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Abstract

Abstract agent argumentation frameworks extend Dung’s the-
ory with agents, and in this paper we study four types of
semantics for them. First, agent defense semantics replaces
Dung’s notion of defense by some kind of agent defense. Sec-
ond, social agent semantics prefers arguments that belong to
more agents. Third, agent reduction semantics considers the
perspective of individual agents. Fourth, agent filtering se-
mantics are inspired by a lack of knowledge. We study five
existing principles and we introduce twelve new ones. In to-
tal, we provide a full analysis of fifty-two agent semantics
and the seventeen principles.

1 Introduction
The two volumes of the Handbook of Formal Argumen-
tation (Baroni et al. 2018; Gabbay et al. to appear) ex-
plain the central role of Dung’s theory of abstract argu-
mentation (Dung 1995) and many of its variants proposed
over the past few decades. However, whereas several pa-
pers have proposed agent-based variants (Awad et al. 2017;
Karanikolas, Bisquert, and Kaklamanis 2019; Gao et al.
2016), so far an overview of these variants is lacking. More-
over, the semantics of agent argumentation is related to
merging argumentation frameworks (Coste-Marquis et al.
2007; Delobelle, Konieczny, and Vesic 2018; Caminada and
Pigozzi 2011). We address the following research questions:

1. What kind of semantics can be defined for agent argumen-
tation frameworks?

2. Which of the principles proposed in the literature (Baroni
and Giacomin 2007; van der Torre and Vesic 2017) do not
hold for such agent semantics?

3. What new principles can we define to distinguish the va-
rieties of agent semantics?

For comparison, we distinguish four kinds of semantics
for agent argumentation frameworks:

Agent defense approaches adapt Dung’s notion of defense
for argumentation semantics.

Social approaches (Leite and Martins 2011) are based
on counting the number of agents and a reduction to
preference-based argumentation (Amgoud and Cayrol
2002).

Agent reductions take the perspective of individual agents
and create extensions accordingly (Giacomin 2017).

Filtering methods are inspired by the knowledge or trust of
the agents (Arisaka, Satoh, and van der Torre 2017) and
leave out some arguments or attacks, because they do not
belong to any agents.
We make two important observations about the way the

principle-based approach is used in formal argumentation in
general, and in this paper in particular.
Minimality First, agent-based extensions typically intro-

duce various aspects such as coalitions, knowledge, un-
certainty, support, and so on. In line with common prac-
tice in the principle-based approach, this paper uses a
minimal extension of Dung as a common core to these
approaches. We only introduce an abstract set of agents,
and we associate arguments with agents and nothing else.

Distinguishability Principles and axioms can be used in
many ways. Often, they conceptualize the behavior of a
system at a higher level of abstraction. Moreover, in the
absence of a standard approach, principles can be used as
a guideline for choosing the appropriate definitions and
semantics depending on various needs. Therefore, in for-
mal argumentation, principles are often more technical.
The most discussed principles are admissibility, direction-
ality and SCC decomposibility, which also play a central
role in this paper. In this paper, we focus on principles
distinguishing kinds of agent semantics.

The paper is organized as follows. In the following section
we introduce agent argumentation frameworks. We discuss
four kinds of semantics for agent argumentation frameworks
in the next four sections. As for principles, traditional prin-
ciples are introduced in the following section and thereafter
variants of traditional principles are introduced. Then we
introduce eight new agent principles. Finally, we discuss re-
lated work, future work and the conclusions of the paper.
Due to space limitations, we only sketch a few proofs.

2 Agent Argumentation Framework
This section introduces agent argumentation frameworks.
They generalize argumentation frameworks studied by Dung
(1995), which are directed graphs, where the nodes are ar-
guments, and the arrows correspond to the attack relation.
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Definition 1 (Argumentation framework (Dung 1995)). An
argumentation framework (AF) is a pair 〈A,→〉 where A is
a set called arguments, and→⊆ A×A is a binary relation
over A called attack. For a set S ⊆ A and an argument
a ∈A, we say that S attacks a if there exists b ∈ S such that
b attacks a, a attacks S if there exists b∈ S such that a attacks
b, a− = {b∈A|b attacks a}, and S−out = {a∈A\S| a attacks
S }.

Dung’s admissibility-based semantics is based on the con-
cept of defense. A set of arguments defends another argu-
ment if they attack all its attackers.
Definition 2 (Admissible (Dung 1995)). Let 〈A,→〉 be an
AF. E ⊆ A is conflict-free iff there are no arguments a and
b in E such that a attacks b. E ⊆ A defends c iff for all
arguments b attacking c, there is an argument a in E such
that a attacks b. E ⊆ A is admissible iff it is conflict-free
and defends all its elements.

For their principle-based analysis, Baroni and Giacomin
(2007) define semantics as a function from argumentation
frameworks to sets of subsets of arguments.
Definition 3. (Dung semantics (Baroni and Giacomin
2007)) Dung semantics is a function σ that associates with
an argumentation framework AF = 〈A,→〉 a set of subsets
of A, and the elements of σ(AF) are called extensions.

Dung distinguishes between several definitions of exten-
sion.
Definition 4 (Extensions (Dung 1995)). Let 〈A,→〉 be an
AF. E ⊆A is a complete extension iff it is admissible and it
contains all the arguments it defends. E ⊆ A is a grounded
extension iff it is the smallest complete extension (for set in-
clusion). E ⊆ A is a preferred extension iff it is the largest
complete extension (for set inclusion). E ⊆ A is a stable
extension iff it is conflict-free, and it attacks each argument
which does not belong to E.

Each kind of extension may be seen as an acceptability se-
mantics that formally rules the argument evaluation process.
In this article, we use σ ∈ {c,g, p,s} to represent Dung se-
mantics {complete, grounded, preferred, stable}.
Example 1 (Two conflicts). Consider the argumentation
framework visualized on the left in Figure 1, where A =
{a,b,c,d}, →= {a → b,b → a,c → d,d → c}. Each
argument defends itself. There are nine admissible sets
– {a},{b},{c},{d},{a,c},{a,d},{b,c},{b,d}, /0 – which
are all complete extensions. The grounded extension is
/0. The preferred extensions {a,c},{a,d},{b,c},{b,d} are
also stable extensions. For example, in an oft-used dinner
scenario, we may choose between fish (a) or meat (b), and
we may choose between eating at home (c) or going out (d),
and these two choices are independent. In structured argu-
mentation, these arguments may have a complex structure,
providing the reasons for these conclusions, but in abstract
argumentation we do not detail these reasons.

An agent argumentation framework extends an argumen-
tation framework with a set of agents and a relation asso-
ciating arguments with agents. Note that an argument can
belong to no agent, one agent, or multiple agents. This is

a b

dc

a b

dc

α β

Figure 1: An AF and an AAF

the most general case. We briefly discuss restrictions in the
further work section towards the end of this paper.

We write a @ α for argument a belongs to agent α , or that
agent α has argument a.

Definition 5 (Agent argumentation framework). An agent
argumentation framework (AAF) is a 4-tuple 〈A,→,S,@〉
where A is a set of arguments, →⊆ A×A is a binary re-
lation over A called attack, S is a set of agents or sources,
and @⊆ A× S is a binary relation associating arguments
with agents. Aα = {a ∈ A|a @ α} for all arguments that
belong to agent α , Sa = {α|a @ α} for all agents that have
argument a,→a= {x→ y|x = a or y = a} for the attack re-
lations related to argument a, and @α= {(a,α)|a @ α} for
the relation between agent α and its arguments.

Example 2 (Two conflicts, continued from Example 1).
Consider the agent argumentation framework visualized
on the right in Figure 1. This figure should be read
as follows. Each dashed box contains the arguments
belonging to the same agent, S = {α,β}, and @=
{(a,α),(b,β ),(c,α),(d,β )}. For example, Alice (α) may
hold the arguments for eating fish and staying at home, and
Bob (β ) may hold the arguments for eating meat and going
outside.

3 Agent Defense Semantics
We now introduce a new kind of defense for agent argumen-
tation frameworks, which we call agent defense. Roughly, if
an agent puts forward an argument, it can only be defended
by arguments from the same agent. In extensions with coali-
tions, we may also consider agents of the same coalition de-
fending each others’ arguments (Qiao et al. 2021).

In individual agent defense, only a single agent can de-
fend an argument, whereas in collective agent defense, a set
of agents can do that.

Definition 6 (Agent Admissible). Let 〈A,→,S,@〉 be an
AAF:

• E ⊆ A is conflict-free iff there are no arguments a and b
in E such that a attacks b.

• E ⊆ A individually agent defends (agent defends1) c iff
there exists an agent α in Sc such that for all arguments
b in A attacking c, there exists an argument a in E ∩Aα

such that a attacks b.
• E ⊆A collectively agent defends (agent defends2) c iff for

all arguments b in A attacking c, there exists an agent α

in Sc and an argument a in E ∩Aα such that a attacks b.
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• E ⊆A is agent admissiblei iff it is conflict-free and agent
defendsi all its elements, for i in {1,2}.
The following example illustrates agent defense, and its

role in so-called reinstatement. Though reinstatement is
considered by many to be a desirable property, there is also
a minority opinion that argues that reinstatement should not
hold in general, c.f. the arguments and examples of Horty
(2001). Example 3 shows that there is a middle way in this
debate. Agent defense semantics allows for reinstatement if
all the arguments belong to the same agent, but not if the
arguments belong to distinct agents.
Example 3 (Reinstatement). Consider the agent argu-
mentation framework visualized in Figure 2, where A =
{a,b,c}, →= {c → b,b → a}, S = {α,β ,γ} and @=
{(a,α),(b,β ),(c,γ)}. Argument c defends argument a, but
it does not agent defend it. For example, in the dinner sce-
nario, Alice (α) may hold an argument in favor of eating
meat, Bob (β ) holds a better argument in favor of not eat-
ing meat but fish, and Cayrol (γ) holds an argument asking
why fish is not an option (c). Assuming that Alice and Cay-
rol are not in a coalition, Cayrol does not agent defend the
argument of Alice against the attacker of Bob.

a b c

α β γ

Figure 2: Agent Reinstatement

Definition 7 (Agent semantics). An agent semantics is a
function δ that associates a set of subsets of A with an agent
argumentation framework AAF = 〈A,→,S,@〉, and the ele-
ments of δ (AAF) are called agent extensions.

We use Sem1 and Sem2 to represent agent semantics based
on individual defense and collective defense respectively.
Definition 8 (Agent extensions). Let 〈A,→,S,@〉:
• E ⊆ A is an agent completei extension iff

E is agent admissiblei and it contains all the argu-
ments it agent defendsi, for i ∈ {1,2}.

• E ⊆ A is an agent groundedi extension iff it is the small-
est agent completei extension (for set inclusion), for i ∈
{1,2}.

• E ⊆ A is an agent preferredi extension iff it is the largest
agent completei extension (for set inclusion), for i ∈
{1,2}.

• E ⊆ A is an agent stablei extension iff it is conflict-free
and it attacks all the arguments in A\E, for i ∈ {1,2}.
The following two examples illustrate agent extensions.

Example 4 (Two conflicts, continued from Example 2). Re-
consider Figure 1. Each argument agent defends itself,
therefore the agent complete extensions are the same as the
complete extensions of the corresponding extensions of the
argumentation framework without considering agents. The
agent grounded, preferred and stable extensions are also the
same as those of the argumentation framework.

Example 5 (Reinstatement, continued from Example 3).
Reconsider Figure 2. The individual and collective agent
complete extension is {c}. It is also the unique individ-
ual and collective agent grounded and preferred extension.
There is no agent stable extension. When the only accepted
argument is c, it suggests a vegetarian dinner. Using stable
semantics, no agreement is reached on dinner.

The following example illustrates the difference between
individual agent defense and collective agent defense. In
particular, if a set of arguments individually agent defends
another argument, then it also collectively agent defends it,
but the example illustrates that the opposite does not always
hold.
Example 6 (Collective defense). Consider the
agent argumentation framework visualized in Fig-
ure 3, where A = {a,b1,b2,c1,c2}, →= {c1 →
b1,b1 → a,c2 → b2,b2 → a}, S = {α,β ,γ},
@= {(a,α),(a,β ),(b1,γ),(b2,γ),(c1,α),(c2,β )}. For
example, in the dinner scenario, Alice and Bob argue in
favor of eating meat, Cayrol has two better arguments
for eating fish, but Alice argues why the first argument of
Cayrol cannot be accepted, and Bob argues why the second
argument of Cayrol cannot be accepted.

a

b1 b2

c1 c2

γ

α β

Figure 3: There is no single agent defending argument a

{c1,c2} collectively agent defend argument a, but they do
not individually agent defend it. The agent admissible1 ex-
tensions are /0, {c1}, {c2} and {c1,c2}. The only agent
complete1 extension is {c1,c2}, which is also the agent
grounded1 extension and the unique agent preferred1 ex-
tension. There is no agent stable1 extension. The agent
admissible2 extensions are /0, {c1}, {c2}, {c1,c2} and
{a,c1,c2}. The only agent complete2 extension is {a,c1,c2},
which is also the grounded2 extension, the unique preferred2
extension and stable2 extension. Though Alice and Bob do
not form a coalition in the sense that they defend each oth-
ers’ arguments, by using collective defense they can form a
coalition in the sense that together they reinstate the argu-
ment in favor of eating meat.

The following example illustrates another aspect of agent
defense.
Example 7 (Agent defense). Consider Figure 4, where A=
{a1,a2,b,c}, →= {c→ b,b→ a2,b→ a1}, S = {α,β ,γ}
and @= {(a1,α),(a2,γ),(b,β ),(c,α)}. The unique individ-
ual (collective) agent complete extension, grounded exten-
sion and preferred extension is {a1,c}. There is no stable ex-
tension. When we compute extensions using SCC-recursion,

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

631



we first consider argument c, then argument b, and finally
argument a1 and a2. When accepting c, we cannot simply
remove b.

b

a1 a2

c

α γ

β

Figure 4: Agent defense

In the following three sections, we introduce several other
kinds of semantics based on various kinds of reductions.

4 Social Agent Semantics
In this section, we introduce so-called social semantics,
which is based on a reduction to preference-based argumen-
tation for each argument, counting the number of agents that
have the argument. It thus interprets agent argumentation
as a kind of voting, as studied in social choice theory or
judgment aggregation. It is not the only way to define so-
cial agent semantics, but given the formal setting we have
adopted, it seems the simplest and most natural possibility.

We first give the definition of a preference-based argu-
mentation framework.

Definition 9. (Preference-based argumentation frame-
work) A preference-based argumentation framework (PAF)
is a 3-tuple 〈A,→,�〉 where A is a set of arguments, →⊆
A×A is a binary attack relation, and � is a partial order
(irreflexive and transitive) over A called preference relation.

Amgoud and Vesic (2014) introduce two different reduc-
tions of preference, while van der Torre and Vesic (2017)
introduce two more. We refer to these papers for an expla-
nation and motivation, and illustrate the difference between
the reductions in Example 8 below.

Definition 10 (Reductions of PAF to AF (PR)). Given a
PAF = 〈A,→,�〉:
• PR1(PAF)= 〈A,→′〉, where→′= {a→′ b|a→ b,b� a}.
• PR2(PAF) = 〈A,→′〉, where →′ = {(a→′ b|a→ b,b �

a or b→ a, not a→ b,a� b}.
• PR3(PAF) = 〈A,→′〉, where →′ = {a→′ b|(a→ b,b �

a or a→ b, not b→ a}.
• PR4(PAF) = 〈A,→′〉, where →′ = {a→′ b|a→ b,b �

a, or b→ a, not a→ b,a� b, or a→ b, not b→ a}.
In social agent semantics, an argument is preferred to an-

other argument if it belongs to more agents. The reduction
from AAF to PAF is used as an intermediary step for social
agent semantics.

Definition 11 (Social Reductions of AAF to PAF (SAP)).
Given an AAF = 〈A,→,S,@〉, SAP(AAF) = 〈A,→,�〉 with
�= {a� b||Sa|> |Sb|}.

There are four definitions of social reduction, and σ is in
{c,g, p,s}, thus, we have sixteen social agent semantics.

Definition 12 (Social Reductions of AAF to AF
(SR)). Given an AAF = 〈A,→,S,@〉, SRi(AAF) =
PRi(SAP(AAF)), and PRi is one of the four re-
ductions of PAF to AF, where the semantics
δ (AAF) = σ(SRi(AAF)) = σ(PRi(SAP(AAF))) for
i ∈ {1,2,3,4}.
Example 8 (Social reasoning). Consider the agent ar-
gumentation framework (AAF) on the left in Figure 5,
where A = {a,b}, →= {a → b}, S = {α,β} and @=
{(a,α),(b,α),(b,β )}. Argument b is preferred to argument
a because it belongs to more agents. The preference-based
argumentation framework (PAF) is visualized to the right
of the AAF in Figure 5: A = {a,b}, →= {a → b}, and
�= {b� a}. To the right of PAF, there are four correspond-
ing argumentation frameworks (AFs) after SR1 to SR4, the
extensions of each are listed in Table 1.

a b

α β

a

b b� a

a

b

a

b

a

b

a

b

Figure 5: Social reduction

Sem. C G P S
SR1 {{a,b}} {{a,b}} {{a,b}} {{a,b}}
SR2 {{b}} {{b}} {{b}} {{b}}
SR3 {{a}} {{a}} {{a}} {{a}}
SR4 { /0,{a},{b}} /0 {{a},{b}} {{a},{b}}

Table 1: The semantics of four corresponding argumentation
frameworks (AFs) after SR1 to SR4. We refer to Dung’s seman-
tics as follows: Complete (C), Grounded (G), Preferred (P), Stable
(S), and the same convention holds for all the others.

5 Agent Reduction Semantics
In this section, we introduce the third class of semantics.
Agent reductions take the perspective of each agent and cre-
ate extensions accordingly. In an abstract sense, an agent
prefers its own arguments over the arguments of the other
agents. It is again based on a reduction of agent argumenta-
tion frameworks to preference-based argumentation frame-
works, just like social agent semantics, but now in a com-
pletely different way. One difference between social reduc-
tions in the previous section and the agent reductions in this
section is that in the previous section, there is only reduc-
tion AF for every AAF, whereas in this section there is a set
of such reductions, one for each agent, and then we take the
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union of all the reductions. Again, as in the previous section,
the four kinds of reduction of preference-based argumenta-
tion frameworks lead to four kinds of agent reductions.
Definition 13 (Agent Reductions of AAF to PAF(AAP)).
Given an AAF = 〈A,→,S,@〉, AAP(AAF,α) = 〈A,→,�〉
with �= {a� b|a @ α and not b @ α}.

As in social agent semantics, there are four definitions of
agent reductions, and σ is in {c,g, p,s}. Thus, we have six-
teen agent reduction semantics.
Definition 14 (Agent Reductions of AAF to AF (AR)).
Given an AAF = 〈A,→,S,@〉, for α ∈ S, PRi is one of
the four reductions of PAF to AF, where the semantics
δ (AAF) = σ(ARi(AAF)) = σ(

⋃
α∈S PRi(AAP(AAF,α)))

for i∈{1,2,3,4}. For AF1 = 〈A1,→1〉 and AF2 = 〈A2,→2〉,
let AF1∪AF2 = 〈A1∪A2,→1 ∪→2〉.
Example 9 (Agent reduction). Reconsider the AAF on the
left in Figure 5. Firstly, consider the reduction for agent β .
We have that argument b is preferred over argument a, thus,
we get the same PAF as in Figure 5, though for a very differ-
ent reason compared to that from social reduction. For agent
α , the PAF makes all arguments equivalent, and the AF is
simply the same as for the trivial reduction. To compute the
agent extensions of the AAF, we take the union of the reduc-
tions for each agent. The AFs of ARi are the union of the AFs
of SRi in Table 1 with the AF in which a attacks b (the re-
duction for agent α). Thus, AR1 = AR3 = 〈{a,b},{a→ b}〉,
and AR2 =AR4 = 〈{a,b},{a→ b,b→ a}〉. For instance, af-
ter AR1, the AF of agent α is AR1(AAF,α) = 〈{a,b},{a→
b}〉, while AR1(AAF,β ) = 〈{a,b},{ /0}〉, so the union is
〈{a,b},{a→ b}〉, and then we compute the extensions of
this union. The result is Table 2 below for the sixteen agent
reduction semantics we consider.

Sem. C G P S
AR1 {{a}} {{a}} {{a}} {{a}}
AR2 { /0,{a},{b}} /0 {{a},{b}} {{a},{b}}
AR3 {{a}} {{a}} {{a}} {{a}}
AR4 { /0,{a},{b}} /0 {{a},{b}} {{a},{b}}

Table 2: The semantics of four corresponding argumentation
frameworks (AF) after AR1 to AR4.

6 Agent Filtering Semantics
In this section, we introduce the fourth kind of semantics
for agent argumentation frameworks. Agent filtering seman-
tics remove arguments that do not belong to an agent (Or-
phanReduction), or they remove attacks that do not belong
to an agent (NotBothReduction), where an attack belongs
to an agent if both the attacker and the attacked argument
belong to the agent.
Definition 15 (Agent Reductions of AAF to AF). Given an
AAF = 〈A,→,S,@〉:
• OrphanRemoval (OR): OR(AAF) = 〈A′,→′〉 where A′ =
{a|∃α ∈ S such that a @ α,},→∩A′×A′.

• NotBothReduction (NBR): NBR(AAF) = 〈A,→′〉 where
→′ = {(a→ b|∃α ∈ S such that a @ α , and b @ α}.

Example 10 (Epistemic reasoning). Consider the two AAFs
in Figure 6. For the figure on the left, we may say that ar-
gument a is not known, as there is no agent that has it, and
for the figure on the right, we may say that the attack is un-
known, because there is no agent that has both arguments
a and b. The filtering methods remove such unknown argu-
ments (OrphanReduction) and unknown attacks (NotBoth-
Reduction).

a b

β

a b

α β

Figure 6: Unknown

7 Traditional Principles
In this section, we repeat six important principles from the
literature. As the baseline for the principles, we also include
Dung’s semantics. It is based on the so-called trivial reduc-
tion, which simply ignores the agents and the relation be-
tween agents and arguments.
Definition 16 (Trivial Reduction (TR)). Given an AAF =
〈A,→,S,@〉,T R(AAF) = 〈A,→〉.
Principle 1 (Conflict-free (Baroni and Giacomin 2007)). An
agent semantics δ satisfies the conflict-free principle iff for
every AAF = 〈A,→,S,@〉, for all E ∈ δ (AAF), there are no
arguments a and b in E such that a attacks b.

The conflict-free principle reflects the intuitive idea that
an extension contains the arguments that can be accepted to-
gether, and that the conflicting arguments cannot be included
in the same extension, while the admissibility principle re-
flects that all arguments are defended.
Principle 2 (Admissibility (Baroni and Giacomin 2007)).
An agent semantics δ satisfies the admissibility principle iff
for every AAF = 〈A,→,S,@〉, every E ∈ δ (AAF) is admis-
sible in 〈A,→〉.

Directionality and SCC-recursiveness are introduced by
Baroni, Giacomin, and Guida (2005). These principles
reflect the idea that we can decompose an argumentation
framework into sub-frameworks so that the semantics can
be defined locally. For the directionality principle, they first
introduce the definition of an unattacked set.
Definition 17 (Unattacked Set). Given an AAF = 〈A,→
,S,@〉, a set U is unattacked iff there exists no a∈A\U such
that a attacks an argument in U. The set of unattacked sets
in AAF is denoted as US(AAF).
Definition 18 (Restriction). Given an AAF = 〈A,→,S,@〉,
and let U ⊆ A be a set of arguments, the restriction of AAF
to U is the agent abstract framework AAF↓U = 〈U,→∩U×
U,S,@ ∩U×S〉.
Principle 3 (Directionality (Baroni and Giacomin 2007)).
An agent semantics δ satisfies the directionality principle iff
for every AAF = 〈A,→,S,@〉, for every U ∈ US(AAF), it
holds that δ (AAF↓U) = {E ∩U|E ∈ δ (AAF)}.
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Proposition 1. Agent stable1 semantics and agent stable2
semantics (Def. 8) do not satisfy Principle 3.

Proof. We use a counter-example to prove Proposition 1.
Assume an AAF = 〈{a1,a2,a3,b},{b→ a3,a3 → a1,a1 →
a2,a2 → a3},{α},{b @ α,a1 @ α,a2 @ α,a3 @ α}〉. The
unattacked set of arguments is U = {b} . The stable ex-
tension of (AAF ↓ U) is {b}. However, there is no stable
extension of this AAF. δ (AAF↓U) 6= {E ∩U|E ∈ δ (AAF)},
thus, Agent stable1 semantics and agent stable2 semantics
(Def. 8) do not satisfy Principle 3.

a3

a1 a2

b
α

Figure 7: A counterexample to prove Proposition 1

The SCC-recursiveness is based on the notion of strongly
connected components from graph theory.
Definition 19 (Strongly Connected Component). Let an
AAF = 〈A,→,S,@〉. The binary relation of path-
equivalence between nodes, denoted as PEAAF ⊆ (A×A),
is defined as follows:

• for every a ∈A,(a,a) ∈ PEAAF

• given two distinct arguments a,b ∈ A, we say that
((a,b) ∈ PEAAF iff there is a path from a to b and a path
from b to a.

The strongly connected components of AAF are the equiv-
alence classes of arguments under the relation of path-
equivalence. The set of strongly connected components is
denoted by SCCSAAF .

Given an argument a ∈ A, notation SCCSAAF(a) stands
for the strongly connected component that contains a. In
the particular case where the argumentation framework is
empty, i.e., AAF = 〈 /0, /0, /0, /0〉, we assume that SCCSAAF =
{ /0}. The choice of extensions of the antecedent strongly
connected components determines a partition of the argu-
ments of a strongly connected component S into three sub-
sets: defeated (D), provisionally defeated (P) and undefeated
(U) (Baroni, Giacomin, and Guida 2005).

In words, the set DAAF(S,E) consists of the arguments
of S being attacked by E from outside S, the set UAAF(S,E)
consists of the arguments in S that are not attacked by E from
outside S and are defended by E and PAFF(S,E) consists of
the arguments in S that are not attacked by E from outside S
and are not defended by E.
Definition 20 (D, P, U, UP). Given an AAF = 〈A,→,S,@
〉, a set E ⊆ A and a strongly connected component S ∈
SCCSAAF

• DAAF(S,E) = {a ∈ S|(E ∩S−out) attacks a}
• PAAF(S,E) = {a∈ S|(E∩S−out) does not attack a and ∃b∈
(S−out ∩a−) such that E does not attack b}.

• UAAF(S,E) = S\(DAAF(S,E)∪PAAF(S,E))
• UPAAF(S,E) =UAAF(S,E)∪PAAF(S,E).

We now present the notion of SCC-recursiveness, which
was introduced by Baroni, Giacomin, and Guida (2005).

Principle 4. (SCC-recursiveness (Baroni, Giacomin, and
Guida 2005)) Agent semantics δ satisfies the SCC-
recursiveness principle iff for every AAF = 〈A,→,S,@〉, we
have δ (AAF) = G(AAF,A), where for every AAF and for
every set C ⊆ A, the function G(AAF,C) ⊆ 2A is defined as
follows: for every E ⊆A, E ∈ G(AAF,C) iff

• when |SCCSAAF |= 1, E ∈B(AAF,C),
• otherwise, ∀S ∈ SCCSAAF , (E ∩ S) ∈ G(AAF↓UPAAF (S,E)
,UAAF(S,E)∩C),

where B(AAF,C) is a function called a base function that
given an AAF = 〈A,→,S,@〉, such that |SCCSAAF |= 1 and
a set C⊆A gives a subset of 2A.

Baumann, Brewka, and Ulbricht (2020) introduce the
modularization principle. By definition, AAFE is the sub-
framework of AAF obtained by removing the so-called
range of E, the corresponding attacks, and the relation with
agents.

Definition 21 (E-reduct). Given an AAF = 〈A,→,S,@〉 and
E ⊆ A, let E+ = {a ∈ A|E attacks a}, E⊕ = E ∪E+ and
E∗ = A\E⊕. The E-reduct of AAF is the AAFE = 〈E∗,R∩
(E∗×E∗),S,@ ∩(S×E∗)〉.
Principle 5 (Modularity). An agent semantics δ satisfies
modularization if for any AAF, we have E ∈ δ (AAF) and
E ′ ∈ δ (AAFE) implies E ∪E ′ ∈ δ (AAF).

The modularity principle is related to the robustness prin-
ciples of Rienstra et al. (2020), which consider the addition
and removal of arguments and attacks. We consider here
only argument removal, which we call argument modular-
ity.

Table 3 provides full analysis of the traditional five princi-
ples. The first line of the trivial reduction lists a well-known
analysis of which of these principles hold for Dung’s seman-
tics. Unsurprisingly, several easy examples we have already
discussed in this paper show that few of the traditional prin-
ciples hold for agent semantics. This is particularly a prob-
lem for SCC-recursiveness and modularity, because we can-
not apply the corresponding recursive algorithm to compute
the semantics. In the next section, we therefore introduce
some variants of admissibility, SCC-recursion and modular-
ity that are based on agent defense.

8 Variants of Traditional Principles
The agent admissibility principle is a straightforward adap-
tation of the admissibility principle, in which defense is re-
placed by agent defense. Since there are two kinds of ad-
missibility, one for individual defense and one for collective
defense, we end up with two agent admissibility principles.
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Sem. P1 P2 P3 P4 P5
TR CGPS CGPS CGP CGPS CPS

Sem1 CGPS CGPS CGP × ×
Sem2 CGPS CGPS CGP × ×
SR1 × × CGP × ×
SR2 CGPS × × × ×
SR3 CGPS × CGP CGPS ×
SR4 CGPS × × × ×
AR1 × × CGP × ×
AR2 CGPS × × × ×
AR3 CGPS × CGP CGPS ×
AR4 CGPS × × × ×
OR CGPS × CGP CGPS CPS

NBR × × CGP × CPS

Table 3: Comparison of reductions and traditional principles.
When a principle is never satisfied by a certain reduction for all
semantics, we use the × symbol, and we use a question mark to
represent an open problem. P1 refers to Principle 1, and the same
convention holds for all the others.

Principle 6 (Agent Admissibility1). An agent semantics
δ satisfies the agent admissibility1 principle iff for ev-
ery AAF = 〈A,→,S,@〉, every E ∈ δ (AAF) is agent
admissible1.

Principle 7 (Agent Admissibility2). An agent semantics
δ satisfies the agent admissibility2 principle iff for ev-
ery AAF = 〈A,→,S,@〉, every E ∈ δ (AAF) is agent
admissible2.

Proposition 2. AR1 to AR4 and SR1 to SR4 do not satisfy
Principle 6 and 7 for complete semantics.

Proof. We use the agent argumentation framework in Figure
2 as a counter-example to prove Proposition 2. SAP(AAF) =
AAP(AAF) = 〈{a,b,c},{a → b,b → c}, /0〉. ARi(AAF) =
SRi(AAF) = 〈{a,b,c},{a→ b,b→ c}〉. The complete ex-
tension of ARi(AAF) and SRi(AAF) is {a,c}. However, a
cannot agent defend c, and {a,c} is not agent admissible.
Thus, AR1 to AR4 and SR1 to SR4 do not satisfy Principle 6
and 7 for complete semantics.

The agent SCC-recursiveness principles are also adapted
by replacing defense with agent defense, and again we end
up with two principles for individual and collective defense.
What needs to be adapted is the definition of P, the provi-
sionally defeated arguments. Roughly, P stands for the case
that an argument is not defended against b in E outside of S.
Likewise, AP stands for the case that an argument a is not
agent defendedi against b in E from outside S.

To define agent SCC-recursiveness, we define ADi, APi,
AUi, and AUPi under individual agent defense and collective
agent defense.

Definition 22 (ADi, APi, AUi, AUPi). Given an AAF =
〈A,→,S,@〉, a set E ⊆ A and a strongly connected com-
ponent S ∈ SCCSAAF , we define:

• ADiAAF(S,E) = DiAAF(S,E)

• AP1AAF(S,E) = {a ∈ S|(E ∩ S−out) does not attack a, and
∀α ∈ Sa,∃b ∈ (S−out ∩a−) such that E ∩ASa does not at-
tack b.}

• AP2AAF(S,E) = {a ∈ S|(E ∩ S−out) does not attack a and
∃b ∈ (S−out ∩ a−) such that ∀α in Sa,E ∩Aα does not at-
tack b.}

• AUiAAF(S,E) = S\(ADiAAF(S,E)∪APiAAF(S,E))
• AUPiAAF(S,E) = AUiAAF(S,E)∪APiAAF(S,E).

Principle 8 (Agent SCC-recursiveness1). An agent seman-
tics δ satisfies the agent SCC-recursiveness1 principle iff for
every AAF = 〈A,→,S,@〉, we have δ (AAF) = G(AAF,A),
where for every AAF and for every set C ⊆ A, the function
G(AAF,C) ⊆ 2A is defined as follows: for every E ⊆ A,
E ∈ G(AAF,C) iff

• when |SCCSAAF |= 1, E ∈B(AAF,C),
• otherwise, ∀S ∈ SCCSAAF , (E ∩ S) ∈ G(AAF↓AUP1AAF (S,E)
,AU1AAF(S,E)∩C),

Principle 9 (Agent SCC-recursiveness2). An agent seman-
tics δ satisfies the agent SCC-recursiveness2 principle iff for
every AAF = 〈A,→,S,@〉, we have δ (AAF) = G(AAF,A),
where for every AAF and for every set C ⊆ A, the function
G(AAF,C) ⊆ 2A is defined as follows: for every E ⊆ A,
E ∈ G(AAF,C) iff

• when |SCCSAAF |= 1, E ∈B(AAF,C),
• otherwise, ∀S ∈ SCCSAAF , (E ∩ S) ∈ G(AAF↓AUP2AAF (S,E)
,AU2AAF(S,E)∩C),
Table 4 shows the comparison between agent semantics

and agent admissibility principles and agent SCC-recursion.
This is important, since it proves that we can have an ef-
ficient SCC-recursiveness algorithm for the new agent se-
mantics. The table also shows that for P7 and P9, collective
defense implies individual defense. Finally, the table shows
that the adapted principles, like the traditional ones, are not
very useful for distinguishing between the reduction-based
semantics, i.e. the social agent semantics, the agent reduc-
tion semantics, and the agent filtering semantics. Therefore,
we introduce some new principles in the remainder of the
paper.

9 New Agent Principles
In this section, we introduce eight new principles to distin-
guish agent semantics. Principle 10 says that if more agents
adopt an argument that is accepted, this does not affect the
extension.

Principle 10 (AgentAdditionPersistence). An agent seman-
tics δ satisfies AgentAdditionPersistence iff for every AAF =
〈A,→,S,@〉, E ∈ δ (AAF), α ∈ S and a ∈ E, we have
E ∈ δ (〈A,→,S,@ ∪(a,α)〉).
Proposition 3. AR1 to AR4 and SR1 to SR4 do not satisfy
Principle 10 for complete semantics.

Proof. We use a counter-example to prove Proposition
3. Assume AAF1 = 〈{a,b},{a→ b,b→ a},{α,β},{a v
α,bv β}}, ARi(AAF1) = SRi(AAF1) = 〈{a,b},{a→ b,b→
a}〉. Let AAF2 = 〈{a,b},{a → b,b → a},{α,β},{a v
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Sem. P6 P7 P8 P9
TR × × × ×

Sem1 CGPS × CGPS ×
Sem2 CGPS CGPS CGPS CGPS
SR1 × × × ×
SR2 × × × ×
SR3 × × × ×
SR4 × × × ×
AR1 × × × ×
AR2 × × × ×
AR3 × × × ×
AR4 × × × ×
OR × × × ×

NBR × × × ×

Table 4: Comparison of the reductions and agent admissibility
principles, and agent SCC-recursion.

α,av β ,bv β}}. ARi(AAF2) = SRi(AAF2) = 〈{a,b},{a→
b}〉 The complete extensions of AAF1 are {a} and {b}, while
the complete extension of AAF2 is {a}. Thus, AR1 to AR4
and SR1 to SR4 do not satisfy Principle 10 for complete se-
mantics.

Proposition 4. OR satisfies Principle 10 and Principle 11
for all the semantics.

Proof. Assume an AAF = 〈A,→,S,@〉, OR(AAF) =
〈A′,→′〉. For any extension E ∈ δ (AAF),∀a ∈ E, there ex-
ists an agent α such that a v α . By definition, we find that
any argument in the extension has at least one agent, so at-
taching more agents to AAF will not affect OR(AAF). Thus,
OR satisfies Principle 10 and Principle 11 for all the seman-
tics.

Principle 11 reflects the same idea as principle 10, but is
based on the assumption that a is accepted in all extensions.

Principle 11 (AgentAdditionUniversalPersistence). An
agent semantics δ satisfies AgentAdditionUniveralPerisi-
tence iff for every AAF = 〈A,→,S,@〉, for ∀E ∈ δ (AAF),
α ∈ S and a ∈ E, we have ∀E ∈ δ (〈A,→,S,@ ∪(a,α)〉),
a ∈ E.

Principle 12 reflects a principle we expect to hold for all
agent semantics. It reflects anonymity: if we permute the
agents, it does not affect the extensions. It is analogous to
language independence for arguments defined by Baroni and
Giacomin (2007).

Principle 12 (PermutationPersistence). An agent seman-
tics δ satisfies PermutationPersistence iff for every AAF =
〈A,→,S,@〉 and AAF ′ = 〈A,→,S′,@′〉, and where S and
S′ are two different ordered sets with common elements, we
have δ (AAF) = δ (AAF ′).

Principle 13 reflects that if the arguments of two agents
do not attack each other, we can merge these agents into one
single agent. It does not hold for agent defense semantics,
because new agent defenses may be created.

Principle 13 (MergeAgent). An agent semantics δ satisfies
MergeAgent iff for every AAF = 〈A,→,S,@〉, ∃α,β ∈ S,
for ∀a ∈ Aα and ∀b ∈ Aβ , a does not attack b, b does not
attack a, we have AAF ′ by changing ∀ a @ α to a @ β , and
δ (AAF) = δ (AAF ′).

Principle 14 reflects that if two agents have the same argu-
ments, we can remove one of these agents without changing
the extensions. This represents the opposite of social seman-
tics, where the number of the agents makes a difference.
Principle 14 (RemovalAgentPersistence). An agent seman-
tics δ satisfies RemovalAgentPersistence iff for every AAF =
〈A,→,S,@〉, for Sα = Sβ , we have δ (〈A,→,S,@〉) =
δ (〈A,→,S\α,@ \@α〉) = δ (〈A,→,S\β ,@ \@β 〉).

Principle 15 is inspired by social agent semantics. It states
that for two argumentation frameworks with the same ar-
guments and attacks, if for every argument the number of
agents holding that argument is the same, then the exten-
sions are the same.
Principle 15 (AgentNumberEquivalence). An agent se-
mantics δ satisfies AgentNumberEquivalence iff for every
AAF = 〈A,→,S,@〉 and an AAF ′ = 〈A,→,S′,@′〉, for ∀a∈
A, |Sa|= |S′a|, we have δ (AAF) = δ (AAF ′).

Principle 16 is inspired by agent reduction semantics. It
states that if the set of the arguments of an agent is conflict-
free, then there is an extension containing those arguments.
Principle 16 (Conflict-freeInvolvement). An agent seman-
tics δ satisfies Conflict-freeInvolvement iff for every AAF =
〈A,→,S,@〉, for ∀α ∈ S,Aα is conflict-free, there is an E,
we have Aα ⊆ E.

Principle 17 is inspired by OrphanReduction semantics.
It states that if we have arguments that do not belong to any
agents, then they can be removed from the framework with-
out affecting the extensions.
Principle 17 (RemovalArgumentPersistence). An agent se-
mantics δ satisfies RemovalArgumentPersistence iff for ev-
ery AAF = 〈A,→,S,@〉, and for @α ∈ S and a@α , we have
δ (〈A,→,S,@〉) = δ (〈A\a,→\→a),S,@〉).

Most of the principles are independent. In particular, Prin-
ciple 3 (for short P3), P5, P12, P13, P14, P15, P16, and P17
are independent. On the other hand, other principles have
inner relationship among themselves. For example, if a se-
mantic satisfies P2, then it must satisfy P1. We denote this
observation as P2⇒ P1. And all the observations are listed
as: P2⇒ P1, P4⇒ P8⇒ P9, P6⇒ P7, P10⇒ P11.

In the resulting Table 5, all agent semantics satisfy P12.
Perhaps surprisingly, both social agent semantics and agent
reduction semantics does not satisfy P10, while trivial re-
duction semantics, social agent semantics and agent filter-
ing semantics satisfy P13. Moreover, all agent semantics
except the social agent semantics satisfy P14. No semantics
satisfies P16. As expected, only OrphanRemoval satisfies
P17. The only semantics that are not distinguished yet con-
cern the use of different preference reductions, or different
Dung semantics. To distinguish them, the principles pro-
posed in preference-based argumentation and in Dung’s se-
mantics can be used. In that sense, the principle-based anal-
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Sem. P10 P11 P12 P13 P14 P15 P16 P17
TR CGPS CGPS CGPS CGPS CGPS CGPS × ×

Sem1 S S CGPS × CGPS × × ×
Sem2 S S CGPS × CGPS × × ×
SR1 × CGPS CGPS CGPS × CGPS × ×
SR2 × CGPS CGPS CGPS × CGPS × ×
SR3 × CGPS CGPS CGPS × CGPS × ×
SR4 × CGPS CGPS CGPS × CGPS × ×
AR1 × CGPS CGPS × CGPS × × ×
AR2 × CGPS CGPS × CGPS × × ×
AR3 × CGPS CGPS × CGPS × × ×
AR4 × CGPS CGPS × CGPS × × ×
OR CGPS CGPS CGPS CGPS CGPS CGPS × CGPS

NBR CGPS CGPS CGPS CGPS CGPS × × ×

Table 5: Comparison between the resolutions and new agent principles.

ysis in this paper is complementary to the principle-based
analysis in the other areas.

10 Related Work
Our work builds on a rich literature on formal argumentation
and dialogue, and we can mention here only a few of the
most directly related papers.

From the four kinds of agent argumentation semantics in-
troduced in this paper, we are not aware of other approaches
that adapt Dung’s basic concepts directly, as we have done
with individual and collective agent defense. There are
other variants of semantics that adapt these notions, such as
weak defense for weak admissibility semantics (Baumann,
Brewka, and Ulbricht 2020), but that is not based on the
agent metaphor.

The most related work is in social agent semantics. Leite
and Martins (2011) introduce an abstract model of argumen-
tation where agents can vote in favor of and against an issue.
They define an abstract argumentation framework as a triple
〈A,R,V〉, where V→N×N is a total function mapping each
argument to its number of positive (Pro) and negative (Con)
votes. Our paper, on the other hand, only considers posi-
tive votes. Caminada and Pigozzi (2011) capture the notion
that individual members need to defend the collective deci-
sion in order to reach a compatible outcome, and propose to
address judgment aggregation by combining different indi-
vidual evaluations of the situation represented by an argu-
mentation framework. Hunter, Polberg, and Thimm (2020)
take an epistemic approach to probabilistic argumentation,
where the arguments are believed or not believed in terms
of different degrees, providing an alternative to the subtle
standard Dung framework.

Concerning agent reduction semantics, several authors
build on the local functions introduced by Baroni, Gia-
comin, and Guida (2005), and further developed by Baroni
et al. (2014). Giacomin (2017) shows how to use this the-
ory in multi-agent systems. The results in these papers in-
dicate that such generalizations often become equivalent to
Dung; and Arisaka, Satoh, and van der Torre (2017) extend
the agent argumentation frameworks with coalitions among

the agents. Rienstra et al. (2011) consider the case where
the agents may have different semantics, for example one
agent uses grounded semantics and another agent uses pre-
ferred semantics. Furthermore, Kontarinis and Toni (2015)
analyse the identification of the malicious behavior of agents
in the form of bipolar argumentation frameworks, which to-
gether with the work of Panisson et al. (2018) may inspire
work on agent reduction semantics based on trustfulness.

In this paper, we build on the principle-based approach
to preference-based argumentation developed by Amgoud
and Cayrol (2002) together with several co-authors over the
past fifteen years. In particular, the work of Amgoud and
Vesic (2014) and the work of Kaci, van derTorre, and Vil-
lata (2018) have inspired us, although the principles dis-
cussed in our paper are mostly different from those studied
in preference-based argumentation. In earlier work, two of
the authors have related their axiomatic approach to the anal-
ysis of bipolar argumentation (Yu and Van der Torre 2020),
and there are also close relations with the study of robustness
principles (Rienstra et al. 2020).

11 Future Work
Prakken (2018) distinguishes between argumentation as in-
ference and argumentation as dialogue. Abstract agent argu-
mentation can bring elements of argumentation as dialogue
into the foundations of argumentation as inference, and may
help to bridge the gap between the two branches.

Within the formal setting we have adopted in this paper,
many topics of further work present themselves. As always
with the principle-based approach, we can introduce more
semantics, for example by combining the ideas of the four
classes, guided by the existing principles. We can also study
more principles. We can find relations with other branches
of logic and reasoning such as axiomatic approaches in so-
cial choice. Moreover, we can try to use principles to address
the standard challenges of abstract argumentation, namely
relating the abstract model to more structured forms of ar-
gumentation, and applying abstract argumentation, for in-
stance, to legal reasoning.

For example, there is no agent semantics satisfying prin-
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ciple P16. We can define new semantics as a variant of
Definition 14, which combines agent reductions in a new
way. Instead of combining the frameworks, we can take
the union of all the extensions to the individual frameworks:
δ (AAF) = σ(

⋃
α∈S PRi(AAP(AAF,α))) for i ∈ {1,2,3,4}.

δ ′(AAF) =
⋃

α∈S σ(PRi(AAP(AAF,α))) for i ∈ {1,2,3,4}.
If we use the definition of δ ′, Table 6 changes as follows.

Sem. C G P S
AR1 {{a},{a,b}} {{a},{a,b}} {{a},{a,b}} {{a},{a,b}}
AR2 {{a},{b}} {{a},{b}} {{a},{b}} {{a},{b}}
AR3 {{a}} {{a}} {{a}} {{a}}
AR4 { /0,{a},{b}} {{a}, /0} {{a},{b}} {{a},{b}}

A regular topic in abstract argumentation is to search for
fragments with good computational properties, such as sym-
metric attack relations. Also with agent argumentation, we
can study frameworks where: every argument is associated
with at least one agent, every argument is associated with
at most one agent, there are at most two agents, symmetric
attack is possible, the arguments of each agent are conflict
free, and so on.

Moreover, concerning the use of reductions in abstract ar-
gumentation, our paper raises the question of whether we
can find a reduction to Dung’s argumentation frameworks
for agent defense semantics. While we have presented such
reductions for all the other kinds of agent semantics, we have
not yet found such a reduction for agent defense semantics.
For such a reduction, we might also add auxiliary arguments,
or we may introduce arguments for each pair of argument
and agent.

Finally, one of the main challenges in the area of for-
mal argumentation is the gap between abstract argumenta-
tion and dialogue. Caminada (2017) presents semantics of
abstract argumentation that can be interpreted with regard to
structured discussion in order to fill this gap. However, how
to implement abstract argumentation with dynamic agent di-
alogue is still an open question.

12 Conclusion
As common in the principle-based approach to argumenta-
tion semantics, we have selected principles that distinguish
agent semantics. In addition, we have added some princi-
ples that reflect important properties of agent semantics and
that can be used to guide the development of future agent se-
mantics. To be more specific, combining ideas from earlier
work in abstract argumentation, our principle-based analysis
has revealed several original insights. For example, a new
twist was given to the fundamental role of defense and rein-
statement in Dung’s theory in the context of agent defense
semantics.

Moreover, a new variant of SCC-recursiveness has been
introduced, leading to an SCC-recursive algorithm for agent
defense semantics. Since the other approaches are based on
reductions, the traditional SCC-recursive algorithms can be
used. Finally, the future work section illustrates that our for-
mal framework not only serves as a tool for organizing ex-
isting work in the area, but also provides a solid foundation

for further work in this direction.
There is quite some variety in agent semantics. In this pa-

per, the priority and hierarchy of semantics and which kind
of semantics is used depends on its application. Also they
can be combined. For example, we can use both filtering and
agent defense to remove unknown arguments or unknown at-
tacks, and defend an argument put forward by an agent. We
can use the principles to elect the most suitable semantics
for an application, and in fact that is one of the most impor-
tant uses of principles. For example, Principle 17 (Removal
Argument Persistence) can help us to elect agent filtering
semantics for an application.
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