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Abstract

We consider the problem of weighted first-order model count-
ing (WFOMC): given a first-order sentence ϕ and domain
size n ∈ N, determine the weighted sum of models of ϕ
over the domain {1, . . . , n}. Past work has shown that any
sentence using at most two logical variables admits an algo-
rithm for WFOMC that runs in time polynomial in the given
domain size (Van den Broeck 2011; Van den Broeck, Meert,
and Darwiche 2014). In this paper, we extend this result to
any two-variable sentence ϕ with the addition of a tree axiom,
stating that some distinguished binary relation in ϕ forms a
tree in the graph-theoretic sense.

1 Introduction
Given a first-order sentence ϕ and domain size n ∈ N, the
first-order model counting (FOMC) task is to determine
the number of models of ϕ over the domain {1, . . . , n}.
Its weighted variant, weighted first-order model counting
(WFOMC), assigns each predicate in the signature of ϕ to
real-valued positive and negative weights, and asks for the
weighted sum of all models of ϕ.

As a natural generalization of its propositional counter-
part weighted model counting (WMC), inference and learn-
ing problems in statistical-relational models such as Markov
logic networks (Richardson and Domingos 2006) and prob-
abilistic logic programs (Fierens et al. 2015) are reducible
to WFOMC (Van den Broeck, Meert, and Darwiche 2014).
In addition, several problems in enumerative combinatorics
enjoy a straightforward reduction to FOMC, as long as the
characterizing properties of the structure in question can be
described by a first-order logic sentence. For example, set-
ting ϕ = ∀x∃y(E(x, y) ∨ E(y, x)) ∧ ∀x¬E(x, x) models
directed graphs with no isolated vertices, and the FOMC
of ϕ on n gives the number of such labelled graphs with
n nodes. A common thread in all of these applications is
that one typically has some fixed sentence ϕ, and wants to
understand how the complexity of computing the (weighted)
first-order model count grows with the domain size n, speci-
fied as a unary input. This corresponds broadly to the notion
of data complexity from the databases and finite model theory
literature (Vardi 1982).

In a seminal result, Van den Broeck (2011) and Van den
Broeck, Meert, and Darwiche (2014) proved that the data
complexity of WFOMC for any sentence in the two-variable

fragment of first-order logic, FO2, is in the complexity class
FP. This proof, initially split across the two papers, was
later consolidated by Beame et al. (2015). The authors of the
latter paper also exhibited a three-variable sentence for which
the data complexity of WFOMC is #P1-complete, thereby
giving a complete characterization of the data complexity for
WFOMC in terms of the number of variables in the sentence.

In this paper, we extend the FP upper bound result beyond
FO2 to allow for a feature that is inexpressible in first-order
logic (Libkin 2004, Chapter 3.6): a tree axiom, stating that
some distinguished binary relation in the sentence forms a
tree in the corresponding graph of any model. To do this,
we use a tool from the world of graph theory: the weighted
version of Kirchhoff’s matrix tree theorem (Chaiken and
Kleitman 1978), which, roughly speaking, states that the
weighted sum of all spanning trees of a graph can be quickly
computed as the determinant of any minor of the graph’s
Laplacian matrix.

This extension to tree axioms allows one to model sev-
eral notable problems in enumerative combinatorics on trees,
especially when combined with recent work allowing for car-
dinality constraints and counting quantifiers (Kuzelka 2021):
for example, we may now efficiently answer questions like
“how many labelled rooted trees on n nodes have exactly
(resp. at most, at least) k leaves”? We show some experimen-
tal results of our approach on these types of questions near
the end of this paper.

There are also interesting implications for probabilistic
inference. Inference algorithms that run efficiently in the
input domain size underpin the research field of lifted infer-
ence, which aims to exploit high-level structure for faster
inference in graphical models. Using the results presented
here, we are now able to efficiently deal with expressions that
state, for example, that possible worlds that are “tree-like”
are more likely to occur in the context of a Markov logic
network. We later explore some preliminary applications
of our results to Markov logic networks in this spirit. We
also note that many real-world constructs are naturally mod-
elled as trees: for example, paths are trees where every node
has at most one child. It is not difficult to imagine Markov
logic networks in which we are interested in computing the
probabilities of paths along some route, subject to certain
constraints modelled by the network.
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2 Related Work
This work follows a long line of research in lifted in-
ference on statistical-relational models. Many such pa-
pers have focused on operating on first-order versions of
graphical models directly (Poole 2003; Milch et al. 2008;
Taghipour et al. 2013; Braun and Möller 2016). On the other
hand, a separate line of work has introduced WFOMC as
a natural extension of its propositional counterpart WMC,
and has shown how inference in the first-order models
mentioned above can be reduced to WFOMC (Van den
Broeck et al. 2011). Within this framework, an effort has
been undertaken to understand which fragments of first-
order logic allow for tractable inference. The most inter-
esting results for us in the context of this paper are the
tractability of two-variable logic (Van den Broeck 2011;
Van den Broeck, Meert, and Darwiche 2014) along with
its extension to functionality constraints (Kuusisto and Lutz
2018) and more recently counting quantifiers (Kuzelka 2021),
as well as the fragments S2FO2 and S2RU (Kazemi et al.
2016).

Notably, all existing work we are aware of in the lifted
inference literature has focused on identifying tractable frag-
ments of first-order logic in the strict sense, rather than con-
sidering extensions that allow for representing properties
beyond what is expressible in first-order logic. In this paper,
we take an important first step past this barrier by allowing
for the expression of tree axioms.

However, we do note that languages going “beyond”
the expresiveness of first-order logic have been investi-
gated in other contexts. Since two-variable logic over
finite trees is equivalent in expressive power to naviga-
tional XPath, a popular query language for XML docu-
ments, the satisfiability problem on this language has re-
ceived attention in the logic literature (Benaim et al. 2016;
Charatonik and Witkowski 2013). Similarly, in the world
of probabilistic databases (closely related to asymmetric
WFOMC, briefly discussed in the following section), re-
sults have been shown for more expressive languages. For
instance, query evaluation for the class of homomorphism-
closed queries on probabilistic graphs has been shown to
admit a dichotomy between polytime and #P-hardness de-
pending on the query in question (Amarilli and Ceylan 2020;
Dalvi and Suciu 2012). In particular, this class encompasses
negation-free disjunctive Datalog as well as regular path
queries. Extending existing (either lower or upper bound)
results for WFOMC to richer languages like these remains
an open problem.

3 Background
In this section, we give some background on first-order logic
and the WFOMC problem, as well as a brief review of the
graph theory needed for the paper.

3.1 First-order Logic
Preliminaries We deal with the function-free, finite do-
main fragment of first-order logic. An atom of arity k takes
the form P (x1, . . . , xk), where P/k comes from a vocabu-
lary of predicates (also called relations), and each argument

xi is a logical variable from a vocabulary of variables. A
literal is an atom or its negation. A formula is formed by
connecting one or more literals together using conjunction
or disjunction. A formula may optionally be surrounded by
one or more quantifiers of the form ∃x or ∀x, where x is a
logical variable. A logical variable in a formula is said to be
free if it is not bound by any quantifier. A formula with no
free variables is called a sentence. A structure A interprets
each predicate in the formula over a domain; we denote the
restriction of A to a predicate Ri with ARi . We follow the
usual semantics of first-order logic for deciding whether a
structure satisfies (is a model of) a formula.

WFOMC We are now ready to formally define first-order
model counting along with its weighted counterpart.
Definition 1. The first-order model count (FOMC) of a sen-
tence ϕ over a domain of size n is defined as:

FOMC(ϕ, n) = |modelsn(ϕ)|
where modelsn(ϕ) denotes the set of all models of ϕ over the
domain ∆ = {1, . . . , n}.
The weighted first-order model count of a sentence is defined
in terms of weightings on the predicates. Note that since these
weightings are defined on the predicate level, all groundings
of the same predicate get the same weight. This corresponds
to symmetric WFOMC. The case in which every possible
ground atom in an interpretation is instead annotated with an
individual weight corresponds to asymmetric WFOMC and is
commonly associated with probabilistic databases, which is
beyond the scope of this paper. We instead refer the interested
reader to (Gribkoff, Van den Broeck, and Suciu 2014) for an
overview of that case.
Definition 2. Denote the set of predicates appearing in a
sentence ϕ by Pϕ. A weighting on ϕ is a pair of mappings
w : Pϕ → R and w̄ : Pϕ → R.
Definition 3. Let (w, w̄) be a weighting on a sentence ϕ.
The weighted first-order model count (WFOMC) of ϕ over a
domain of size n under (w, w̄) is:

WFOMC(ϕ, n,w, w̄) =
∑

µ∈modelsn(ϕ)

∏
L∈µT

w(pred(L))·

∏
L∈µF

w̄(pred(L))

where µT denotes the set of true ground atoms in the model µ,
and µF the false ground atoms. The notation pred(L) maps
an atom L to its corresponding predicate name.

Cardinality Constraints Very recent work has further gen-
eralized the concept of WFOMC to WFOMC under cardi-
nality constraints (Kuzelka 2021). Although this extended
notion of WFOMC is not strictly needed for our core results
on trees in the context of two-variable logic, it will be help-
ful when modelling more complex properties which often
require the more expressive fragment C2, whose details are
provided later in the paper. In particular, existing lifted in-
ference methods for C2 work by reducing WFOMC on a C2

sentence to WFOMC on an FO2 sentence under cardinality
constraints.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

600



Definition 4. Let (w, w̄) be a weighting on a sentence ϕ,
and let C denote a set of constraints of the form {|R1| ▷◁
c1, . . . , |Rk| ▷◁ ck} for predicates Ri in ϕ, ▷◁∈ {<,>,=,≥
,≤}, and ci ∈ N. The WFOMC of ϕ over a domain of size n
under (w, w̄) and constraints C is:

WFOMC(ϕ, n,w, w̄, C) =∑
µ∈modelsn(ϕ),sat(µ,C)

∏
L∈µT

w(pred(L)) ·
∏

L∈µF

w̄(pred(L))

where sat(µ,C) is true if and only if the number of true
atoms in the model µ for each predicate in ϕ satisfies the
relevant constraints in C, and other notation is as before.

Modularity In this paper, we will also be performing re-
ductions between WFOMC problems. We will often want
such reductions to be modular, a term whose definition we
follow from (Van den Broeck, Meert, and Darwiche 2014).

Property 1 (Modularity). A reduction is said to be modular
if, for every tuple (ϕ,w, w̄) of sentence and weights passed
to the reduction with output (ϕ′, w′, w̄′), we have:

WFOMC(ϕ ∧ γ, n, w, w̄) = WFOMC(ϕ′ ∧ γ, n, w′, w̄′)

for every domain size n and sentence γ.

Intuitively, this means that any reduction on ϕ is not invali-
dated by replacing γ with a different sentence.

Expressiveness Finally, we conclude with a short remark
on the expressiveness of first-order logic that is useful to bear
in mind when considering the results presented later in the
paper.

Remark 1. Throughout this paper, we deal with finite do-
mains; this means that any property we can think of can be
expressed by grounding it out. This includes tree axioms: we
can enumerate all of the possible trees that can be formed on
elements of the domain. However, this induces a blow-up in
the formula length by a factor exponential in the domain size,
thus rendering it of limited practical utility.

3.2 Data Complexity of WFOMC
Given a fragment F of first-order logic, we may consider its
data complexity for WFOMC: fixing the input sentence as
some ϕ ∈ F and weights (w, w̄), what is the complexity of
computing WFOMC(ϕ, n,w, w̄) when treating the domain
size n as a unary input?

Data Complexity for FO2 In Appendix C of (Beame et al.
2015), the authors show that the data complexity of WFOMC
for any sentence in the syntactic fragment of first-order logic
limited to two variables is in FP. We reproduce a sketch of
this proof below. The term used in the statistical-relational
learning literature for logical fragments with FP data com-
plexity is domain-liftability (Van den Broeck 2011). We will
also use this term throughout the paper, and occasionally
slightly abuse notation by referring to individual sentences
(rather than entire fragments) as domain-liftable as well.

Theorem 1 (Beame et al. 2015). The fragment of first-order
logic limited to two variables, FO2, is domain-liftable.

Proof sketch. Suppose that we wish to compute
WFOMC(ϕ, n,w, w̄) for some input sentence ϕ ∈ FO2,
domain size n ∈ N, and weights (w, w̄). Begin by applying
the reduction in (Grädel, Kolaitis, and Vardi 1997) and
eliminating existential quantifiers as shown in (Van den
Broeck, Meert, and Darwiche 2014) to get a universally
quantified sentence ϕ = ∀x∀y : ψ(x, y) such that all atoms
in ψ are either unary or binary.

Take the 2u cells (also called 1-types) formed as maximal
consistent conjunctions of literals over the u predicates in ϕ
containing only the variable x, and denote them C1, . . . , C2u .
Now, consider the possible partitions of [n] into 2u disjoint
sets. Each of these partitions can be thought of as repre-
senting a series of assignments of subsets of the n domain
elements to each of the cells. Then the models of ϕ over the
domain ∆ = [n] are precisely the models of the following
sentence:

η =
∧

i,j∈[2u],i<j

∀x : Si∀y : Sj (ψ(x, y) ∧ ψ(y, x))∧

∧
k∈[2u]

∀x : Sk∀y : Sk ψ(x, y)

where Si denotes the elements of [n] assigned to the cell Ci,
and the notation ∀x : Si denotes universal quantification lim-
ited to the set Si. Since we know the truth values of the unary
and reflexive binary atoms given by each cell assignment
Ci, we may simplify the body of each conjunct by replacing
every unary and reflexive binary atom with true or false as ap-
propriate. Write ψi(x, y) for the simplified version of ψ(x, y)
when both x and y are restricted to taking values from Si,
and ψij(x, y) for the simplified version of ψ(x, y) ∧ ψ(y, x)
when x and y are restricted to taking values from Si and Sj

respectively. We then have:

η =
∧

i,j∈[2u],i<j

∀x : Si∀y : Sj (ψij(x, y))∧

∧
k∈[2u]

∀x : Sk∀y : Sk ψk(x, y)

Observe that each conjunct in the formula above is indepen-
dent (that is, they do not share any propositional variables
when grounded out). Denote rij = WMC(ψij(a, b), w, w̄),
sk = WMC(ψk(a, b) ∧ ψk(b, a), w, w̄), and wk =
WMC(ψk(c, c), w, w̄). Summing across the different pos-
sible configurations of cell cardinalities, and multiplying by
a multinomial coefficient to account for the different possible
selections of domain elements for a given configuration, we
get:

WFOMC(ϕ, n,w, w̄) =
∑

n1+···+n2u=n

(
n

n1, . . . , n2u

)
·

∏
i,j∈[2u],i<j

r
ninj

ij

∏
i∈[2u]

s
ni(ni−1)/2
i wni

i (1)

Clearly, evaluating this equation can be done in time polyno-
mial in the domain size, and so we have that FO2 is domain-
liftable.
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Data Complexity for C2 Unfortunately, in many applica-
tions, the expressiveness of FO2 as a modelling language
is too limited. Recent work has shown that two-variable
logic extended with counting quantifiers of the form ∃▷◁nx
for ▷◁ ∈ {<,>,=,≥,≤} (called C2), is also domain-
liftable (Kuzelka 2021). Note that this fragment is strictly
more expressive than FO2: counting quantifiers allow one to
express concepts like “each vertex has at most two outgoing
edges”, whereas without them we could only express that
each vertex has at least one outgoing edge, or no outgoing
edges at all. To show the domain-liftability of C2, we first
need to understand how to efficiently deal with cardinality
constraints when computing the WFOMC.
Theorem 2 (Kuzelka 2021, slightly reformulated). Let ϕ be
a first-order logic sentence and C be a set of cardinality con-
straints (as in Definition 4). If there is a domain-lifted oracle
for WFOMC(ϕ, n,w, w̄) then WFOMC(ϕ,w, n, w̄, C) can
be computed in polynomial time using a polynomial number
of queries to this oracle.

Proof sketch. We observe that the WFOMC of ϕ can be writ-
ten as a polynomial in the positive and negative weights of
the predicates, given respectively by the weightings w, w̄.
Specifically, suppose that we have predicates P1/k1, P2/k2,
. . . , Pm/km. Then we can write

WFOMC(ϕ, n,w, w̄) =
∑
n∈D

A(n)wnw̄n̄

where we used the notation:

n ≜ [n1, . . . , nm],

n̄ ≜ [nk1 − n1, n
k2 − n2, . . . , n

km − nm],

wn ≜
m∏
i=1

w(Pi)
ni , wn̄ ≜

m∏
i=1

w̄(Pi)
nki−ni ,

D ≜ {0, 1, 2, . . . , nk1} × · · · × {0, 1, 2, . . . , nkm}.
Here, A(n) then must be the number of possible worlds
in which the predicate P1 has cardinality exactly n1, the
predicate P2 has cardinality exactly n2, etc. It follows that
if we are given access to the oracle for WFOMC(ϕ, n,w, w̄)
then we can use Lagrange interpolation to extract A(n) for
any n, which then allows us to compute the WFOMC of ϕ
with the cardinality constraints C in a straightforward way.
For details, we refer to Proposition 5 in (Kuzelka 2021).

Importantly, the theorem above does not require the sentence
ϕ to be from FO2. It can be applied to any domain-liftable
sentence. Finally, combining Theorem 1 and Theorem 2
yields the following result.
Theorem 3 (Kuzelka 2021). The fragment of first-order logic
limited to two variables with counting quantifiers, C2, is
domain-liftable.

Proof sketch. The principle observation behind this result is
that one can transform ϕ ∈ C2 into a new sentence ϕ′ ∈
FO2, weights (w′, w̄′), and a set of cardinality constraints C
on the predicates in ϕ′ such that:

WFOMC(ϕ, n,w, w̄) = Kϕ,n ·WFOMC(ϕ′, n, w′, w̄′, C)

for some constant Kϕ,n ∈ R, whose value can be obtained
in time polynomial in the domain size. In addition, this trans-
formation has the helpful property that it leaves conjuncts
of ϕ containing no counting quantifiers untouched. Since
we know that FO2 is domain-liftable by Theorem 1, and
we can handle cardinality constraints by Theorem 2, we are
done. We again refer the reader to (Kuzelka 2021) for the
details.

3.3 Graph Theory
We will also need some tools from graph theory.

Preliminaries Throughout this section, we assume that
graphs are undirected and contain no self-loops. A tree is
a connected acyclic graph. A spanning tree of a graph is a
subgraph that is a tree and contains all vertices of the orig-
inal graph. In the context of this paper, we will uniquely
characterise a (weighted) graph by its symmetric weighted
adjacency matrix W , whose element at position (a, b) de-
notes the weight on the edge {a, b}. Unconnected edges are
given zero weight. Denote ver(W ) as the set of vertices in
W , and edg(W ) as the set of edges with non-zero weight
(i.e., edg(W ) = {{i, j} | W(i,j) ̸= 0}). We associate with
W a weighted degree matrix D(W ):

(D(W ))(a,b) =

{∑|ver(W )|
k=1 (W )(a,k) if a = b

0 otherwise

Kirchhoff’s Theorem Using the definitions above, we can
define the Laplacian matrix of a graph.
Definition 5 (Laplacian matrix). The Laplacian L(W ) of a
weighted graph W is defined as:

L(W ) = D(W )−W

The Laplacian matrix is critical to the statement of Kirch-
hoff’s theorem below.
Theorem 4 (Kirchhoff’s matrix tree theorem). Let W be a
weighted graph, and let L(W ) denote the Laplacian of W .
Further, let [L(W )]i,i denote the minor of L(W ) obtained by
deleting row i and column i, for some i ≤ |ver(W )|. Then the
weighted sum of the spanning trees of W is the determinant
of any of the minors of its Laplacian L(W ); that is:∑

P∈S(W )

∏
{a,b}∈P

(W )(a,b) = det([L(W )]i,i)

for all i ≤ |ver(W )|, where S(W ) denotes the set of
(weighted) spanning trees of W .

Kirchhoff’s theorem gives us a way to quickly sum the
weighted spanning trees of a graph in time polynomial in
the graph size. However, later in the paper we will also
need a way to sum the weighted spanning trees subject to the
constraint that certain edges must be present in those trees.
Definition 6. Let

TreeSum(W,F) =
∑

T∈S(W )
F⊆T

∏
{a,b}∈T

W(a,b)

denote the weighted sum of spanning trees of W that contain
all edges in F ⊆ edg(W ).
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How can we compute TreeSum(W,F) in a manner whose
runtime is still polynomial in the graph size? The opposite
case—that is, imposing the constraint that certain edges are
not present—is easy: simply set the weight of these edges
to zero in W and apply Theorem 4. On the other hand, for
the “must-be-present” case, we can contract edges of the
graph while keeping track of their weights. Suppose we
are given the set of edges F ⊆ edg(W ) whose presence
we wish to force in the spanning trees of the graph W . We
may assume without loss of generality that F is acyclic;
otherwise we know immediately TreeSum(W,F) = 0. With
this assumption in mind, pick an edge e1 = {i, j} ∈ F . Then
we may update W by deleting the edge {i, j} and the vertex
j, and redirecting any edge that originally connected j to
a third vertex k to i. If i and k are already connected, we
simply add the weight of the edge {j, k} to the existing edge
{i, k}.1 Repeating this process for every edge ei ∈ F , we
eventually end up with a new graph W ′ in which all of the
relevant edges have been contracted. We may then compute
TreeSum(W,F) as:

TreeSum(W,F) = w(e1) . . . w(en) det([L(W
′)]1,1)

where w(ei) denotes the original weight of the edge ei in W .

4 Approach
We now come to the primary results of this paper. In this sec-
tion, we will show how to efficiently compute the WFOMC
of a C2 sentence containing either of the following axioms:

• Tree(R,Leaf ), expressing that the (symmetric, antireflex-
ive) binary relation R forms a tree with leaves defined by
the unary relation Leaf .

• DirectedRootedTree(Root , E,Leaf ), expressing that the
binary relation E represents directed edges of a rooted
tree, with root node given by the unary relation Root , and
leaves given by the unary relation Leaf . The edges are
directed from the leaves towards the root of the tree.

As we shall see, the latter axiom is expressible by conjoin-
ing the first axiom (Tree) with some appropriately-chosen
sentences in C2, so only the first axiom will require a full
algorithmic treatment. The second will then follow as a
consequence of Theorem 3.

4.1 Trees
In this section, we prove that the addition of a tree axiom
Tree(R,Leaf ) to a C2 sentence preserves domain-liftability.
Our approach will be as follows: first, we will show that
the addition of a “limited” version of the tree axiom that
does not allow for quantification of the leaves (i.e. Tree(R)

1The reason why this is sound is as follows. No tree can contain
the edges {i, j}, {i, k}, {j, k} at the same time or else it would
contain a cycle. Moreover there is a natural bijection between the
trees which contain the edge {i, k} and those that contain the edge
{j, k}, which maps trees with weight W · w({i, k}) to trees with
weight W · w({j, k}) (here W is the product of all other edges
in the tree except for {i, k} or {j, k}). The bijection simply takes
a tree containing {i, k} and replaces it by {j, k}. It is then not
difficult to see the correctness of the procedure described here.

rather than Tree(R,Leaf )) can be added to an FO2 sen-
tence while preserving domain-liftability (Lemma 1). We
will then build off of this lemma to show the same for C2

(Lemma 2). Finally, we will leverage this result to prove our
final theorem, showing that we can add the “full” tree axiom
(Tree(R,Leaf )) to any C2 sentence and still compute the
WFOMC in time polynomial in the domain size (Theorem
5). We begin by formalizing the semantics of the two tree
axioms—both the limited version Tree(R) as well as the full
axiom Tree(R,Leaf ).
Definition 7. Let ϕ be an arbitrary first-order sentence, pos-
sibly containing some binary relation R. Then a structure A
is a model of the sentence ξ = ϕ ∧ Tree(R) if and only if:

1. A is a model of ϕ, and
2. the relation defined by AR is antireflexive and symmetric,

and
3. the relation R forms an R-tree in A: that is, AR is a tree

when interpreted as an undirected graph

The concept is illustrated with the following simple example.
Example 1. Let ξ = Tree(R). Then, by Cayley’s formula,
FOMC(ξ, n) = nn−2, the number of trees on n nodes (Cay-
ley 1889).

We can now extend this definition to the full axiom that
allows for expression of properties on the leaves.
Definition 8. Let ϕ be an arbitrary first-order sentence,
possibly containing some binary relation R and unary re-
lation Leaf . Then a structure A is a model of the sentence
ξ = ϕ ∧ Tree(R,Leaf ) if and only if:

1. A is a model of ϕ ∧ Tree(R), and
2. the leaves of the tree defined by AR are precisely the

elements in ALeaf

With these definitions in mind, we are now ready to prove
our domain-liftability results, starting with the lemma for
the limited tree axiom on two-variable sentences without
counting quantifiers.
Lemma 1. Let:

ϕ = η ∧
∀x : ¬R(x, x) ∧
∀x∀y : R(x, y) → R(y, x)

for some sentence η ∈ FO2. Further, let ξ = ϕ ∧ Tree(R).
Then ξ is domain-liftable.

Proof. We will follow the notation and general approach
from Theorem 1. Fix our domain ∆ = {1, . . . , n}. After
transforming ϕ to the form ϕ = ∀x∀y : ψ(x, y), recall from
Equation (1) that we can write the WFOMC of ϕ as:

WFOMC(ϕ, n,w, w̄) =
∑

n1+···+n2u=n

(
n

n1, . . . , n2u

)
·

∏
i,j∈[2u],i<j

r
ninj

ij

∏
i∈[2u]

s
ni(ni−1)/2
i wni

i

for suitably defined rij , si, and wi terms.
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We will now need to adapt this approach for ξ so that we
account only for the models of ϕ that satisfy the tree property
on R. Suppose we fix some cell assignment (n1, . . . , n2u).
All of the notation below will assume this fixed cell assign-
ment. For a, b ∈ ∆, denote:

φ(a, b) =

ψij(a, b) if i = C(a), j =
C(b) and i ̸= j

ψi(a, b) ∧ ψi(b, a) if i = C(a) = C(b)

whereC(a) maps a domain element a to its cell index. Define
F to be the set of all domain element pairs {a, b} ∈ ∆2 for
which WMC(φ(a, b) ∧ ¬R(a, b), w, w̄) = 0.

Consider some R-tree T over the vertices defined by ∆
such that F ⊆ T . We will compute the weighted sum wT of
every model A of ξ that satisfies T = AT (in other words,
the WFOMC of ξ limited to models that contain exactly the
tree T ). We can write:

wT =
∏

i∈[2u]

wni
i

∏
{a,b}∈F

WMC(φ(a, b) ∧R(a, b), w, w̄)·

∏
a<b,{a,b}∈T\F

WMC(φ(a, b) ∧R(a, b), w, w̄)
WMC(φ(a, b) ∧ ¬R(a, b), w, w̄)

·

∏
a<b,{a,b}̸∈F

WMC(φ(a, b) ∧ ¬R(a, b), w, w̄)

Now, summing both sides of the equation across all trees
containing F :∑

T :F⊆T

wT

=
∑

T :F⊆T

∏
i∈[2u]

wni
i

∏
{a,b}∈F

WMC(φ(a, b) ∧R(a, b), w, w̄)·

∏
a<b,{a,b}∈T\F

WMC(φ(a, b) ∧R(a, b), w, w̄)
WMC(φ(a, b) ∧ ¬R(a, b), w, w̄)

·

∏
a<b,{a,b}̸∈F

WMC(φ(a, b) ∧ ¬R(a, b), w, w̄)

=
∏

i∈[2u]

wni
i

∏
a<b,{a,b}̸∈F

WMC(φ(a, b) ∧ ¬R(a, b), w, w̄)·

∑
T :F⊆T

∏
{a,b}∈F

WMC(φ(a, b) ∧R(a, b), w, w̄)·

∏
a<b,{a,b}∈T\F

WMC(φ(a, b) ∧R(a, b), w, w̄)
WMC(φ(a, b) ∧ ¬R(a, b), w, w̄)

=TreeSum(W,F)
∏

i∈[2u]

wni
i ·

∏
a<b,{a,b}̸∈F

WMC(φ(a, b) ∧ ¬R(a, b), w, w̄)

where W is the graph with weighted adjacency matrix:

W(a,b) ={
WMC(φ(a, b) ∧R(a, b), w, w̄) if {a, b} ∈ F
WMC(φ(a,b)∧R(a,b),w,w̄)
WMC(φ(a,b)∧¬R(a,b),w,w̄) otherwise

Recall that we saw how to compute TreeSum(W,F) in time
polynomial in the size of W earlier in the paper. Denote
Z(n1, . . . , n2u) =

∑
T :F⊆T wT . That is, Z(n1, . . . , n2u) is

the weighted sum of the models satisfying the tree axiom that
correspond to the cell configuration (n1, . . . , n2u). Clearly,
each Z(n1, . . . , n2u) can be computed in time polynomial
in the domain size n using the expression derived above.
Summing across all possible cell configurations we get:

WFOMC(ξ, n, w, w̄) =∑
n1+···+n2u=n

(
n

n1, . . . , n2u

)
· Z(n1, . . . , n2u)

which again can be evaluated in time polynomial in the do-
main size.

Finally, note that this result also holds in the presence of
cardinality constraints on ξ. Recall that Theorem 2 asserts
that if we can efficiently compute the WFOMC of a sentence,
then we can also efficiently compute the WFOMC of that
same sentence extended with some cardinality constraints,
where “efficiently” means in time polynomial in the size of
the domain. We can also apply this theorem to the sentence ξ
containing a tree axiom.

Next, we will use Lemma 1 to show that we can add the
limited tree axiom to a two-variable sentence with counting
quantifiers.
Lemma 2. Let:

ϕ = η ∧
∀x : ¬R(x, x) ∧
∀x∀y : R(x, y) → R(y, x)

for some sentence η ∈ C2. Further, let ξ = ϕ ∧ Tree(R).
Then ξ is domain-liftable.

Proof. From Lemma 1, we know that we can compute
the WFOMC of any two-variable sentence with a single
tree axiom and cardinality constraints in time polynomial
in the size of the domain. In addition, recall that from
Theorem 3, we can take an arbitrary C2 sentence ϕ and
produce an FO2 sentence ϕ′ along with cardinality con-
straints C and weights (w′, w̄′) which have the property that
WFOMC(ϕ, n,w, w̄) = Kϕ,n · WFOMC(ϕ′, n, w′, w̄′, C).
Importantly, the reduction also gives us the constant Kϕ,n so
that we can compute the WFOMC of ϕ efficiently.

Now, one problem when applying this reduction in our
case could be that Tree(R) is not expressible in C2. That is
true in general, but for a fixed domain we can express it in C2

as a ground formula (as described in Remark 1). Obviously,
the size of such an encoding of the tree axiom would be very
large (exponential in the domain size). Fortunately, we do
not need to actually construct it. By inspecting the reduction
in (Kuzelka 2021), one can verify that the reduction is mod-
ular (Property 1) and leaves the encoding of the tree axiom
untouched, so we could replace it in the end by Tree(R),
which also means that we did not have to replace Tree(R)
by its ground encoding in the first place. Hence we see that
the transformation from (Kuzelka 2021) works also in the
presence of tree axioms.
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Finally, putting Lemma 1 and 2 together gives us our final
result for the full axiom Tree(R,Leaf ).

Theorem 5. Let:

ϕ = η ∧
∀x : ¬R(x, x) ∧
∀x∀y : R(x, y) → R(y, x)

for some η ∈ C2. Further, let ξ = ϕ ∧ Tree(R,Leaf ). Then
ξ is domain-liftable.

Proof. Let

γ = ∀x : Leaf (x) ↔ (∃=1y : R(x, y))

Clearly, Leaf (x) defines precisely the leaves in the tree de-
fined by R, and thus:

WFOMC(ξ, n, w, w̄) = WFOMC(ϕ∧γ∧Tree(R), n, w, w̄)

Since the right-hand of this expression is computable in time
polynomial in the domain size n by Lemma 2, we have that
ξ is domain-liftable.

4.2 Directed Rooted Trees
Of course, in practice one often wishes to model something
more interesting than just the plain Tree axiom like we saw in
Example 1. We will now show how to model directed rooted
trees as described at the beginning of the section. Recall that
this axiom expresses that the binary relation E represents
directed edges of a tree, with root node given by the unary
relation Root , and leaves given by the unary relation Leaf .
Note here that the root node is never considered a leaf, even
if it has degree 1.

Proposition 1. Let ϕ ∈ C2 be an arbitrary sentence, and let
ψ denote the sentence below:

ψ =∃=1x : Root(x) ∧
∀x : Root(x) → D(x, x) ∧
∀x∃=1y : D(x, y) ∧
∀x∀y : R(x, y) → (D(x, y) ∨D(y, x)) ∧
∀x∀y : E(x, y) ↔ (D(x, y) ∧ (¬Root(x) ∨ ¬Root(y)) ∧
Tree(R) ∧ ∀x : Leaf (x) ↔ (∀y : ¬D(y, x))

where R and D are fresh predicate symbols not occurring in
ϕ. Then:

WFOMC(ϕ ∧ DirectedRootedTree(Root , E,Leaf ),

w, w̄, n, C) = WFOMC(ϕ ∧ ψ,w′, w̄′, n, C)

where (w′, w̄′) is obtained by extending (w, w̄) with neutral
weights on all new predicates in ψ.

Proof. We can motivate this choice of ψ as follows. We pick
a single vertex as a root, which we enforce2 with ∃=1x :
Root(x). We then define a new relation D(x, y) that will
represent auxiliary directed edges (the directed edges of the

2Equivalently, we may simply add the cardinality constraint
|Root | = 1 instead.

tree will be represented by another relation E). The edges
are oriented in such a way that the edges go from vertices
further from the root, to vertices closer to it. First, we add
a self-loop for the root node ∀x : Root(x) → D(x, x). We
also require that D satisfies the functionality constraint and
that whenever there is an original undirected edge R(x, y),
then there must be either a directed edge D(x, y) or D(y, x).
Since D must satisfy the functionality constraint and the root
must have a self loop, any edge that connects the root with
another vertex, must be directed towards the root (if any of
these edges were directed away from the root then D would
not satisfy the functionality constraint). We can use induction
on the depth of the tree using essentially the same argument
(the fact that any vertex must have out-degree 1 because of
the functionality constraint) to show that D must be oriented
in such a way that there is a connected path from any leaf
to the root. Note that we cannot immediately use D as our
directed edge relation, since D has a self-loop at the root
node, which should not be present in a directed rooted tree.
As a solution, we add a “wrapper” predicate E that has the
same edges as D except for the self-loop at the root node.
Last, we enforce with the axiom Tree(R) that the relation
R forms an undirected tree. To encode the Leaf predicate,
we can notice that leaves are precisely those vertices that
have zero in-degree w.r.t. D (in particular, the root is never
considered a leaf even if it has degree 1) and therefore we
can encode leaves using ∀x : Leaf (x) ↔ (∀y : ¬D(y, x)).

It is clear that the models of the aforemen-
tioned rules are precisely those satisfying the axiom
DirectedRootedTree(Root , E,Leaf ). It is also not difficult
to show that, under the assumption that D is not used
anywhere else (which we can assume w.l.o.g.), the reduction
is also modular.

Theorem 6. Let:

ξ = ϕ ∧ DirectedRootedTree(Root , E,Leaf )

for some ϕ ∈ C2. Then ξ is domain-liftable.

Proof. Follows immediately from Proposition 1 and Theo-
rem 5.

5 Applications and Experiments
In this section, we will describe some applications of the
tree axiom and examine the scalability of our approach in
practice. To test our results experimentally, we implemented
a weighted first-order model counter in Python that follows
the algorithmic approach presented here with support for tree
axioms. All experiments were performed on a computer with
a six-core Intel i7 2.2GHz processor and 16 GB of RAM.

5.1 Combinatorics on Trees
We start by modelling some problems from enumerative com-
binatorics on trees.

k-coloured trees We first consider the problem of count-
ing k-coloured trees. Recall that a graph is said to be
k-colourable if every vertex can be coloured with one of
k colours such that no two vertices of the same colour
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Figure 1: Runtime for counting 2-, 3-, and 4-coloured trees

are adjacent to one another. A k-coloured graph is a k-
colourable graph together with a valid colour assignment.
We first verified that our approach gave the correct expected
sequence for 2-coloured trees: namely, we should have
FOMC(ξ2, n) = 2nn−2, because every one of the nn−2 trees
on n nodes is 2-colourable, and any such tree has precisely
two colourings (since colouring any one node uniquely de-
termines the colour of the remainder). We then tested it on
larger values of k. An indication of the runtime of our ap-
proach (with a 30 second timeout) on 2-, 3-, and 4-coloured
trees is given in Figure 1.

Rooted trees with k leaves We next consider the problem
posed in the introduction of the paper: how many labelled
rooted trees on n nodes have exactly k leaves? This can be
modelled with the following sentence:

ξ = DirectedRootedTree(Root , E,Leaf )

subject to the cardinality constraint |Leaf | = k. Note
that, although this sentence appears relatively simple at first
glance, computing its FOMC takes some work. First, the
axiom is expanded into a C2 sentence as shown in Propo-
sition 1. Next, the counting quantifiers introduced by the
DirectedRootedTree axiom are reduced to cardinality con-
straints (Theorem 3), for which computing the FOMC is split
across several different FO2 WFOMC oracle calls with dif-
ferent weights (Theorem 2). Finally, existential quantifiers
in each of these calls must be eliminated as described in the
proof of Theorem 1, which is a process that itself introduces
new auxiliary Skolemization predicates (see (Van den Broeck,
Meert, and Darwiche 2014) for the full details).

As a result of the steps above necessary to compute the
FOMC, despite the fact that the runtime is still guaranteed
to be polynomial in the domain size, our implementation
struggled to scale to large values of n because the degree of
the polynomial bounding the runtime was simply too high.
We were able to scale to a domain size of n = 9 within a 10
minute timeout. However, we were able to check these re-
sults against The On-Line Encyclopedia of Integer Sequences
(OEIS)3 for values k = 1, 2 and 3 with sequences A000142,

3https://oeis.org

Number of leaves k

Number of nodes n 1 2 3

2 2 – –
3 6 3 –
4 24 36 4
5 120 360 140
6 720 3600 3000
7 5040 37800 54600
8 40320 423360 940800
9 362880 5080320 16087680

Table 1: Counting labelled rooted trees on n nodes with exactly k
leaves

A055303, and A055304 respectively. The values we com-
puted are given in Table 1.

5.2 Markov Logic Networks over Trees
We now turn to applications of our results to probabilistic
inference in graphical models. Specifically, in this section
we study the imposition of tree axioms on Markov logic
networks (MLNs) (Richardson and Domingos 2006), a pop-
ular statistical-relational formalism for which inference and
learning is reducible to WFOMC.

Preliminaries Formally, an MLN is a finite set of weighted
first-order logic formulas {(w1, ϕ1), . . . , (wn, ϕn)}, where
each wi is either a real-valued weight or ∞, and ϕi is a
quantifier-free first-order formula. MLNs can be viewed as a
template for constructing Markov random fields. An MLN Φ
paired with a domain ∆ induces a probability distribution on
possible worlds:

Pr(ω; Φ,∆) ={
1

ZΦ,∆
exp

(∑
(w,ϕ)∈ΦR

w ·N(ϕ, ω)
)

if ω |= Φ∞

0 otherwise

where ΦR and Φ∞ denote the real-valued and ∞-valued
formulas in Φ respectively, N(ϕ, ω) denotes the number of
groundings of ϕ satisfied in the world ω, and ZΦ,∆ is a
normalization constant called the partition function of the
MLN.

Reduction to WFOMC In general, computing the partition
function (and by extension, marginal inference) in a given
MLN is #P-hard in the domain size. However, the afore-
mentioned reduction to WFOMC has the helpful property
that the number of variables in the sentence produced by the
reduction is the same as the maximum number of variables
appearing in any formula of the original MLN. In particular,
this means that if the number of variables used in each of
the formulas in the MLN is limited to two, the inference
problem for such MLNs lies in FP. We present the reduction
in question below.

Definition 9 (Van den Broeck 2011). Let Φ =
{(w1, ϕ1), . . . , (wk, ϕk), (∞, ϕk+1), . . . , (∞, ϕn)} be an
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Figure 2: Runtime of our tool for computing the partition function of
the “friends-and-smokers” MLN for various domain sizes, subject
to soft and hard tree constraints

MLN. Then the reduction of Φ to a weighted sentence is
constructed as:

k∧
i=1

∀x : Ai(x) ↔ ϕi(x) ∧
n∧

i=k+1

∀x : ϕi(x)

where each Ai is a fresh predicate not occurring in any of
the ϕi, x denotes the collection of free variables occurring
in each ϕi, and weights are set as follows: w(Ai) = ewi ,
w̄(Ai) = 1, and w(Ri) = w̄(Ri) = 1 for any other predi-
cate Ri.

Experiments Consider the classic “friends-and-smokers”
MLN described below:

w1 Smokes(x)

w2 Friends(x, y) ∧ Smokes(x) → Smokes(y)

∞ ¬Friends(x, x)
Intuitively, this models that people who are friends with
smokers are likely to smoke themselves. We consider the
problem of computing the partition function of this MLN
over different domain sizes, subject to one of two constraints:
either, (1) the hard constraint that the Friends relation must
form a tree, or (2) the soft constraint that models in which
Friends forms a tree are to be preferred.

The former constraint can be dealt with by simply con-
joining the axiom Tree(Friends) to the sentence obtained
from applying the reduction in Definition 9. On the other
hand, the latter constraint requires adding a new formula
(w3, R(x, y) ↔ Friends(x, y)) to the MLN for an appro-
priate weight value w3, and conjoining the axiom Tree(R)
to the reduced sentence. Experimental results for both the
hard and soft constraints with fixed weight values are shown
in Figure 2; the computation time of the partition function is
virtually identical in both cases.

6 Conclusion and Future Work
We showed how to extend existing domain liftability results
on FO2 and C2 to allow for the addition of tree axioms, and

showed how to extend this core notion to model directed
rooted trees. We also presented some preliminary experimen-
tal results on our approach.

There are several possible directions for future work. One
avenue we intend to explore involves extending the tree ax-
iom presented here to a forest axiom, stating that the graph
formed by some (antireflexive, symmetric) relation is (only)
acyclic. This relaxes the connectedness condition imposed
by the tree axiom. Efficient approaches for counting forests
are known in the combinatorics literature (Takács 1990); we
hope that translating them to the setting of WFOMC is not
difficult and can proceed in a similar fashion to the approach
taken in this paper.

More generally, we look forward to seeing how far one
can go beyond first-order logic with richer fragments while
maintaining domain-liftability: for instance, showing domain-
liftability for fragments of Datalog could have important
implications for the probabilistic logic programming commu-
nity (Fierens et al. 2015). In this area, existing lifted inference
techniques have struggled to see widespread practical use,
due to the barriers of translating approaches geared towards
first-order logic to this more expressive setting. Although
initial results in this direction for probabilistic databases have
been negative, showing #P-hardness for evaluation of un-
bounded UCQ∞ queries on probabilistic graphs (Amarilli
and Ceylan 2020), the picture may be different in the sym-
metric WFOMC setting considered here.
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A Directed Trees: An Alternative Transform
In this section we record a practically more efficient but less
straightforward encoding for directed rooted trees:

ψ =Tree(R) ∧ ∀x : Root(x) ↔ D(x, x) ∧
∀x∃=1y : D(x, y) ∧
∀x∀y : D(x, y) → (R(x, y) ∨D(x, x))∧
∀x∀y : R(x, y) → (D(x, y) ∨D(y, x)) ∧
∀x∀y : E(x, y) ↔ (D(x, y) ∧ (¬Root(x) ∨ ¬Root(y)) ∧
∀x : Leaf (x) ↔ (∀y : ¬D(y, x))

This transformation has one less rule with a counting quan-
tifier than the transformation described in the main text
(∃=1x : Root(x)) and, instead of it, it contains the for-
mula ∀x∀y : D(x, y) → (R(x, y) ∨ D(x, x)) which to-
gether with the functionality constraint on D and the fact
that the cardinality of R must be n − 1 (and together
with the rest of the formula) implies that there must be ex-
actly one x such that D(x, x), which must be the root (by
∀x : Root(x) ↔ D(x, x)).
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