types of ar-
tifacts, the properties of which where representable before
runtime, and concrete instances of types, only some of
which are representable before runtime (e. g. robots but
not concrete products). The CORAX ontology provides
us with Design as a class for artifact types, for which
we implemented analogues in the FoF ontology’s connec-
tion component. Another example are skills of robots that
are known before runtime. They need to be parameter-
ized for particular robots and parts that should act and be
acted upon, respectively, which can only be done at run-
time. Furthermore, there is a need to distinguish between
abstract robot skills, partially parameterized skills after plan-
ning, and fully parameterized skills for execution. In the
FoF ontology, we represent this with individuals of three
different classes: Skill, ParamterizedSkill, and
RunnableParameterizedSkill.

Despite being sufficient for our current applications, the
FoF ontology is limited regarding modeling the current state.
For example regarding connections, no kinematic constraints
or kinematic chains can be modeled. Furthermore, the cur-
rent concepts of connections are limited in their semantic
expressiveness, e. g. regarding geometrical alignment.

6 Conclusion
The FoF ontology serves as a common language for the com-
ponents of robotic assembly systems and grounds the imple-
mentation of their interfaces. It allows representing complex
process chains and their resources consistently in multiple
phases of robotic assembly processes, from planning to ex-
ecution. The FoF ontology models the preconditions and
goals of tasks as well as preconditions and effects of skills.
This can be used to verify skill sequences generated automat-
ically by an assembly planner. We plan to investigate further
applications and reasoning methods using the ontology in
future work. The FoF ontology, as currently published, is
restricted to robotic agents. We plan to extend it with enti-
ties for modeling human-robot collaboration and to include
a broader set of manufacturing methods.
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