KR2021Proceedings of the 18th International Conference on Principles of Knowledge Representation and ReasoningProceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning

Online event. November 3-12, 2021.

Edited by

ISSN: 2334-1033
ISBN: 978-1-956792-99-7

Sponsored by
Published by

Copyright © 2021 International Joint Conferences on Artificial Intelligence Organization

Making DL-Lite Planning Practical

  1. Stefan Borgwardt(Technische Universität Dresden)
  2. Jörg Hoffmann(Saarland University, Saarland Informatics Campus)
  3. Alisa Kovtunova(Technische Universität Dresden)
  4. Marcel Steinmetz(Saarland University, Saarland Informatics Campus)

Keywords

  1. Description logics
  2. Ontology formalisms and models
  3. Integrating reasoning about actions and control
  4. Reasoning about actions and change, action languages

Abstract

Planning in the presence of background ontologies is a topic of long-standing interest in AI. It combines the problems of (1) belief update complexity and (2) state-space combinatorics. DL-Lite offers an attractive solution to (1), with belief updates possible at the ABox level. Indeed, it has been shown that DL-Lite planning can be compiled into the commonly used planning language PDDL. Yet that compilation was previously found to be infeasible for off-the-shelf planning systems. Here we analyze the reasons for this problem and find that the bottleneck lies in the planner pre-processes, in particular in the naïve DNF transformations used to compile the PDDL input into the planners' internal representations. Consequently, we design a PDDL pre-compiler realizing a polynomial DNF transformation. We leverage a particular PDDL language feature ("derived predicates") to avoid the need for excessive control structure. Our pre-compiler turns out to be quite effective: the previous bottleneck disappears, and experiments on a broad range of benchmarks demonstrate the first practical technology for DL-Lite planning.