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Abstract

DatalogMTL is an extension of Datalog with metric tempo-
ral operators that has recently received significant attention.
In contrast to plain Datalog, where scalable implementations
are often based on materialisation (a.k.a. forward chaining),
reasoning algorithms for recursive fragments of DatalogMTL
are automata-based and not well suited for practice. In this
paper we propose the class of finitely materialisable Dat-
alogMTL programs, for which forward chaining reasoning
terminates after finitely many rounds of rule application.
We show that, for bounded programs (a large fragment of
DatalogMTL where temporal intervals are restricted to not
mention infinity), checking whether a program is finitely
materialisable is feasible in exponential time, and propose
sufficient conditions for finite materialisability that can be
checked more efficiently. We finally show that fact entailment
over finitely materialisable bounded programs is ExpTime-
complete, and hence no harder than Datalog reasoning.

1 Introduction
DatalogMTL is an extension of Datalog, where atoms in
rules can include operators from metric temporal logic
(MTL) usually interpreted over the rational timeline (Brandt
et al. 2018; Wałęga et al. 2019). DatalogMTL is a power-
ful rule-based language for representing and reasoning about
data and knowledge involving temporal intervals, with ap-
plications in stream reasoning (Wałęga, Cuenca Grau, and
Kaminski 2019), temporal ontology-based query answering
(Artale et al. 2017; Kikot et al. 2018), and knowledge graphs
with temporal information (Vrandecic and Krötzsch 2014).

The study of the model-theoretic properties and computa-
tional complexity of DatalogMTL has recently received sig-
nificant attention. Consistency checking and fact entailment
are of high complexity, namely ExpSpace-complete in com-
bined complexity (Brandt et al. 2018) and PSpace-complete
in data (Wałęga et al. 2019) over both the rational and integer
timelines (Wałęga et al. 2020a), although lower complexity
fragments have also been identified (Wałęga et al. 2020b;
Brandt et al. 2018; Wałęga et al. 2020a).

The aforementioned complexity upper bounds for reason-
ing have been mostly established using automata-based al-
gorithms with comparable best-case and worst-case running
times, and thus not well suited for efficient implementation.
In contrast, scalable Datalog implementations often mate-

rialise (i.e., precompute using forward chaining via multi-
ple rounds of rule application) all facts entailed by an input
program and data. The facts in the materialisation provide a
representation of the canonical, least model of the input over
which all queries can be directly answered (Abiteboul, Hull,
and Vianu 1995; Motik et al. 2019).

As in plain Datalog, in DatalogMTL each satisfiable pair
of a program and dataset admit also a canonical model de-
fined as the least fixpoint of an immediate consequence op-
erator capturing a single round of rule application (Brandt
et al. 2018; Wałęga et al. 2019). Consider, for instance, a
program Π consisting of rule ⊞1yearBday(x ) ← Bday(x ),
which states that anyone having their birthday at a time point
t will also be having their birthday at the same time the
following year. Let now D be a dataset with a single fact
saying that Alan Turing was having his first birthday dur-
ing the 23rd of June 1913. In the canonical model of Π and
D, atom Bday(Turing) holds at each time within June 23rd
of each year from 1913 onwards; the first application of the
rule makes Bday(Turing) true during the 23rd of June 1914,
and each subsequent application makes it true on the same
day the year after. Hence, in contrast to Datalog, construct-
ing a materialisation in DatalogMTL via forward chaining
may require infinitely many rounds of rule application. Al-
though a materialisation-based algorithm for non-recursive
programs can be obtained from the results in (Brandt et al.
2018), to the best of our knowledge such algorithms for re-
cursive fragments of DatalogMTL are yet to be developed.

In this paper we propose and study finitely materialis-
able DatalogMTL programs, for which forward chaining is
guaranteed to construct a materialisation in a finite num-
ber of steps. Such programs are thus naturally well suited
for materialisation-based reasoning, which paves the way
to the development of efficient implementations. Finitely
materialisable programs extend both Datalog, where pro-
grams may be recursive but do not contain metric opera-
tors (Abiteboul, Hull, and Vianu 1995), and non-recursive
DatalogMTL, where the use of metric operators is unre-
stricted but there are no cyclic dependencies between predi-
cates (Brandt et al. 2018). Indeed, finite materialisability can
be seen as a safe form of temporal recursion, thus capturing
a form of temporal boundedness (Cosmadakis et al. 1988).

The main decision problems we consider are

– finite materialisability, which is to check whether a pro-
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gram is finitely materialisable; and
– fact entailment, which is to check whether a finitely ma-

terialisable program and a dataset entail a given fact.
We focus on the fragment of DatalogMTL where all in-
tervals in programs and in datasets are bounded (i.e., −∞
and ∞ are not mentioned). We prove that finite material-
isability in this setting is decidable in ExpTime, by show-
ing that the problem reduces to considering the application
of forward chaining to a single critical dataset. Indeed, fi-
nite materialisability bears some resemblance to checking
universal termination of chase procedures for extensions
of Datalog with existential quantifiers or function symbols
(Gogacz and Marcinkowski 2014; Cuenca Grau et al. 2013;
Marnette and Geerts 2010; Grahne and Onet 2018; Krötzsch,
Marx, and Rudolph 2019; Baget et al. 2014), as well as to
formal tools for verifying strong or weak safety of temporal
programs (Chomicki and Imieliński 1988; Chomicki 1990;
Chomicki 1995), where techniques based on identifying crit-
ical datasets are routinely exploited. To address this high
complexity, we also provide a sufficient condition verifiable
in coNP in general, and in NL for forward propagating and
backwards propagating programs (Wałęga et al. 2019). Our
condition is based on the analysis of a type of dependency
graphs for programs, which is conceptually similar to tech-
niques used for checking temporal acyclicity of description
logics (Gutiérrez-Basulto, Jung, and Kontchakov 2016a;
Gutiérrez-Basulto, Jung, and Kontchakov 2016b). Finally,
we show that fact entailment in our setting is ExpTime-
complete, and thus easier than reasoning over arbitrary
bounded programs (which is ExpSpace-complete), and also
no harder than reasoning in plain Datalog.

2 Preliminaries
We recapitulate the definition of DatalogMTL. We focus on
the rational timeline and the continuous semantics (Brandt
et al. 2018; Wałęga et al. 2019), as opposed to the integer
timeline (Wałęga et al. 2020a) or the alternative pointwise
semantics (Ryzhikov, Wałęga, and Zakharyaschev 2019).
Time and Intervals. The (rational) timeline is the set Q of
rational numbers; each element of the timeline is called a
time point. We consider binary representations of integers,
and represent each rational number as a fraction with an in-
teger numerator and a positive integer denominator.

An interval % is a non-empty subset of Q satisfying
the following properties: (i) for all t1, t2, t3 ∈ Q with
t1 < t2 < t3 and t1, t3 ∈ %, it is the case that t2 ∈ %, and
(ii) both the greatest lower bound %− and the least upper
bound %+ of % belong to Q ∪ {−∞,∞}. The bounds %−
and %+ are called the left and right endpoints of %, respec-
tively, and %+ − %− is the length of %. Interval % is punctual
if it contains exactly one number, it is positive if it does not
contain negative numbers, and it is bounded if both its left
and right endpoints are rational numbers. We use the stan-
dard representation 〈%−, %+〉 for interval %, where the left
bracket 〈 is either [ or (, the right bracket 〉 is either ] or
), and %− and %+ are representations of the left and right
endpoints of %, respectively. As usual, the brackets [ and ]
indicate that the corresponding endpoints are included in the

interval, whereas ( and ) indicate that they are not included.
We will often abbreviate a punctual interval [t, t] as t. Since
two different intervals cannot have the same representation,
we will often abuse notation and identify each interval rep-
resentation with the interval it represents.
Syntax. Assume a function-free first-order signature. A re-
lational atom is a first-order atom of the form P (s), with
P an n-ary predicate and s an n-ary tuple of terms. A met-
ric atom is an expression given by the following grammar,
where P (s) is a relational atom and % a positive interval:

M ::= > | ⊥ | P (s) | x%M | |%M |
⊟%M | ⊞%M |MS%M |MU%M.

A rule is an expression of the form

M ′ ←M1 ∧ · · · ∧Mn, for n ≥ 1, (1)

where each Mi is a metric atom, whereas M ′ is a metric
atom not mentioning x, |, S , and U , and hence generated
by the following grammar:1

M ′ ::= > | P (s) | ⊟%M ′ | ⊞%M ′.

The conjunction M1 ∧ · · · ∧ Mn in Expression (1) is the
rule’s body, where each Mi is a body atom, and M ′ is the
rule’s head. A rule is safe if all variables occur in the body.
A program is a finite set Π of safe rules; it is propositional
if its predicates are propositions (i.e., have arity 0). Program
Π is bounded if all intervals it mentions are bounded and >
does not occur in rule bodies.2 The dependency graph of Π
is a directed graph with a vertex vP for each predicate P in
Π and an edge (vQ, vR) if there is a rule mentioning Q in its
body and R in its head. Program Π is recursive if its depen-
dency graph is cyclic. An expression (metric atom, rule, or
program) is ground if it mentions no variables. The ground-
ing ground(Π) of Π is the set of ground rules obtained by
assigning constants in the signature to variables in Π. We
let ground(Π,D) denote the grounding of Π w.r.t. only the
constants in Π and D. A metric fact over interval % is an ex-
pressionM@%, withM a ground metric atom; it is relational
if so is M and bounded if so is %. A dataset is a finite set of
relational facts; it is bounded if so is each of its facts.
Semantics. An interpretation I specifies, for each ground
relational atom P (s) and each time point t, whether P (s)
is satisfied at t, in which case we write I, t |= P (s). This
notion extends to other ground metric atoms as given in Ta-
ble 1. Interpretation I satisfies a metric fact M@%, written
I |= M@%, if I, t |= M for all t ∈ %. Interpretation I satis-
fies a ground rule r if, whenever I satisfies each body atom
of r at a time point t, then I also satisfies the head of r at
t. Interpretation I satisfies a rule r if it satisfies each rule in
ground({r}). Interpretation I is a model of a program Π if
it satisfies each rule in Π, and it is a model of a set of met-
ric facts if it satisfies each of these facts. A setM of metric

1For presentational convenience, we disallow ⊥ in rule heads,
which ensures satisfiability and allows us to focus on fact entail-
ment and the computation of canonical models.

2A rule P ← > simulates a fact P@(−∞,∞) over an un-
bounded interval.
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I, t |= > for each t
I, t |= ⊥ for no t

I, t |= x%M iff I, t′ |= M for some t′ with t− t′ ∈ %
I, t |= |%M iff I, t′ |= M for some t′ with t′ − t ∈ %
I, t |= ⊟%M iff I, t′ |= M for all t′ with t− t′ ∈ %
I, t |= ⊞%M iff I, t′ |= M for all t′ with t′ − t ∈ %
I, t |= M1S%M2 iff I, t′ |= M2 for some t′ with t− t′ ∈ %

and I, t′′ |= M1 for all t′′ ∈ (t′, t)

I, t |= M1U%M2 iff I, t′ |= M2 for some t′ with t′ − t ∈ %
and I, t′′ |= M1 for all t′′ ∈ (t, t′)

Table 1: Semantics of ground metric atoms

facts entails a metric fact M@% if each model ofM is also
a model of M@%. A program Π and a setM of metric facts
entail a set M′ of metric facts, written (Π,M) |=M′, if
each model of both Π and M is also a model of M′. We
may writeM |=M′ instead of (∅,M) |=M′. IfM orM′
is a singleton, say {M@%}, then we may omit curly brackets
and write M@% |=M′ andM |= M@%, respectively.

Interpretation I contains interpretation I′, written I′ ⊆ I,
if I′, t |= P (s) implies I, t |= P (s), for each ground rela-
tional atom P (s) and time point t. Then, I is the least in-
terpretation in a set X of interpretations if I ⊆ I′ for every
I′ ∈ X . Each dataset D admits the least interpretation ID
among all models of D and we say that a dataset D repre-
sents an interpretation I if I = ID.

Canonical Interpretation The immediate consequence op-
erator TΠ for a program Π is a function mapping an in-
terpretation I to the least interpretation TΠ(I) contain-
ing I and satisfying the following property for each r ∈
ground(Π): whenever I satisfies each body atom of r at a
time point t, then TΠ(I) satisfies the head of r at t. The
successive application of TΠ to ID defines a transfinite se-
quence of interpretations TαΠ (ID) for ordinals α as follows:
(i) T 0

Π(ID) = ID, (ii) Tα+1
Π (ID) = TΠ(TαΠ (ID)) for α an

ordinal, and (iii) TαΠ (ID) =
⋃
β<α T

β
Π(ID) for α a limit

ordinal. The canonical interpretation CΠ,D of Π and D is
the interpretation Tω1

Π (ID), where ω1 is the first uncount-
able ordinal. Since we do not allow ⊥ in rule heads, CΠ,D is
the least model of Π and D (Brandt et al. 2017). Interpreta-
tion CΠ,D can be divided into regularly distributed (Π,D)-
intervals whose time points satisfy the same ground atoms
(Wałęga et al. 2019). In particular, the (Π,D)-ruler is the
set of time points of the form t+ i · div(Π), for t ∈ Q men-
tioned in D and i ∈ Z, and where div(Π) = 1

k , with k the
product of all denominators in the rational endpoints of the
intervals mentioned in Π; if Π has no intervals with rational
endpoints, then k = 1 (and hence div(Π) = 1) for definite-
ness. A (Π,D)-interval is either a punctual interval over a
time point on the ruler, or an interval (t1, t2) with t1 and t2
consecutive time points on the ruler. For every Π, D, and re-

lational fact M@t, if CΠ,D |= M@t, then CΠ,D |= M@%,
with % the (Π,D)-interval containing t (Wałęga et al. 2019).

Reasoning. We consider fact entailment: checking if a re-
lational fact is entailed by a program and a dataset. For ar-
bitrary DatalogMTL programs, fact entailment (in combined
complexity) is ExpSpace-complete and for for non-recursive
programs it is PSpace-complete (Brandt et al. 2017).

3 Finitely Materialisable Programs
In this section we introduce the notion of finitely materialis-
able programs. Our definition is rather general. On the one
hand, it is based on the semantics of the immediate conse-
quence operator and hence is not tied to any syntactic materi-
alisation procedure computing a representation of the canon-
ical model; on the other hand, it is parametrised by a class C
of datasets, where natural instantiations include the classes
of all datasets, all bounded datasets, or all punctual datasets.

Definition 1. Let Π be a program and α an ordinal num-
ber. The immediate consequence operator TΠ converges for
a dataset D in α steps if TαΠ (ID) = CΠ,D. Moreover, Π is
finitely materialisable for a class C of datasets if for each
D ∈ C operator TΠ converges in a finite number of steps.

For instance, our example program Π from Section 1 con-
sisting of rule ⊞1Bday(x )← Bday(x ) is not finitely mate-
rialisable (for any reasonable class of datasets). Indeed, TΠ

does not converge in finitely many steps for any dataset D
of the form {Bday(c)@%}, with c an arbitrary constant and
% an arbitrary interval. This is because the rule of Π is recur-
sive and involves a metric operator propagating facts to the
future. As we show next, recursion is a necessary condition
for a program to be not finitely materialisable.

Proposition 2. Non-recursive DatalogMTL programs are
finitely materialisable for every class of datasets.

Proof. We show the contrapositive. Assume that Π is not
finitely materialisable for some dataset class C. Then, there
is D ∈ C such that T kΠ(ID) 6= T k−1

Π (ID) for each k > 0.
Let k > 0; since T kΠ(ID) 6= T k−1

Π (ID), there is a relational
fact Mk@tk holding in T kΠ(ID) but not in T k−1

Π (ID). We
construct a sequence M1@t1, . . . ,Mk@tk of facts, where
each Mi is a relational atom, Mi@ti holds in T iΠ(ID) but
not in T i−1

Π (ID), and there is a rule in ground(Π) with
Mi−1 in the body and Mi in the head. Assume that Mi@ti
is given, for i ≥ 2, and we want to construct Mi−1@ti−1.
Since Mi@ti holds in T iΠ(ID) but not in T i−1

Π (ID), there is
r ∈ ground(Π) and t ∈ Q such that all body atoms of r hold
at t in T i−1

Π (ID) and the head holding at t entails Mi@ti. If
the body of r did hold at t in T i−2

Π (ID), then Mi@ti would
hold in T i−1

Π (ID), which raises a contradiction. Hence, there
is a relational atom M in the body of r, which holds at some
t′ in T i−1

Π (ID) but not in T i−2
Π (ID) (since i ≥ 2, we can

show that M 6= >). Thus, we let Mi−1@ti−1 be M@t′.
The existence of this sequence of facts implies that the de-

pendency graph of Π has a path of length at least k−1. Since
k is arbitrary, the graph is cyclic, and so, Π is recursive.
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The presence of recursion via metric atoms is, however,
not always harmful, and many recursive programs that are
interesting in practice are finitely materialisable.

Example 3. There is growing evidence that individuals vac-
cinated against COVID-19 who remain without symptoms 3
to 4 weeks following vaccination develop immunity. Further-
more, individuals with a negative test taken 3 to 4 weeks
after vaccination, or who were infected within the last 6
months (discounting the last ten days when they had no
symptoms) are also immune. Finally, those immune for the
last 5 days display a negative test result. These conditions
can be captured by a DatalogMTL program with the follow-
ing rules:

Immune(x)← NoSympt(x)S[21,28]Vaccinated(x),

Immune(x)← NegTest(x) ∧x[21,28]Vaccinated(x),

Immune(x)← x(10,183]Infected(x) ∧ ⊟[0,10]NoSympt(x),

NegTest(x)← ⊟[0,5]Immune(x).

Although the program is recursive (its dependency graph is
cyclic), it can be checked that the materialisation for any
dataset can be reached after one round of rule application.

In what follows we show that finitely materialisable pro-
grams are amenable to forward chaining reasoning on any
dataset within the relevant class, in the sense that forward
chaining constructs a dataset representing their canonical
model. The key observation is that, given a program Π and a
dataset D, we can always construct a dataset that represents
the interpretation resulting from applying once TΠ to ID.

Theorem 4. There is an algorithm that takes as an input
a program Π and a dataset D, and constructs a dataset D′
representing TΠ(ID).

Proof sketch. The algorithm performs the following steps:

1. Compute the set B of all ground body atoms (and their
subformulas) occurring in rules of ground(Π,D).

2. Construct a finite set B of metric facts satisfying the fol-
lowing: D |= B, and if D |= M@t for some M ∈ B and
t ∈ Q, then there exists % such that t ∈ % and M@% ∈ B.

3. Construct D′ by initially setting it to be D and then, for
each r ∈ ground(Π,D) which mentions some relational
atom in its head (otherwise r does not allow us do derive
any new facts), by adding to D′ facts as follows:
– Use B to compute a finite set Ir of intervals for which

all body atoms of r hold in ID.
– For each % ∈ Ir, compute the largest (with respect to

set inclusion) %′ such that H@% |= P (s)@%′, where H
is the head of r and P (s) the unique relational atom
in H . Add P (s)@%′ to D′.

The set B from Step 1 is constructed simply by scanning
ground(Π,D). The set B from Step 2 is constructed induc-
tively on the structure of metric atoms M in B. If M is >,
we add >@(−∞,∞) to B, and if M is relational, then for
each fact M@% in D, we add M@% to B. If M = x%M

′,
then for each fact M ′@%′ ∈ B, we compute the largest
%′′ such that M ′@%′ |= x%M ′@%′′ and we add x%M ′@%′′

Algorithm 1: Materialisation-based reasoning
Input: A program Π which is finitely materialisable

for a class C and a dataset D ∈ C
Output: A dataset D′

1 Assign D′ := D ;
2 loop
3 Assign Daux := D′ ;
4 Assign D′ := the dataset representing TΠ(ID′)

obtained by the algorithm from Theorem 4 ;
5 if Daux |= D′ then
6 Return D′

to B. If M = ⊟%M
′, we construct a set X of metric facts

by coalescing facts of the form M ′@%′ in B (coalescing
M ′@%1 and M ′@%2 yields M ′@%1 ∪ %2 if %1 ∪ %2 is an
interval); then, for each M ′@%′ ∈ X , we compute the
largest %′′ (if exists) such that M ′@%′ |= ⊟%M ′@%′′ and add
⊟%M

′@%′′ to B. If M = M1S%M2, then we construct—
as in the previous case—a set X by coalescing facts of the
formM1@%1 in B. For every pair of factsM1@%1 ∈ X1 and
M2@%2 ∈ B, we compute the largest interval %′′ (if it exists)
such that {M1@%1,M2@%2} |= M1S%M2@%′′ and we add
M1S%M2@%′′ to B. The construction for atoms with |, ⊞,
and U is analogous to the construction for x, ⊟, and S , re-
spectively. Note that B allows us to check in which intervals
bodies of rules from ground(Π,D) hold. The construction
of Ir from the Step 3 of the algorithm is obtained by scan-
ning facts in B, and given % ∈ Ir, we determine %′ from the
form of metric operators in the head of r.

The output D′ extends D with a finite set of relational
facts which are obtained by a single iteration of applying
rules from Π to D, and so, ID′ = TΠ(ID). The procedure
terminates: the constructions of B andD′ have finitely many
steps and in each step a finite number of facts are added.

Theorem 4 suggests a generic forward chaining reasoning
procedure as presented in Algorithm 1. In particular, given a
program Π which is finitely materialisable for a class C and
a datasetD ∈ C as an input, Algorithm 1 uses the procedure
from the proof of Theorem 4 to iteratively compute a (finite)
sequence of datasets D0,D1, . . . ,Dk, where D0 = D, each
Di represents the interpretation TΠ(IDi−1

), and Dk is the
output dataset D′ representing the canonical model CΠ,D.

Corollary 5. Algorithm 1 outputs a dataset representing the
canonical model of its input.

Note also that the termination of Algorithm 1 for finitely
materialisable programs implies that the canonical model of
such a program and any dataset can be finitely represented.

Corollary 6. For every program Π finitely materialisable
for a class C and for every D ∈ C there exists a dataset D′
which represents CΠ,D.

The converse, however, may not hold: programs admitting
a finite representation of their canonical model in conjunc-
tion with any dataset may not be finitely materialisable.
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Example 7. Consider a program Π = {P ← x[0,1]P} stat-
ing that, if P is true at some t, then it is true at the interval
[t, t+ 1]. Consider also D = {P@0}, stating that P is true
at 0. The canonical model of Π and D makes P true at each
t ≥ 0; thus, it can be finitely represented by a single fact
P@[0,∞). However, TΠ does not converge for D in any fi-
nite number of steps. Indeed, the first application of TΠ to
ID entails P@[0, 1], the second P@[0, 2], and so on.

In the remainder of this paper, we study the main decision
problems in our setting: finite materialisability with respect
to a class of datasets, and fact entailment over finitely ma-
terialisable programs. We focus on a fragment of bounded
DatalogMTL programs and the class of bounded datasets,
thus ensuring that all intervals mentioned in programs and
data have rational endpoints. This is a large fragment of
DatalogMTL for which reasoning is as hard as for the full
language—which can be shown by a slight modification of
an existing hardness proof (Brandt et al. 2018).

Proposition 8. Checking whether a bounded program and
a bounded dataset entail a bounded fact is ExpSpace-hard.

We leave for future work the investigation of these prob-
lems for unrestricted DatalogMTL programs and datasets, as
well as for other interesting fragments of DatalogMTL.

4 Checking Finite Materialisability
In this section we study checking finite materialisability of
bounded programs for the class of bounded datasets.

The restriction to bounded intervals in programs Π and
datasets D provides a useful characterisation of finite con-
vergence of TΠ for D in terms of the number of relational
facts over (Π,D)-intervals entailed by Π and D.

Lemma 9. Let Π be a bounded program and D a bounded
dataset. The operator TΠ converges for D in finitely many
steps if and only if Π and D entail finitely many relational
facts over (Π,D)-intervals.

Proof sketch. Assume that T kΠ(ID) = CΠ,D for some finite
k. Since Π is bounded, we can show that interpretations
T iΠ(ID) entail finitely many relational facts over (Π,D)-
intervals, for each i ∈ {0, . . . , k}. In particular, D is
bounded, so T 0

Π(ID) = ID entails finitely many relational
facts over (Π,D)-intervals; then we show that, if T iΠ(ID)

entails finitely many such facts, so does T i+1
Π (ID) and thus

eventually also T kΠ(ID), which is precisely CΠ,D.
Assume now that Π and D entail finitely many rela-

tional facts over (Π,D)-intervals, and so, the same holds for
T 0

Π(ID) = ID. We can show that if Tα+1
Π (ID) 6= TαΠ (ID),

for an ordinal α, then Tα+1
Π (ID) entails at least one more re-

lational fact over a (Π,D)-interval than TαΠ (ID). Hence, if
there was no finite α such that TαΠ (ID) = CΠ,D, then Π and
D would entail infinitely many relational facts over (Π,D)-
intervals, in direct contradiction with our assumption.

For instance, recall that the consequence operator TΠ of
program Π in Example 7 does not converge after finitely
many steps for the datasetD given there. Note that, although
CΠ,D can be finitely represented by the fact P@[0,∞), the

interval [0,∞) contains infinitely many (Π,D)-intervals and
hence, as stated in Lemma 9, Π and D entail infinitely many
facts over (Π,D)-intervals.

In the remainder of this section, we proceed as follows.

– In Section 4.1 we use Lemma 9 to show that a bounded
program Π is finitely materialisable for bounded datasets
if and only if TΠ converges in finitely many steps for a
specific critical dataset DΠ constructed from Π.

– Using the results from Section 4.1, we show in Sec-
tion 4.2 that finite materialisability of bounded programs
for bounded datasets is decidable in ExpTime.

– In Section 4.3, we propose a sufficient condition for fi-
nite materialisability in our setting that can be checked in
coNP, and even in NL for certain types of programs.

4.1 The Critical Dataset
We next show that finite materialisability for bounded pro-
grams and datasets can be solved by focusing on a specific
critical dataset. The idea of constructing a critical dataset has
been exploited to establish both decidability and undecid-
ability results for a number of reasoning problems, such as
deciding universal termination of various chase procedures
for extensions of Datalog (Gogacz and Marcinkowski 2014;
Cuenca Grau et al. 2013; Marnette and Geerts 2010).

In our setting, however, the temporal domain needs to be
taken into account, which makes the definition of the critical
dataset more involved. In what follows, for a program Π, we
let `Π be the sum of all rational endpoints of intervals men-
tioned in Π, or 0 if Π does not mention any such endpoints.

Definition 10. The critical dataset DΠ for a bounded pro-
gram Π is the set of all relational facts of the form
P (s)@[0, 2`Π], where P occurs in Π and s mentions only
constants from Π extended with a single fresh constant cΠ.

All facts in the critical datasetDΠ are over the same inter-
val [0, 2`Π], and hence DΠ has exponentially many facts in
the size of Π. The choice of the interval [0, 2`Π] is justified
by the technical lemma given next. For an interpretation I
and an interval %, we define the projection I |% of I over %
as the interpretation that coincides with I on % and makes
all relational atoms false outside %. Then, Lemma 11 shows
that if a bounded program Π and a datasetD entail infinitely
many relational facts over (Π,D)-intervals, then so do Π and
any dataset D′ representing a projection of the canonical in-
terpretation CΠ,D over some interval of length 2`Π. Hence,
it suffices to include in the critical dataset facts over any in-
terval of length 2`Π. In what follows, for a dataset D we let
t−D and t+D be the minimal and maximal numbers mentioned
as interval endpoints inD, or 0 if there are no such numbers.

Lemma 11. Let Π be a bounded program, D a bounded
dataset, % a closed interval of length 2`Π, and let D′ be any
dataset representing the projection of CΠ,D over %. Then:

1. If %+ ≥ t+D, then CΠ,D |(%+,∞)= CΠ,D′ |(%+,∞).

2. If %− ≤ t−D, then CΠ,D |(−∞,%−)= CΠ,D′ |(−∞,%−).

Proof sketch. Both statements can be proved analo-
gously. We focus on the first one, and thus assume that
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%+ ≥ t+D. The fact that CΠ,D′ |(%+,∞)⊆ CΠ,D |(%+,∞),
holds since CΠ,D′ ⊆ CΠ,D follows from the defini-
tion of D′, which implies CΠ,D |= D′. To show that
CΠ,D |(%+,∞)⊆ CΠ,D′ |(%+,∞) it suffices to prove induc-
tively that, for every ordinal α and relational fact M@t
with t > %+, if TαΠ (ID) |= M@t, then TαΠ (ID′) |= M@t.
The base case holds trivially since T 0

Π(ID) 6|= M@t,
due to the fact that T 0

Π(ID) = ID and t > t+D. In the
inductive step for a successor ordinal α+ 1, we assume that
Tα+1

Π (ID) |= M@t but TαΠ (ID) 6|= M@t. Therefore, there
is a rule M ′ ←M1 ∧ · · · ∧Mn in ground(Π,D) and a time
point t′ such that TαΠ (ID) |= {M1@t′, . . . ,Mn@t′}
and M ′@t′ |= M@t. First, we observe that since
TαΠ (ID) |= {M1@t′, . . . ,Mn@t′}, there exists D′′ such
that TαΠ (ID) |= D′′ and D′′ |= {M1@t′, . . . ,Mn@t′};
moreover, by the definition of `Π we can show the existence
of such D′′ which mentions only intervals contained in
[t′ − `Π, t′ + `Π]. Since M ′@t′ |= M@t, the definition
of `Π implies |t− t′| ≤ `Π. Hence, the intervals men-
tioned in D′′ are contained in [t− 2`Π, t+ 2`Π]. As
t > %+ and %+ − %− ≥ 2`Π, these intervals are con-
tained in [%−, t + 2`Π]. Thus, by the inductive assumption
and CΠ,D |%= CΠ,D′ |%, we get Tα+1

Π (ID′) |= M@t,
as required. Finally, we note that for a limit or-
dinal α the inductive step is straightforward since
TαΠ (ID) =

⋃
β<α T

β
Π(ID).

Using Lemmas 9 and 11, we can now show that checking
finite materialisability of Π is tantamount to checking finite
convergence of TΠ for the critical dataset associated to Π.
Theorem 12. A bounded program Π is finitely materialis-
able for the class of bounded datasets if and only if TΠ con-
verges for DΠ in finitely many steps.

Proof sketch. The “if” direction holds since DΠ is a
bounded dataset. Next, we prove the contrapositive of the
“only if” implication. Let D be a bounded dataset such that
TΠ does not finitely converge for D. By Lemma 9, Π and D
entail infinitely many relational facts over (Π,D)-intervals
and, in particular, infinitely many such facts located to the
right of t+D or to the left of t−D. We assume the former case
(the proof for the latter case is symmetric) and show that
TΠ does not converge for DΠ in finitely many steps. For
this, we successively transform D such that Π and each
of the constructed datasets entail infinitely many facts over
ruler-intervals. First, let D′ be a dataset which entails ex-
actly those relational facts M@t, for which CΠ,D |= M@t
and t ∈ [t+D − 2`Π, t

+
D]. By Statement 1 from Lemma 11, Π

and D′ entail infinitely many relational facts over (Π,D′)-
intervals. If we add to D′ more facts or if we shift all in-
tervals in D′ by the same distance, still infinitely many rela-
tional facts over ruler-intervals will be entailed. In particular,
this is the case for a dataset D′′ consisting of all relational
facts M@[0, 2`Π] with M occurring in ground(Π,D). Ob-
serve that DΠ can be obtained from D′′ by replacing each
relational atom M with a relational atom M [cΠ] where con-
stants not occurring in Π are replaced with a single fresh
constant cΠ. We can show inductively that for every ordi-
nal α and for every metric fact M@t, if TαΠ (ID′′) |= M@t,

then TαΠ (IDΠ) |= M [cΠ]@t. Hence, Π and DΠ entail in-
finitely many relational facts over (Π,DΠ)-intervals. Thus,
by Lemma 9, TΠ does not converge for DΠ in any finite
number of steps.

4.2 Complexity Upper Bounds
By Theorem 12, checking if Π is finitely materialisable for
bounded datasets reduces to checking whether TΠ finitely
converges for the critical dataset DΠ. The following lemma
suggests a method to check for this. In particular, it shows
that a finitely materialisable bounded program Π and a
bounded dataset D cannot entail facts over time points that
are “too far away” to the left of t−D or to the right of t+D.
Hence, if the applications of TΠ to ID ever yield one such
fact, TΠ does not converge for D in finitely many steps.

Lemma 13. and let D be a bounded dataset. If Π is
finitely materialisable for the class of bounded datasets, and
(Π,D) |= M@t with M a ground relational atom, then
t ∈ [t−D − 3pΠ`Π, t

+
D + 3pΠ`Π], where pΠ is the number of

predicates mentioned in Π.

Proof sketch. Let D′ contain all relational facts M ′@%′

with M ′ in ground(Π,D) and %′ a (Π,D)-interval within
[t−D, t

+
D]. Since D′ |= D, t−D′ = t−D, and t+D′ = t+D, it suffices

to show that t ∈ [t−D − 3pΠ`Π, t
+
D + 3pΠ`Π], for each M@t

entailed by Π and D′. Let . . . , %−1, %0, %1, . . . be the se-
quence of consecutive (Π,D′)-intervals with %0 = [t+D, t

+
D],

and let . . . ,R−1,R0,R1, . . . be the sequence of sets of
the relational facts entailed by Π and D′ over these inter-
vals. Each interval [t, t+ `Π), with t in the (Π,D′)-ruler,
contains k = d · `Π

div(Π) (Π,D′)-intervals, with d the number
of (Π,D′)-intervals contained in [t+D, t

+
D + div(Π)). Hence,

we need to show that Ri = ∅ whenever i < m− 3kpΠ or
i > 3kpΠ, for m such that %m = [t−D, t

−
D]. These cases have

symmetric proofs, so we focus on the case with i > 3kpΠ.
We can show inductively that, for each ordinal α, ground

relational atom P (s), and t ≥ t+D: if TαΠ (ID′) |= P (s)@t,
then TαΠ (ID′) |= P (s′)@[t+D, t], for each tuple s′ of con-
stants fromD′ of suitable arity. Hence,R0 ⊇ R1 ⊇ . . . and
for all i ≥ 0, if P (s) ∈ Ri, then P (s′) ∈ Ri for each s′. The
latter implies that R0,R1, . . . has at most pΠ distinct non-
empty sets, and hence we need to show that there is no i ≥ 0
such that Ri = Ri+1 = · · · = Ri+3k is a sequence of non-
empty sets. Towards a contradiction assume there is such i.
If %i is punctual, we let j = i and otherwise j = i+ 1. By
the definition, k ≥ 2, so j + 2k + 1 ≤ i + 3k, and thus
Rj = · · · = Rj+2k+1. Now, for each i ∈ Z we letDi be the
set of relational factsM@%i such thatM ∈ Ri. Observe that
% = %j ∪ · · · ∪ %j+2k is a closed interval of length 2`Π and
%+ ≥ t+DΠ

. By Lemma 11, Π and Dj ∪ · · · ∪ Dj+2k entail
Dj+2k+1. Since Rj = · · · = Rj+2k+1, further applications
of Lemma 11 allow us to show thatRj+2k+1 = Rj+2k+2 =
. . . is an infinite sequence of sets. Since these sets are non-
empty, Π and D′ entail infinitely many relational facts over
(Π,D′)-intervals, so Lemma 9 yields a contradiction.

Algorithm 2 provides a decision procedure for finite ma-
terialisability by exploiting the results in Theorem 12 and
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Algorithm 2: Checking finite materialisability
Input: A bounded program Π
Output: A truth value

1 Construct DΠ and assign D′ := DΠ ;
2 Assign % = [−3pΠ`Π, (3pΠ + 2)`Π] ;
3 loop
4 Assign Daux := D′ ;
5 Assign D′ := the dataset representing TΠ(ID′)

obtained by the algorithm from Theorem 4 ;
6 if there is M@%′ ∈ D′ with %′ 6⊆ % then
7 Return false
8 else if Daux |= D′ then
9 Return true

Lemma 13. On input Π, the algorithm first constructs the
critical dataset DΠ and computes the instantiation % of the
interval mentioned in Lemma 13. It then proceeds, simi-
larly to Algorithm 1 in Section 3, by iteratively computing
datasets representing the successive applications of TΠ un-
til either a fact outside % is derived (in which case false is
returned) or otherwise until a fixpoint is reached (in which
case true is returned). Correctness follows from Theorem 12
and Lemma 13; furthermore, Algorithm 2 terminates since,
eventually, either the dataset D′ computed within the loop
will entail all derivable facts over % or it will contain a fact
involving an interval not in %. A more detailed analysis also
reveals that Algorithm 2 can be made work in exponential
time, thus obtaining the result in the following theorem.

Theorem 14. Checking whether a bounded program is
finitely materialisable for bounded datasets is in ExpTime.

Proof sketch. The procedure uses Algorithm 2, whose cor-
rectness follows from Theorem 12 and Lemma 13. We next
argue that Algorithm 2 terminates in exponential time. The
algorithm constructs DΠ and % in Lines 1 and 2, which is
clearly feasible in exponential time. We argue that an itera-
tion of the loop in Lines 3–9 takes at most exponential time
and computes D′ of exponential size. Consider the ith iter-
ation of the loop, where D′ represents T iΠ(IDΠ

), and was
constructed by applying i times the algorithm from Theo-
rem 4. An analysis of this algorithm shows that, for each
M@%′ ∈ D′, atomM occurs in ground(Π,DΠ) and the end-
points of %′ belong to the (Π,DΠ)-ruler. Moreover, %′ ⊆ %
since otherwise Algorithm 2 would have stopped in the pre-
vious loop iteration. Hence, the number of facts in D′ is
bounded by A · B, with A the number of atoms mentioned
in ground(Π,DΠ) and B the number of (Π,DΠ)-intervals
contained in %. Both A and B are of exponential size since
A = pΠ · (con+ 1)ar, where con is the number of constants
in Π and ar is the maximum predicate arity in Π, whereas
B = 1 + 2(6+2pΠ)`Π

div(Π) . Since D′ is exponentially big, we can
show that the algorithm from Theorem 4 constructs in expo-
nential time a dataset representing TΠ(ID′) in Line 5. The
condition in Line 6 can be checked in exponential time, and
so can be the condition in Line 8, by checking if for each
M@%′ ∈ D′, there exist M@%1, . . . ,M@%k in Daux such

that %′ ⊆ %1 ∪ · · · ∪ %k. Finally, the main loop goes through
exponentially many iterations: the operation in Line 5 ex-
tendsD′ to a dataset entailing additional relational facts over
(Π,DΠ)-intervals, and there are at mostA·B such facts.

4.3 Sufficient Conditions
We next propose a sufficient condition for finite material-
isability of bounded programs. Our condition is based on
generalising the notion of a program’s dependency graph
(see Section 2) to metric dependency graph, where edges
representing dependencies between predicates are labelled
with intervals obtained from the program. Acyclicity of the
dependency graph used to define non-recursive programs is
then generalised to allow for certain cycles. The construction
of the metric dependency graph for program Π proceeds in
two steps. First, we transform Π into a propositional pro-
gram by replacing each occurrence of a predicate P (s) with
a propositional letterXP and strengthen it by rewriting away
metric operators other than| andx in rule bodies. Second,
we construct a graph for the transformed program, where
intervals labelling edges are derived from its rules.

We start by defining the strengthening transformation.
Definition 15. The strengthening str(Π) of a ground pro-
gram Π is obtained from Π by exhaustively performing the
following replacements in rule bodies, for any interval % and
metric atoms M1 and M2: (i) each occurrence of ⊟% and ⊞%
is replaced with x% and |% respectively, (ii) each occur-
rence of M1S%M2 is replaced with x%M2, and (iii) each
occurrence of M1U%M2 is replaced with|%M2.

It is straightforward to see that the order in which the re-
placement rules (i)–(iii) are applied is immaterial to the re-
sult of the transformation, and hence str(Π) is well defined.
The following proposition shows that the transformation in-
deed results in a logical strengthening of the program.
Proposition 16. Let Π be a ground program, let D be a
dataset, and let M@% be a metric fact. If (Π,D) |= M@%,
then (str(Π),D) |= M@%.

Proof. The strengthening transformation leaves rule heads
unaltered. We argue that if the body of a rule r ∈ Π holds at
some time point t, then the body of the corresponding rule in
str(Π) also holds at t. Indeed, simply observe that, by the se-
mantics of metric operators, ⊟%M |= x%M , ⊞%M |= |%M ,
M1S%M2 |= x%M2, and M1U%M2 |= |%M2.

We are ready to define metric dependency graphs.
To determine the intervals labelling edges we intro-
duce the operations %+ %′ = {t+ t′ | t ∈ % and t′ ∈ %′}
and −% = {−t | t ∈ %}, for % and %′ arbitrary intervals.
Definition 17. Let Π be a bounded program and Π′ be ob-
tained form Π by replacing each occurrence of a relational
atom P (s) with a proposition XP uniquely associated to P .

The metric dependency graph of Π is the edge-labelled di-
rected multigraph GΠ with the nodes and edges given next:
– A vertex vP for each proposition XP in str(Π′).
– An edge (vP , vQ) if there is a rule in str(Π′) where XQ

occurs in the head M ′ and XP occurs in a body atom
M . Let ⊗i%i for 1 ≤ i ≤ k, be all occurrences of metric
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Figure 1: Metric dependency graphs for the programs from Exam-
ple 3 (a) and Example 20 (b)

operators in M ′ and let ⊗i%i for k + 1 ≤ i ≤ k + m be
all occurrences of metric operators in M ; then, the edge
is labelled with % = [0, 0] + %̌1 + · · ·+ %̌k+m, where

%̌i=

{
%i if i≤k and ⊗i=⊞, or i>k and ⊗i=x,
−%i if i≤k and ⊗i=⊟, or i>k and ⊗i=|.

The interval weight of a path inGΠ is [0, 0] + %1 + · · ·+ %n
where %1, . . . , %n are intervals labelling the edges of the
path.

Note that the interval weight of a finite path in GΠ is a
bounded interval since each edge label is bounded and the
interval weight of a path with a single vertex is [0, 0]. The
metric dependency graph of the program from Example 3 is
depicted in Figure 1(a).

The following lemma establishes the key connection be-
tween facts that are entailed by a program Π and a datasetD
and reachability in the metric dependency graph GΠ.

Lemma 18. Let Π be a bounded program, D a
bounded dataset, and P ′(s′)@t′ a relational fact. If
(Π,D) |= P ′(s′)@t′, there is P (s)@% ∈ D and a path from
vP to vP ′ inGΠ with interval weight %′ such that t′ ∈ %+%′.

Proof sketch. We show, for each ordinal α, that
TαΠ (D) |= P ′(s′)@t′ implies the existence of P (s)@% ∈ D
and a path in GΠ from vP to vP ′ with interval weight
%′ such that t′ ∈ %+ %′. The proof is inductive on α.
In the base case T 0

Π(D) = ID, so T 0
Π(D) |= P ′(s′)@t′

implies that there is a fact P ′(s′)@% ∈ D with t′ ∈ %. The
required path in GΠ consists of a single vertex vP ′ : its
weight is [0, 0] and t′ ∈ % + [0, 0]. For the inductive step,
assume Tα+1

Π (D) |= P ′(s′)@t′ and TαΠ (D) 6|= P ′(s′)@t′.
Hence, there exist r ∈ ground(Π) and t such that the
body of r holds at t in TαΠ (D), and the head holding at t
entails P ′(s′)@t′. By the proof of Proposition 16, this also
holds for the corresponding rule M ′ ←M1 ∧ · · · ∧Mn

in str({r}), where M ′ is of the form ⊗1
%1
· · · ⊗k%k P

′(s′)

and M1 is of the form ⊗k+1
%k+1
· · · ⊗k+m

%k+m
P1(s1) for P1(s1)

a relational atom, ⊗1 · · · ⊗k a sequence of operators ⊟
and ⊞, and ⊗k+1 · · · ⊗k+m a sequence of operators x
and |. By Definition 17, GΠ has an edge e from vP1

to
vP ′ , labelled with [0, 0] + %̌1 + · · ·+ %̌k+m, and we can

show that t′ − t ∈ [0, 0] + %̌1 + · · · + %̌k. Now, since
TαΠ (D) |= ⊗k+1

%k+1
· · · ⊗k+m

%k+m
P1(s1)@t, there is t1 such that

TαΠ (D) |= P1(s1)@t1 and t−t1 ∈ [0, 0]+%̌k+1+· · ·+%̌k+m.
By the inductive assumption, there exist P (s)@% ∈ D and
a path in GΠ from vP to vP1

with interval weight %′ such
that t1 ∈ %+ %′. Extending this path with an edge e yields a
path with weight %′′ = %′ + %̌1 + · · · + %̌k+m, and we can
show that t′ ∈ %+ %′′. The inductive step for a limit ordinal
α is straightforward since TαΠ (D) =

⋃
β<α T

β
Π(D).

By Lemma 18, if Π and D entail facts P ′(s′)@t′ for arbi-
trarily large/small t′ (thus, Π is not finitely materialisable),
there must be a cycle in GΠ with non-zero interval weight.
Otherwise, t′ could not have been arbitrarily large/small.
Our sufficient condition is based on this observation.
Definition 19. A bounded program Π is MTL-acyclic if each
cycle in GΠ has interval weight [0, 0].

Non-recursive bounded DatalogMTL programs as well as
all plain Datalog programs are trivially MTL-acyclic. Fur-
thermore, so are programs exhibiting “safe” temporal recur-
sion, as shown by the following example.
Example 20. It is believed that individuals who have been
neither vaccinated against COVID-19 in the last year nor in-
fected for the last half a year are susceptible to COVID-19.
Usually, a susceptible individual who takes off their mask
and remains in contact with an infected person for 2 hours,
gets infected. Individuals over 65 develop first symptoms 5
days after getting infected. It is also estimated that for indi-
viduals who develop first symptoms of COVID-19, the source
of infection should be looked for on the 5th day preceding
the current one. A DatalogMTL program representing these
dependencies consists of the following rules:

Susc(x)← ⊟[0,365]NotVacc(x) ∧ ⊟[0,183]NotInf(x),

GetsInf(x)← ContInf(x, y)S 1
12

NoMask(x) ∧ Susc(x),

FirstSympt(x)← ⊟5GetsInf(x) ∧ Over65(x),

⊟5GetsInf(x)← FirstSympt(x).

The metric dependency graph of this program is given in
Figure 1(b). It has one simple cycle and its weight is [0, 0],
so the program is MTL-acyclic.

Now, we show that MTL-acyclicity provides a sufficient
condition for finite materialisability.
Theorem 21. Bounded MTL-acyclic programs are finitely
materialisable for the class of bounded datasets.

Proof. We show the contrapositive. Let Π be a bounded
program and D a bounded dataset such that TΠ does not
converge for D in finitely many steps. By Lemma 9, Π
and D entail infinitely many relational facts over (Π,D)-
intervals. Let %Π be the sum of all labels in GΠ (or [0,0] if
GΠ has no edges). Thus, there exists a fact P ′(s′)@t′ with
t′ /∈ [t−D − %

−
Π , t

+
D + %+

Π] such that (Π,D) |= P ′(s′)@t′. We
will focus on the case t′ > t+D + %+

Π (the case t′ < t−D − %
−
Π

has an analogous proof). Since (Π,D) |= P ′(s′)@t′, by
Lemma 18, there are P (s)@% ∈ D and a path σ in GΠ from
vP to vP ′ with interval weight %′ such that t′ ∈ % + %′. As
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t′ > t+D + %+
Π and t+D ≥ %+, we have t′ > %+ + %+

Π. On
the other hand, t′ ∈ % + %′ implies %+ + %′+ ≥ t′, and
so, %′+ > %+

Π. Let now σ′ be any path obtained from σ by
deleting all cycles whose interval weights are [0, 0]; note that
removing such cycles does not change the interval weight %′
of the path. However, since %′+ > %+

Π, there needs to be a
cycle in σ′. By the construction, the interval weight of this
cycle is not [0, 0], so Π is not MTL-acyclic.

Observe, however, that not every finitely materialisable
program is MTL-acyclic. For instance, this is the case for
the program presented in Example 3. Indeed, the metric de-
pendency graph of this program has a cycle with non-zero
weight [0, 5] as depicted in Figure 1(a).

We next analyse the complexity of checking whether a
program is MTL-acyclic, and show that the check is feasi-
ble in coNP. Additionally, the complexity drops to NL for
forward propagating programs (Wałęga et al. 2019), where
x, ⊟, and S are the only metric operators allowed in rule
bodies and ⊞ the only operator allowed in heads. The same
holds for the backwards propagating programs, where|, ⊞,
and U are allowed in rule bodies and only ⊟ is allowed in
heads.
Theorem 22. Checking whether a bounded program is
MTL-acyclic is feasible in coNP, and in NL if the program
is additionally either forward or backwards propagating.

Proof. Let Π be bounded. If Π is not MTL-acyclic, thenGΠ

has a cycle, and in particular a simple cycle, with interval
weight distinct from [0, 0]. To check if Π is not MTL-acyclic
we construct GΠ, guess its path, and verify that it is a cycle
with interval weight different from [0, 0]. We argue that this
is feasible in NP. Clearly, GΠ can be constructed in polyno-
mial time and its simple cycle can be guessed in NP. Ver-
ifying that the guessed path is a cycle with interval weight
distinct from [0, 0] is also feasible in polynomial time since,
essentially, it amounts to adding rational numbers given in
binary. Hence, checking if Π is MTL-acyclic is in coNP. If
Π is forward propagating, then all intervals labelling edges
ofGΠ are positive. Hence, Π is not MTL-acyclic ifGΠ has a
simple cycle with at least one edge labelled with an interval
distinct from [0, 0]. Such a path can be guessed and verified
vertex-by-vertex in NL. Hence, by coNL = NL, checking if
Π is MTL-acyclic is in NL. If Π is backwards propagating,
intervals labelling edges of GΠ are negative. Thus, checking
if Π is MTL-acyclic can be done analogously to the check
for forward propagating programs, and so, it is in NL.

Interestingly, our condition in Definition 19 characterises
finite materialisability for a propositional DatalogMTL◇core
fragment of bounded DatalogMTL (Wałęga et al. 2020b),
where each rule contains a single body atom and no opera-
tors other thanx and| are allowed in rules.
Theorem 23. A bounded propositional DatalogMTL◇core
program is finitely materialisable for the class of bounded
datasets if and only if it is MTL-acyclic.

Proof. The forward direction follows directly from Theo-
rem 21. For the other direction let Π be a a bounded propo-
sitional core program which is not MTL-acyclic. Hence,GΠ

has a cycle σ whose interval weight is not [0, 0]. We can
show that if GΠ has an edge from vP to vP ′ with label %,
then, for any time point t, we have (Π, {P@t}) |= P ′@t+%.
Indeed, if there is such an edge, then Π needs to have a rule
P ′ ← ⊗1

%1
· · · ⊗m%m P such that ⊗1 · · · ⊗m is a sequence of

the operatorsx and|, whereas % = [0, 0] + %̌1 + · · ·+ %̌m.
An application of this rule to P@t derives P ′@t + %. Next,
let %σ be the interval weight of σ, let vQ be a vertex
in σ, and let D = {Q@0}. By the previous statement,
(Π,D) |= Q@0 + %σ . Since %σ is not [0, 0], there is some
tσ ∈ %σ distinct from 0 such that (Π,D) |= Q@tσ . Thus, for
any integer i ≥ 0, we have (Π,D) |= Q@i · tσ , so Π and D
entail infinitely many relational facts over (Π,D)-intervals;
we can now apply Lemma 9 to complete the proof.

5 Fact Entailment
We now focus on the complexity of reasoning over finitely
materialisable bounded programs. In particular, we show
that fact entailment in this setting is ExpTime-complete (in
combined complexity), and so no harder than fact entailment
for plain Datalog. The upper bound is obtained from Algo-
rithm 1 which, by Lemma 13, terminates on finitely materi-
alisable programs in exponentially many steps.

Theorem 24. Checking whether a finitely materialisable
bounded program and a bounded dataset entail a fact over
a bounded interval is ExpTime-complete.

Proof. The lower bound follows by a straightforward re-
duction from fact entailment in plain Datalog, which is
ExpTime-complete (Dantsin et al. 2001). For the upper
bound, assume that we want to check if a bounded program
Π, which is finitely materialisable for bounded datasets, and
a bounded datasetD entail a relational factM@%, with some
bounded %. To this end, we can use Algorithm 1 to construct
a dataset D′ representing the canonical interpretation CΠ,D
and check if D′ |= M@%. By Lemma 13, all relational facts
entailed by CΠ,D lie within [t−D − 3pΠ`Π, t

+
D + 3pΠ`Π].

Since this interval contains exponentially many (Π,D)-
intervals, we can use the same arguments as in the proof of
Theorem 14 to show that the algorithm constructs D′ in ex-
ponential time. Finally, we observe that D′ |= M@% if and
only if there are facts M@%1, . . . ,M@%k in D′ such that
% ⊆ %1 ∪ · · · ∪ %k. Clearly, the latter can be checked in ex-
ponential time.

6 Conclusions and Future Work
We have proposed and studied a class of DatalogMTL pro-
grams that are naturally amenable to materialisation-based
reasoning via scalable forward chaining techniques. We see
many avenues for future work. From a theoretical stand-
point we aim to extend our results to (i) include also un-
bounded datasets, (ii) study data complexity for reasoning
over finitely materialisable programs, and (iii) consider other
fragments of DatalogMTL identified in the literature. From
a practical perspective, we plan to implement our material-
isation techniques for DatalogMTL and combine them with
automata-based approaches known from the literature.
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