
Decidability and Complexity of Some Finitely-valued Dynamic Logics

Igor Sedlár
Czech Academy of Sciences, Institute of Computer Science

sedlar@cs.cas.cz

Abstract
Propositional Dynamic Logic, PDL, is a well known modal
logic formalizing reasoning about complex actions. We study
many-valued generalizations of PDL based on relational
models where satisfaction of formulas in states and acces-
sibility between states via action execution are both seen as
graded notions, evaluated in a finite Łukasiewicz chain. For
each n > 1, the logic PDŁn is obtained using the n-element
Łukasiewicz chain, PDL being equivalent to PDŁ2. These
finitely-valued dynamic logics can be applied in formalizing
reasoning about actions specified by graded predicates, rea-
soning about costs of actions, and as a framework for cer-
tain graded description logics with transitive closure of roles.
Generalizing techniques used in the case of PDL we obtain
completeness and decidability results for all PDŁn. A gen-
eralization of Pratt’s exponential-time algorithm for check-
ing validity of formulas is given and EXPTIME -hardness
of each PDŁn validity problem is established by embedding
PDL into PDŁn.

1 Introduction
Propositional Dynamic Logic, PDL, is a modal logic origi-
nally introduced to formalize reasoning about correctness of
imperative programs and equivalence of regular expressions
(Fischer and Ladner 1979; Harel, Kozen, and Tiuryn 2000).
PDL represents programs as binary relations on states and
uses specific operations on programs, most notably sequen-
tial composition a; b (“do a and then do b”, represented as
relational composition), choice a∪b (“do a or do b”, union),
Kleene star a∗ (“do a some finite number of times”, reflexive
transitive closure) and test p? (“test if p is true”, the small-
est reflexive relation on states satisfying p). PDL subsumes
Hoare logic, owing to its ability to express programming
constructs such as “if p then a else b” or “while p do a”.

PDL has also been applied in formalizing reasoning about
complex actions in general, e.g. in planning (Rosenschein
1981; Spalazzi and Traverso 2000) or reasoning about per-
missibility of actions (Meyer 1987; Meyer 2000). PDL is
related to a number of formalisms used in Knowledge Rep-
resentation; it can be seen, via a translation to predicate logic
(Blackburn, de Rijke, and Venema 2001), as the variable-
free fragment of the situation calculus (McCarthy 1963;
Reiter 2001), and it subsumes the extension of the descrip-
tion logic ALC with composition, union and transitive clo-
sure of roles (Baader 1991). The KARO framework uses

PDL program operators (van der Hoek, van Linder, and
Meyer 1994; Meyer, van der Hoek, and van Linder 1999)
which also appear in the action component of the logic
LORA (Wooldridge 2000). Epistemic logic with common
knowledge (Fagin et al. 1995) is a fragment of PDL.

Models of PDL are directed labelled graphs, where edges
are labelled by programs and nodes by formulas. Intuitively,
the edge (s, t) is labelled by a if executing action/program
a in state s may result in state t (on the action reading), if
object t is connected to s via the role a (the description logic
reading), or if state t is epistemically accessible to agent a
(the epistemic reading); the node s is labelled by p if the
statement represented by p holds in state s (on the action
and epistemic readings) or if the individual s satisfies the
description expressed by the concept p (on the description
logic reading). Crucially, these labels are crisp, that is, ei-
ther applying to an edge/node or not. This is unrealistic in
many contexts, for instance if graded concepts and roles or
costs of actions are considered.1 Versions of PDL lifting
the crispness assumption are many-valued modal logics with
models where the degrees to which labels apply to nodes
and edges are represented by an algebra extending the two-
element Boolean algebra.

Many-valued dynamic logics have been proposed in AI to
formalize reasoning about actions with graded goals (Liau
1999) and reasoning involving probabilistic information
about the outcomes of actions (Hughes, Esterline, and Kimi-
aghalam 2006); they have also been suggested as a formal-
ism for reasoning about costs of program runs (Běhounek
2008), weighted computation (Madeira, Neves, and Martins
2016) and for analysing searching games (Teheux 2014).
Only a handful of results on axiomatization and decidability
of many-valued dynamic logics have been established and,
to the best of our knowledge, no results on computational
complexity of these logics are available so far. Such results
are the main contribution of the present paper.

1Graded concepts are “a matter of more-or-less” (Cintula,
Noguera, and Smith 2017); e.g. consider the role :IsEasilyAcces-
sibleFrom or the concept GoodRestaurant (restaurants are good
to a degree, some being better than others; physical locations are
easily accessible from one another to a degree, some being more
easy to get to than others). Costs of actions give rise to specific
kinds of graded relations between actions and states, such as “it
does not take much time to get from s to t by doing a”.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

570

We study many-valued dynamic logics based on models
where both edge and node labellings are evaluated in a finite
linearly ordered algebra called a finite Łukasiewicz chain.
Logics arising from these models are PDŁn, for n > 1, de-
pending on the cardinality of the given Łukasiewicz chain,
PDL being PDŁ2. We prove for each n that the set of for-
mulas valid in PDŁn is decidable (Theorem 5.12) and that
the validity problem is EXPTIME -complete (Theorems 6.3
and 6.6); decidability is established by providing a recur-
sive axiomatization (Theorem 5.11) and proving the finite
model property using filtration (Theorem 5.10). This ex-
tends the related literature as follows. Teheux (2014) stud-
ies many-valued dynamic logics based on finite Łukasiewicz
chains, proving decidability and establishing a recursive ax-
iomatization, but in his models only evaluation of formu-
las in states is many-valued and accessibility is crisp. The
present author (Sedlár 2020) studies many-valued dynamic
logics based on finite Łukasiewicz chains where both evalu-
ation of formulas and accessibility are many-valued, estab-
lishing decidability and recursive axiomatization, but only
for logics with a limited set of program operators, namely,
without test and with a transitive closure operator replacing
the more usual reflexive transitive closure operator (Kleene
star); complexity results are not established in that paper.2

The paper is structured as follows. Section 2 dis-
cusses graded relations and outlines basic facts about finite
Łukasiewicz chains, Łn for n > 1. Section 3 introduces
many-valued dynamic logics based on finite Łukasiewicz
chains, PDŁn for n > 1. Section 4 discusses the infor-
mal interpretation of PDŁn in more detail, hinting at some
possible applications by means of a concrete example for-
malized using PDŁn. Soundness and weak completeness of
recursive axiomatizations of PDŁn and decidability of these
logics are established in Section 5; the results are obtained
using a generalization of the standard filtration-based argu-
ment (Kozen and Parikh 1981; Harel, Kozen, and Tiuryn
2000) used in the case of crisp PDL. Section 6 contains re-
sults on complexity of the validity problem of each PDŁn—
Pratt’s exponential-time algorithm for crisp PDL is gener-
alized to suit arbitrary PDŁn and EXPTIME -hardness is
established by constructing embeddings of PDL to PDŁn.

2We should also mention the paper (Di Nola, Grigolia, and
Vitale 2020), sketching an axiomatization result for many-valued
dynamic logics based on Łukasiewicz chains using models with
many-valued evaluation and crisp accessibility (obtained indepen-
dently of Teheux, apparently). (Zhang et al. 2012) combine crisp
PDL with modal epistemic (BDI) logic where epistemic formulas
take truth degrees in the real unit interval [0, 1] and sketch a com-
pleteness argument. (Liau 1999; Hughes, Esterline, and Kimiagha-
lam 2006; Běhounek 2008; Madeira, Neves, and Martins 2016)
do not establish axiomatization or decidability/complexity results.
The PDŁn logics are fragments of the Łukasiewicz µ-calculus
(Mio and Simpson 2017), but our main results on the former do
not follow from existing results on the latter. PDŁn resemble log-
ics of graded belief-based programs (Laverny and Lang 2005a;
Laverny and Lang 2005b), but the latter use “crisp” modal oper-
ators indexed by grades, not many-valued interpretations as we do;
see also (van der Hoek and Meyer 1992) for a similar modelling of
“graded” modalities, differing from our approach.

2 Truth Degrees and Finite Łukasiewicz
Chains

2.1 Modelling Truth Degrees
Crisp n-ary relations may be identified with functions from
n-tuples of individuals to the two-element set of truth values
{0, 1}, 0 standing for “false” and 1 “for true”. It is natu-
ral to model graded n-ary relations (and, as a special case,
vague relations) as functions from n-tuples of individuals to
some (linearly ordered) set of truth degrees. The usual ap-
proach is to take an algebra based on the real unit interval
[0, 1]; see (Cintula, Noguera, and Smith 2017; Hájek 1998;
Smith 2008). For instance, Tall(john) may evaluate to 0.9
if John is 180 cm tall and Tall(jack) may evaluate to 0.3 if
Jack is 170 cm tall.3 If a truth degree of a statement is
x ∈ [0, 1], then 1 − x may be seen as the cost associated
with the statement. For instance, the cost of Tall(john) in
the previous example is relatively low, 0.1, meaning that we
do not have to “stretch” the meaning of Tall too much when
ascribing it to John. To take another example, the cost of
CheapFlight(prague,london), a statement asserting the possi-
bility to fly cheaply from Prague to London, may be directly
associated with the financial cost of the relevant flights.

A crucial role in any algebra of truth degrees is played
by a binary operator representing merging of truth degrees;
there are several such operations on the market, but here we
will focus on the one called the Łukasiewicz t-norm: for any
x, y ∈ [0, 1], x�Ł y = max(0, x+ y− 1). The Łukasiewicz
t-norm represents the idea that the truth degree of “p and q”,
in one sense of “and”, is computed by considering the com-
bined costs of p and q. For instance, if “and” is interpreted as
the Łukasiewicz t-norm, then the truth degree of “Tall(john)
and Tall(jack)” is 0.2, that is, 1−(0.1+0.7) = (0.9+0.3)−1.

We emphasize that truth degrees are not to be confused
with probabilities, as discussed in (Hájek, Godo, and Esteva
1995) and (Hughes, Esterline, and Kimiaghalam 2006) for
instance, the main reason being that truth degrees are truth-
functional, i.e. the truth degree of a compound statement is
a function of the truth degrees of its components.4

In many settings it is impractical to consider the full inter-
val [0, 1] and then one usually takes some finite subalgebra
of the [0, 1]-based algebra of truth degrees. In the context
of [0, 1] with the Łukasiewicz t-norm, this approach yields
algebras known as finite Łukasiewicz chains.

2.2 Finite Łukasiewicz Chains
Our discussion of finite Łukasiewicz chains is rather dense,
given the space limitations; we invite the reader to discuss

3One objection against this modelling of graded relations is that
it introduces artificial precision as, presumably, there is not one
specific function from n-tuples to [0, 1] for each graded relation;
see (Smith 2008) for a “pluralistic” elaboration of the modelling
in response to the artificial precision objection. Here we ignore
the objection for the sake of simplicity, but a combination of our
framework with Smith’s approach is a topic for future research.

4Hence, our dynamic logics differ in nature from Kozen’s prob-
abilistic dynamic logic (Kozen 1985) and from probability-based
formalisms for reasoning about action under uncertainty, such as
(Bacchus, Halpern, and Levesque 1999) for instance.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

571

(Hájek 1998) or (Grigolia 1977).
Definition 2.1. A finite Łukasiewicz chain is an algebra
Łn = 〈Łn,⊕,�,∼, 1, 0〉 of type 〈2, 2, 1, 0, 0〉 where n > 1

and Łn =
{

k
n−1

∣∣∣ 0 ≤ k ≤ n− 1
}

, x⊕ y = min(1, x+ y),
x� y = max(0, x+ y− 1) and ∼x = 1− x. For all Łn we
define x →Łn y := ∼(x � ∼y) (it follows that x →Łn y =
min(1, 1−x+y)), x∧Łny := x�(x→Łn y) (= min(x, y)),
x ∨Łn y := (x→Łn y)→Łn y (= max(x, y)), and x v y iff
x ∨Łn y = y.
Example 2.2. For instance, Ł11 = {0, 0.1, . . . , 0.9, 1}; here
0.8� 0.6 = 0.4, 0.9� 0.9 = 0.8, and 0.9→Łn 0.6 = 0.7.

Hence,⊕ is (truncated) addition and� is the Łukasiewicz
t-norm. In general, ∼(x� y) = ∼x⊕∼y (the cost of x� y
is the truncated sum of the costs of x and y), x →Łn y =
∼x ⊕ y = 1 if x v y and = 1 − x + y otherwise. The
Łukasiewicz implication operator→Łn is also known as the
residual of the Łukasiewicz t-norm operation since we have
the following residuation law: x � y v z iff x v y →Łn z.
We define x↔Łn y := (x→Łn y)∧Łn (y →Łn x); x0 := 1;
xn+1 := xn � x; 0x := 0 and (n+ 1)x := nx⊕ x.
Lemma 2.3. In each Łn,

1. xn =

{
1 if x = 1

0 if x 6= 1
2. nx =

{
1 if x > 0

0 if x = 0

We will often rely on following properties of Łukasiewicz
chains without explicit reference:
Lemma 2.4. The following holds in each Łukasiewicz
chain:

1. x→Łn y = 1 iff x v y
2. x→Łn (y →Łn z) v y →Łn (x→Łn z)

3. x→Łn (y →Łn z) = (x� y)→Łn z

4. ∼∼x = x

5. (x→Łn y) ∧Łn (x→Łn z) = x→Łn (y ∧Łn z)

6. (x→Łn z) ∧Łn (y →Łn z) = (x ∨Łn y)→Łn z

7. x� (y ∨Łn z) = (x� y) ∨Łn (x� z)
Let P be a countable set of propositional variables

p0, p1, The propositional language Pn (which we iden-
tify with the set of its formulas) is defined by:

ϕ := p | c | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ

where p ∈ P and c ∈ Łn. We define ¬ϕ := ϕ → 0,
ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ), ϕ&ψ := ¬(ϕ → ¬ψ),
and ϕ ⊕ ψ := ¬ϕ → ψ. Let ϕ0 := 1̄ and ϕn+1 := ϕn&ϕ;
let 0ϕ := 0̄ and (n+ 1)ϕ := nϕ⊕ ϕ.

A Łn-valuation is any v : Pn → Łn such that (i) v(c̄) = c
and (ii) v(ϕ ? ψ) = v(ϕ) ?Łn v(ψ) for ? ∈ {∧,∨,→}. A
function from any L ⊇ Pn to Łn satisfying (i, ii) will be
called an Łn-homomorphism from L to Łn.

A formula ϕ ∈ Pn is a Łn-consequence of a set of formu-
las Γ ⊆ Pn iff, for each Łn-valuation v, if v(ψ) = 1 for all
ψ ∈ Γ, then v(ϕ) = 1.
Definition 2.5. For each n ≥ 2, the Hilbert-style proof sys-
tem Łn is defined as follows. The axiom schemata are:

(Łn1) ϕ→ (ψ → ϕ)

(Łn2) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))

(Łn3) (¬ϕ→ ¬ψ)→ (ψ → ϕ)

(Łn4) ((ϕ→ ψ)→ ψ)→ ((ψ → ϕ)→ ϕ)

(Łn5) c ?Łn d↔ (c̄ ? d̄), for ? ∈ {∧,∨,→}
The sole rule of inference is Modus Ponens. The proof sys-
tem in fact coincides with the axiomatization of Rational
Pavelka Logic (Hájek 1998), with the exception that our set
of constants {c̄ | c ∈ Łn} is finite.

We say that ϕ is derivable from Γ in Łn iff there is a finite
sequence of formulas ψ0, . . . , ψm−1 such that ψm−1 = ϕ
and each ψi for i < m is either an instance of an axiom
schema, an element of Γ or is derived from some previous
formulas by Modus Ponens. (Notation: Γ `Łn ϕ.)

Theorem 2.6. ϕ is a Łn-consequence of Γ iff Γ `Łn
ϕ.

Proof. The proof mimics the completeness proof for Ratio-
nal Pavelka Logic in (Hájek 1998), we omit the details. (The
key step in the proof is a Truth Lemma saying that, if Γ is
a complete and consistent theory—that is, Γ 6`Łn

0̄ and if
Γ 6`Łn

ϕ → ψ, then Γ `Łn
ψ → ϕ—then the function

vΓ : ϕ 7→ max{c | Γ `Łn c̄ → ϕ} is a Łn-valuation such
that vΓ[Γ] = {1}.)

An Łn-valued binary relation on a set S is a function
from S × S to Łn. Generalizations of the usual opera-
tions on binary relations are defined as expected: (i) Iden-
tity relation ι(s, t) = 1 if s = t and = 0 otherwise;
(ii) Union (R ∪ Q)(s, t) = R(s, t) ∨Łn Q(s, t); (iii) Com-
position (R ◦ Q)(s, t) =

∨Łn {R(s, u)�Q(u, t) |u ∈ S};
(iv) Finite iteration R0 = ι, Rn+1 = Rn ◦ R; (v) Transi-
tive closure R+ =

∨Łn {Rn |n > 0}; (vi) Reflexive transi-
tive closure R∗ =

∨Łn {Rn |n ≥ 0}. (Note that arbitrary
unions are well defined since Łn is finite.) Alternatively,
R+(s, t) =

∨
σ∈S∗ Rsσt, where S∗ is the set of all finite se-

quences of elements of S, including the empty sequence ∅,
and whereRsσt is defined by induction on the length of σ by
settingRs∅t := R(s, t) andRs(σ_u)t := Rsσu�R(u, t),
where σ_u is the result of appending u to the end of se-
quence σ. It is clear that R∗(s, t) = ι(s, t) ∨Łn R+(s, t).

Let T, S be two sets. We lift the Łn operations to
functions f, g, . . . from T × S to Łn by defining (f ⊕
g)(t, s) = f(t, s)⊕ g(t, s), (f � g)(t, s) = f(t, s)� g(t, s),
(∼f)(t, s) = ∼f(t, s), 1(t, s) = 1 and 0(t, s) = 0.

3 Propositional Dynamic Logic Over Łn

LetA be a countable set of program variables a0, a1, Let
Łn be a finite Łukasiewicz chain. The sets of programs Πn

and formulas Φn of the dynamic language Ln are defined by
mutual induction as follows:

• Πn α := a | α ∪ α | α;α | α∗ | ϕ?

• Φn ϕ := p | c | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ |[α]ϕ
where a ∈ A, p ∈ P and c ∈ Łn. We apply to Ln all
the definitions and conventions adopted for Pn; moreover,
we define <α>ϕ := ¬[α]¬ϕ. An Ln-expression is any
element of Πn ∪ Φn.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

572

Definition 3.1. A Łn-frame is F = (S,E), where S 6= ∅
and E is a function from N to Łn-valued binary relations on
S. A Łn-model based on F = (S,E) is M = (S,E, V),
where V is a function from N to functions from S to Łn.
For any M, the M-interpretation function IM is a function(
(Πn × S × S) ∪ (Φn × S)

)
→ Łn such that (Rα is a Łn-

valued binary relation defined by Rα(s, t) := IM(α, s, t))

• IM(pi, s) = V (i)(s);
• IM(c̄, s) = c;
• IM(ϕ ? ψ, s) = IM(ϕ, s) ?Łn IM(ψ, s)

for ? ∈ {∧,∨,→};
• IM([α]ϕ, s) =

∧Łn

t∈S
(
IM(α, s, t)→Łn IM(ϕ, t)

)
;

• IM(ai, s, t) = E(i)(s, t);
• IM(α ∪ β, s, t) = (Rα ∪Rβ)(s, t);
• IM(α;β, s, t) = (Rα ◦Rβ)(s, t);
• IM(α∗, s, t) = (Rα)∗(s, t)

• IM(ϕ?, s, t) =

{
IM(ϕ, s) if s = t;

0 otherwise.

A formula ϕ is valid in M iff IM(ϕ, s) = 1 for all s ∈ S; a
formula ϕ is valid in F iff it is valid in each M based on F.
PDŁn ⊆ Φn is the set of formulas valid in all Łn-frames. A
formula ϕ is satisfiable in a class of frames iff IM(ϕ, s) > 0
for some s in M based on a F in the class; that is, iff ¬ϕ is
not valid in the class.

If M is understood from the context, we will often write
α/st instead of IM(α, s, t) and ϕ/s instead of IM(ϕ, s).

Note that we have the following in all M:

IM(<α>ϕ, s) = 1−min
{
α/st →Łn (1− ϕ/t) | t ∈ S

}
= 1−min {∼α/st ⊕∼ϕ/t | t ∈ S}
= max {∼ (∼α/st ⊕∼ϕ/t) | t ∈ S}
= max {α/st � ϕ/t | t ∈ S}

4 A Practical Example
In this section we discuss the informal interpretation PDŁn
in more detail. We also hint at possible knowledge represen-
tation applications by means of a practical example.

The value of α/st may be seen as the truth degree of the
statement “t is easily accessible from s by α” where “easily
accessible” is understood as a graded relation. This means
that 1−α/st can be seen as the cost, as discussed in Section
2.1, of accessing t from s via α. If this cost is absolute, i.e.
equal to 1, then we may say that t is not accessible from s
via α; if it is equal to 0, then we may say that t is accessible
from s via α for free.

Example 4.1. Imagine a robot in the starting position s to
the left of a row of three tables, with boxes on top of them;
see Figure 4.1. Assume that the robot needs 10 seconds to
move between s and the first table, t1, by performing the ac-
tion right, and similarly for moving further right to the other
tables. With a particular time-frame in mind, this could be
modelled by associating a cost of 0.1 with each right transi-
tion, depicted as a right-pointing arrow in the picture; note
that if the cost is 0.1, then the truth degree of “the robot can

s

0

t1

0.5

t2

0.9

t3

0.3

u3

0

u2

0

u1

0

0.9 0.9 0.9

0.80.8

0.9 0.8 1

0.8

Figure 1: A box world example.

access ... from ... easily by moving right”—where “easily”
may be understood as “quickly”—is 0.9. Assume further-
more that the box on top of table 1 weights 10 kg, the one
on top of table 2 weights 15 kg and the one on top of table
3 weights 5 kg. With some particular capacity of the robot
in mind, this could be modelled by varying truth degrees as-
signed to the propositional variable Heavy, representing the
graded statement that there is a heavy box on the table in
the given position, for instance as indicated in the picture by
the numbers below the states in the bottom row (note that
there is no table in the starting position, so the truth degree
of Heavy in s is 0).5 The upward pointing arrows repre-
sent the action pick up of picking up the box from the table
(more precisely, the truth degree of “the robot can get easily
from ... to ... by picking up the box”); note that the cost
depends on the weight of the box. The left-pointing arrows
and the arrow from u1 to s represent the action left of mov-
ing left; note that the cost associated with each left transition
is bigger than the cost associated with right transitions since
we assume that the robot moves left while carrying a box.
Note also that the truth degree of Heavy in the ui states is 0
since the box is carried by the robot. (Here we simplify the
model by assuming that only one box gets picked up; how-
ever, the values of Heavy at ui will not matter in our further
discussion.) Assume furthermore that we have a proposi-
tional variable End, whose truth degree is 1 at s and 0 at all
the other states. (The example is heavily idealised and many
possible transitions are left out for the sake of simplicity.)

Let us now discuss the interpretation of modal formulas,
before using them to express various interesting features of
Example 4.1. Take any states s, t in an arbitrary model M,
any program α and formula ϕ. The value of α/st →Łn ϕ/t
is equal to ∼(α/st) ⊕ ϕ/t, the (truncated) sum of the cost
of accessing t from s by α and the truth degree of ϕ in t.
Hence, α/st →Łn ∼(ϕ/t) is ∼(α/st) ⊕ ∼(ϕ/t), which we
may understand as the cost sum of accessing t from s via α
and obtaining ϕ at t. This means that the value of[α]¬ϕ
at s is the minimal cost sum of obtaining ϕ via α. Let us
write MinCost(α,ϕ) instead of[α]¬ϕ. (Because of space
limitations, we will not discuss interpretations of other com-
binations of modality and propositional connectives and we
will focus only on the most intuitive one.)

5Since our language is propositional, we cannot express state-
ments about the weight of objects on tables in ti in a non-
indexical way, e.g. as Heavy(object on table(ti)). Extensions of
the present framework to fragments of first-order dynamic logic are
a natural topic of future work.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

573

Returning to Example 4.1, consider the Kleene star of
right, representing the action of moving right some finite
number of steps. We have (taking Ł11 as our algebra of truth
degrees):

v s t1 t2 t3 ui
right∗/sv 1 0.9 0.8 0.7 0
Heavy/v 0 0.5 0.9 0.3 0

∼(right∗/sv)⊕ 1 0.6 0.3 1 1∼(Heavy/v)

and so MinCost(right∗,Heavy)/s = 0.3. Hence, the mini-
mal cost the robot needs to “pay” when the goal is “to get
quickly to a table with a heavy box on top of it”, and the
space of actions considered is to move right some finite num-
ber of steps, is 0.3.

The MinCost construction allows to express information
that is crucial in deciding between various courses of action.
The implication connective adds to this expressivity explicit
means of comparison, as indicated by the following. Let ϕn
stand for MinCost(rightn,Heavy) and recall that x →Ł11

y = 1 if x v y and otherwise x →Ł11 y = 1 − x + y. For
instance, the value of

MinCost(right,Heavy)→ MinCost(right∗,Heavy)

at s is 0.6 →Ł11 0.3 = 0.7, indicating that the robot can do
better than moving right one step, i.e. that one is not the op-
timal number of steps. However, the truth degree 0.7 carries
finer-grained information, namely, how close to the optimum
taking one step is. Note that the value of

MinCost(right3,Heavy)→ MinCost(right∗,Heavy)

at s is 1 →Ł11 0.3 = 0.3; that is, both right and right3 are
not optimal, but right is closer.

As a more complex example, consider

α = right∗ ; pick up ; left∗

expressing the action of moving a finite number of steps
to the right, then picking up a box from the table, and
then moving a finite number of steps to the left. We have
MinCost(α,End)/s = 0.4, the “optimal instance” being
right ; pick up ; left. Hence, if the goal is to “get quickly
to a box, pick it up easily and get back quickly”, then the
optimal action is to go via t1. However, if the goal takes into
account also the weight of the retrieved box, say “get quickly
to a heavy box, pick it up easily and get back quickly”, then
the situation changes. Consider the program

β = right∗ ; Heavy? ; pick up ; left∗ .

It is easily checked that MinCost(β,End)/s = 0.9 but now
the instances β1 = right ; Heavy? ; pick up ; left and β2 =
right2 ; Heavy? ; pick up ; left2 are equally optimal, as the
values of both

MinCost(β1,End)→ MinCost(β,End)

MinCost(β2,End)→ MinCost(β,End)

at s are 1.

Finally, let us remark that truth-degree constants c̄ for c ∈
Łn are useful in expressing the degrees to which some costs
exceed specific thresholds. In Example 4.1 we have(

MinCost(α,End)→ 0.5
)
/s = 1(

MinCost(β,End)→ 0.5
)
/s = 0.6

One way to read formulas of the form MinCost(α,ϕ)→ c̄ is
“The minimal cost of accessing ϕ via α does not exceed the
threshold c much”. In many settings the finer-grained infor-
mation specifying how much a threshold is exceeded is more
useful than information whether the threshold is exceeded.

5 Completeness and Decidability
In this section we establish that, for each n > 1, the valid-
ity problem for PDŁn is decidable (Theorem 5.12); this re-
sult is obtained via a recursive axiomatization result for each
PDŁn (Theorem 5.11) and proving that each PDŁn has the
finite model property—if ϕ is not valid in PDŁn, then there
is a finite model invalidating φ (Theorem 5.10).

Definition 5.1. For each n ≥ 2, let PDŁn be the Hilbert-
style proof system that extends Łn with axiom schemata

(A1) [α]1̄

(A2) [α]ϕ ∧[α]ψ →[α](ϕ ∧ ψ)

(A3) [α](c̄→ ϕ)↔ (c̄→[α]ϕ)

(A4) [α ∪ β]ϕ↔ ([α]ϕ ∧[β]ϕ)

(A5) [α;β]ϕ↔[α][β]ϕ

(A6) [α∗]ϕ↔ (ϕ ∧[α][α∗]ϕ)

(A7) [ϕ?]ψ ↔ (ϕ→ ψ)

and rules

(R1)
ϕ→ ψ

[α]ϕ→[α]ψ
(R2)

ϕ→[α]ϕ

ϕ→[α∗]ϕ

(A1–3) and (R1) come from the axiomatization of modal
logics over finite residuated lattices (Bou et al. 2011), the
rest is the standard axiomatization of crisp PDL.

Let f be a Łn-valuation of Φn; f is called PDŁn -correct
(or just n-correct) iff f(ϕ) = 1 for all theorems ϕ of PDŁn .
The following lemma shows that all theorems are valid.

Lemma 5.2. For each Łn-model M and each s in M, the
function es defined by es(ϕ) = IM(ϕ, s), is an n-correct
Łn-valuation.

Proof. The function es is a Łn-valuation by definition. The
fact that it is n-correct is established by routine induction on
the length of proofs. The base case follows easily from the
definitions (e.g. clearly Rα∗st = ι(s, t)∨Łn (Rα ◦Rα∗)st).
We prove that (R2) preserves validity; the argument is anal-
ogous to the one that applies in the crisp case. Assume
that ϕ/s v [α]ϕ/s for all s in some fixed M. Clearly
ϕ/u v ι(u, t) →Łn ϕ/t for all u and t. Moreover, it
can be shown by easy induction on the length of finite se-
quences of states in M, that ϕ/u v (Rα)+st →Łn ϕ/t for
all t. Hence, ϕ/u v min{(ι(u, t)∨Łn (Rα)+ut)→Łn ϕ/t},
which means that (ϕ→[α∗]ϕ)/u = 1 for any u in M.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

574

Definition 5.3. For any n, the structure In = (Sn, In) con-
sists of the set Sn of all n-correct valuations and a func-
tion In such that In(ϕ, s) = s(ϕ) for all s ∈ Sn and
In(α, s, t) =

∧Łn

ϕ∈Φn

{
s([α]ϕ)→Łn t(ϕ)

}
. The canonical

PDŁn -model is Mn = (Sn, En, Vn) where En(i)(s, t) =
In(ai, s, t) and Vn(i)(s) = In(pi, s).

As witnessed already in the classical case n = 2, proper-
ties of the Kleene star operator preclude us from establish-
ing that In(ϕ, s) = IMn

(ϕ, s) for all ϕ ∈ Φn and thus to
prove completeness of PDŁn with respect to Łn-frames us-
ing the canonical model technique. As is well-known for
n = 2, completeness can be established using filtration of
the canonical model. We show here that the filtration argu-
ment can be generalized to arbitrary n ∈ N. (Filtrations in
the context of many-valued logic were studied previously in
(Conradie, Morton, and Robinson 2017).)

A set of formulas Γ is Fischer-Ladner closed if (i) it con-
tains all subformulas of all ϕ ∈ Γ; (ii) it contains [α]ϕ
and [β]ϕ if [α ∪ β]ϕ ∈ Γ; (iii) it contains [α][β]ϕ if
[α;β]ϕ ∈ Γ; (iv) it contains [α][α∗]ϕ if [α∗]ϕ ∈ Γ;
(v) it contains ψ → ϕ if[ψ?]ϕ ∈ Γ. The Fischer-Ladner
closure of Γ, FL(Γ), is the smallest Fischer-Ladner closed
set containing Γ as a subset; we write FL(ϕ) for FL({ϕ}).

For any s, t ∈ Sn, we define

s ≈Γ t ⇐⇒ ∀ϕ ∈ Γ(s(ϕ) = t(ϕ))

(Hence, ≈Γ is a crisp (two-valued) relation on Sn.) We de-
note the equivalence class of s under ≈Γ as |s|Γ.
Definition 5.4. Let Γ be an arbitrary finite Fischer-Ladner
closed subset of Φn. The filtration of Mn through Γ is
MΓ
n = (SΓ

n , E
Γ
n , V

Γ
n), where

• SΓ
n = {|s|Γ | s ∈ Sn}

• EΓ
n(i)(|s|Γ, |t|Γ) =∧Łn

{
s([ai]ϕ)→Łn t(ϕ) |[ai]ϕ ∈ Γ

}
• V Γ

n (i)(s) = Vn(i)(s) if pi ∈ Γ and = 0 otherwise.
IMΓ

n
is defined as for Łn-models. We will write In instead

of IMn
and IΓ

n instead of IMΓ
n

. When Γ is clear from the
context, we will usually write |s| instead of |s|Γ.
MΓ
n is a Łn-model by definition. To prove complete-

ness, we need to show that, for all ϕ ∈ Γ and all s ∈ Sn,
In(ϕ, s) = IΓ

n (ϕ, |s|).
In what follows, we write Rαst instead of In(α, s, t) and

RΓ
α|s||t| instead of IΓ

n (α, |s|, |t|).
In proofs by induction on the complexity of expressions,

we use the following complexity measure Co:
(i) Co(p) = Co(a) = 0;

(ii) Co(c̄) = 1;
(iii) Co(ϕ?ψ) = Co(ϕ) +Co(ψ) + 1, for ? ∈ {∧,∨,→};
(iv) Co([α]ϕ) = Co(α) + Co(ϕ) + 1

(v) Co(α ∪ β) = Co(α) + Co(β) + 1;
(vi) Co(α;β) = Co(α) + Co(β) + 1;

(vii) Co(α∗) = Co(α) + 1;
(viii) Co(ϕ?) = Co(ϕ) + 1.

Lemma 5.5. The following holds for all n ∈ N, all α ∈ Πn,
and all s ∈ Sn:

1. For all ϕ ∈ Φn, s([α]ϕ) =
∧Łn

u∈Sn

{
Rαsu→Łn u(ϕ)

}
.

2. For all t ∈ Sn, Rαst =
∧Łn

ψ∈Φn

{
t(ψ) | s([α]ψ) = 1

}
.

Proof. This follows from the work of (Bou et al. 2011) on
modal logics over finite residuated lattices; see Lemma 4.8
(the first claim) and Prop. 4.1 (the second claim) in (Bou et
al. 2011). The proofs given in that paper apply to our case
since Łn is finite and we have a strongly complete axioma-
tization of Łn-consequence by Theorem 2.6.

Definition 5.6. For all n, α ∈ Πn and s ∈ Sn, and for all
finite closed sets Γ, we define

Rn,Γα s :=
∨
x∈Sn

(
RΓ
α|s||x| &

∧
ϕ∈Γ

(
x(ϕ)↔ ϕ

)n)
.

If n and Γ are clear from the context, then we write justRαs.

Lemma 5.7. Fix any n, a finite Fischer-Ladner closed Γ and
s ∈ Sn. Then, for all t ∈ Sn, t(Rαs) = RΓ

α|s||t|.

Proof. Clearly

t(Rαs) =

Łn∨
x∈Sn

{
RΓ
α|s||x| �

Łn∧
ϕ∈Γ

(
x(ϕ)↔Łn t(ϕ)

)n}
.

By Lemma 2.3, this equals
∨Łn

x∈Sn
{RΓ

α|s||x| | x ≈Γ t} =

RΓ
α|s||t|.

Lemma 5.8. s([α]Rαs) = 1 iff (∀t ∈ Sn)(Rαst v RΓ
αst).

Proof. s([α]Rαs) =
∧Łn

t∈Sn
{Rαst →Łn t(Rαs)} by

Lemma 5.5 and so s([α]Rαs) =
∧Łn

t∈Sn
{Rαst →Łn

RΓ
α|s||t|} by Lemma 5.7. This means that s([α]Rαs) = 1

iff Rαst v RΓ
α|s||t| as required.

Lemma 5.9. s(ϕ) = 1 for all s ∈ Sn iff ϕ is a theorem of
PDŁn .

Proof. The “if” implication holds by definition. Conversely,
if 6`PDŁn ϕ, then T 6`Łn ϕ, where T is the set of theorems of
PDŁn . (Otherwise T `PDŁn ϕ and so `PDŁn ϕ.) By Theo-
rem 2.6, there is a Łn-homomorphism h such that h(ψ) = 1
for all ψ ∈ T and h(ϕ) 6= 1. Hence, h ∈ Sn.

Theorem 5.10 (Filtration). The following holds for all n ∈
N and all finite closed Γ ⊆ Φn:

1. If ϕ ∈ Γ, then In(ϕ, s) = IΓ
n (ϕ, |s|).

2. Rαst v RΓ
α|s||t|.

3. If[α]ϕ ∈ Γ, then s([α]ϕ) v RΓ
α|s||t| →Łn t(ϕ).

Proof. Simultaneous induction on the complexity of expres-
sions, similar to the proof in the two-valued case.

The base cases follow easily from the definitions. The
cases of the induction step of the first claim dealing with
non-modal connectives are easy. For instance, In(c̄, s) =
s(c̄) = c = IΓ

n (c̄, s). The case of ϕ = [α]ψ follows from

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

575

the second and third claim of the lemma (which can be used
since Co(α) < Co([α]ψ)) and Lemma 5.5.

Now we establish the induction step of the second claim.
Assume that α = β∪γ. Then s([δ]Rδs) = 1 for δ ∈ {β, γ}
by the induction hypothesis and Lemma 5.8. By Lemma 5.5,
s([δ](Rβs∨Rγs)). By the definition of RΓ

β∪γ and Lemma
5.7, t(Rβ∪γs) = t(Rβs ∨ Rγs) and so s([δ]Rβ∪γs) = 1.
But this means that s([β ∪ γ]Rβ∪γs) = 1, which entails
Rβ∪γst v RΓ

β∪γ |s||t| by Lemma 5.8.
Let α = β; γ. Then, for all u, v ∈ Sn, Rβsu �

Rγuv v RΓ
β;γ |s||v| by the induction hypothesis and the def-

inition of RΓ
β;γ . By Lemma 5.7, this entails that Rβsu v∧Łn

w∈Sn
{Rγuw →Łn w(Rβ;γs)} and so, using Lemma 5.5,

1 =
(
Rβsu →Łn u([γ]Rβ;γs)

)
, which means, since u

is arbitrary, that 1 = s([β][γ]Rβ;γs) = s([β; γ]Rβ;γs).
Hence, Rβ;γst v RΓ

β;γ |s||t| for any t by Lemma 5.8.

Let α = β∗. It follows from the definition of RΓ
β∗ that

RΓ
β∗ |s||u|�RΓ

β |u||t| v RΓ
β∗ |s||t|, for all s, t, u ∈ Sn. By the

induction hypothesis and Lemma 5.7, u(Rβ∗s) � Rβut v
t(Rβ∗s). Since u is arbitrary, it follows that u(Rβ∗s →
[β]Rβ∗s) = 1 by Lemma 5.5 and so `PDŁn

Rβ∗s →
[β]Rβ∗s by Lemma 5.9. Using (R2), `PDŁn

Rβ∗s →
[β∗]Rβ∗s, which means that s(Rβ∗s) v s([β∗]Rβ∗s).
But s(Rβ∗s) = 1 by Lemma 5.7 and the definition of Rβ∗ .
Hence, s([β∗]Rβ∗s) = 1 and so Rβ∗st v RΓ

β∗ |s||t| by
Lemma 5.8.

Let α = ψ?. By the definition of RΓ
ψ?, IΓ(ψ, |s|) v

RΓ
ψ?|s||s|. Hence, s(ψ) v s(Rψ?s) by Lemma 5.7 and the

induction hypothesis (which may be used since Co(ψ) <
Co(ψ?)). It follows that s(ψ → Rψ?s) = 1 which, using
(A7), entails s([ψ?]Rψ?s). Hence, Rψ?st v RΓ

ψ?|s||t| by
Lemma 5.8.

Now we establish the induction step of the third claim.
Let α = β ∪ γ. If x v s([β ∪ γ]ϕ), then x v s([δ]ϕ) for
δ{β, γ} thanks to (A4). By the induction hypothesis and the
properties of Γ, x v RΓ

δ |s||t| →Łn t(ϕ) which, by definition
of RΓ

β∪γ entails that x v Rβ∪γ |s||t| →Łn t(ϕ).
Let α = β; γ. If x v s([β; γ]ϕ), then x v s([β][γ]ϕ)

thanks to (A5). By the induction hypothesis and the proper-
ties of Γ, x v RΓ

β |s||u| →Łn (RΓ
γ |u||t| →Łn t(ϕ)) for any

u. Hence, x v RΓ
β;β |s||t| →Łn t(ϕ) by definition of Rβ;γ .

Let α = β∗. If x v s([β∗]ϕ), then x v s(ϕ ∧
[β][β∗]ϕ). Hence, x v s(ϕ) and so x v RΓ

β∗ |s||s| →Łn

s(ϕ) by the definition of RΓ
β∗ . Now assume that |s| 6= |t|.

Hence, RΓ
β∗ |s||t| = (RΓ

β)+|s||t| =
∨Łn

σ∈(SΓ
n)∗(Rβ |s|σ|t|).

We prove that x v Rβ |s|σ|u| →Łn t([β∗]ϕ) for all u
and all σ ∈ (SΓ

n)∗ by induction on the length of σ. If
follows from this using (A6) that x v (RΓ

β)+|s||t| →Łn

t(ϕ). Now if σ = ∅, then we reason as follows. We
know that x v s([β][β∗]ϕ) and so, by the induc-
tion hypothesis, x v RΓ

β |s||t| →Łn t([β∗]ϕ), which
means that x v RΓ

β |s|∅|t| →Łn t(ϕ). Now assume that
x v RΓ

β |s|ρ|u| →Łn t([β∗]ϕ). Using (A6) we obtain

x v RΓ
β |s|ρ|u| →Łn t([β][β∗]ϕ) and so, by the induc-

tion hypothesis (of the third claim of the theorem), x v
RΓ
β |s|ρ|u| →Łn (RΓ

β |u||t| →Łn t([β∗]ϕ)). It follows that
x v Rβ |s|(ρ_u)|t| →Łn t([β∗]f).

Finally, let α = ψ?. If x v ([ψ?]ϕ), then x v s(ψ)→Łn

s(ϕ), which means that x v RΓ
ψ?|s||s| →Łn s(ϕ) by the

induction hypothesis and the definition of RΓ
ψ . Now take t

such that |s| 6= |t|. We know that (0 →Łn x) = 1 and so
clearly x v Rψ?|s||t| →Łn t(ϕ).

Theorem 5.11 (Completeness). For all n > 1, PDŁn is the
set of theorems of PDŁn .

Proof. Soundness follows from Lemma 5.2. Completeness
follows from Lemma 5.9 and Theorem 5.10 (for each non-
theorem ϕ, consider MΓ

n where Γ is the closure of {ϕ}).

Theorem 5.12 (Decidability). For all n > 1, PDŁn is a
decidable set.

Proof. PDŁn is recursively axiomatizable by Theorem 5.11
and it has the finite model property by Theorem 5.10—if ϕ
is not valid in some model M, then it is not valid in the finite
model MFL(ϕ).

6 Complexity
In this section we establish the complexity of the validity
problem for each PDŁn; it is shown that, in each case, the
problem is EXPTIME -complete.

6.1 A Deterministic Exponential-time Algorithm
We generalize Pratt’s deterministic exponential-time algo-
rithm (Pratt 1979; Harel, Kozen, and Tiuryn 2000) for
checking satisfiability in PDL (= PDŁ2) to PDŁn for ar-
bitrary n > 1.

Fix some n > 1 and χ ∈ Φn. Let Γ = FL(χ). For
|s|Γ ∈ SΓ

n , we define a function f|s|Γ : Γ → Łn by
f|s|Γ(ϕ) = s(ϕ); we often write fs instead of f|s|Γ . Let
N := {fs | |s|Γ ∈ SΓ

n}. Taking N as the universe, de-
fine the model N = (N,EN, VN) exactly as MΓ

n; that is,
EN(j)(h, g) =

∧Łn{h([aj]ϕ) →Łn g(ϕ) | [aj]ϕ ∈ Γ}
and VN(j)(h) = h(pj) if pj ∈ Γ and = 0 otherwise. Let
IN be defined as usual. It is clear that N is isomorphic to
M
FL(χ)
n . The question is how to generate N without going

via the (uncountable) canonical model Mn. This is the job
of Algorithm 1 shown on page 8.

The following is a generalization of Lemma 8.3 in (Harel,
Kozen, and Tiuryn 2000).

Lemma 6.1. Assume that N ⊆M , with E and I defined as
in Part 3 of Algorithm 1. Let θ ∈ Γ such that, for all[α]ϕ ∈
FL(θ) and all h ∈M , the condition (1) is satisfied. Then:

1. For all ψ ∈ FL(θ) and f ∈M , h(ψ) = I(ψ, h)

2. For all[α]ψ ∈ FL(θ) and all h, g ∈M :
(a) IN(α, h, g) v I(α, h, g);
(b) h([α]ψ) v I(α, h, g)→Łn g(ψ).

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

576

Proof. Simultaneous induction on the complexity of expres-
sions, with θ fixed. The base case of claim 1 holds by def-
inition of V . The non-modal claims of the induction step
are established easily using the induction hypothesis and the
fact that h ∈Mi are Łn-homomorphisms. The case of[α]ψ
is established using the induction hypothesis (claim 2b) ap-
plied to α and (claim 1) to ψ, and the assumption that (1)
holds for[α]ψ.

The base case of claim 2a follows from the definitions of
IN and I . The induction step is established easily using the
induction hypothesis and the assumption that N ⊆ M . The
case of test relies on Theorem 5.10.

The base case of claim 2b follows from the definition of I .
The induction step follows easily from the assumption that
[α]ψ satisfies (1) and the induction hypothesis.

Lemma 6.2. For each n and input χ ∈ Φn, Algorithm 1
terminates returning a Łn-model isomorphic to M

FL(χ)
n .

Proof. The algorithm clearly terminates as M0 is finite; part
2 of the algorithm applies a finite number of tests to each h ∈
M1 and part 3 terminates after a finite number of iterations.
Now let M be the output of the algorithm. We prove that
1. M = N and 2. IN(α, h, g) = I(α, h, g) for all f, g ∈
N . First, it is clear that N ⊆ M1 and that no h ∈ N gets
erased from M in part 3 of the algorithm (this is established
using Lemma 6.1, claim 2a); hence N ⊆ M after part 3
terminates. Second, take any g ∈ M . Since M is a model,
the function s : Φn → Łn defined by s(φ) := I(ϕ, h) is
a n-correct valuation by Lemma 5.2, and so s ∈ Sn. It
follows that g = h(f|s|Γ|) ∈ N . Hence, M ⊆ N . The
second claim follows directly from the definition of IN. As
observed before, N is (isomorphic to) MFL(χ)

n .

Theorem 6.3. There is a deterministic exponential-time al-
gorithm that decides if a given χ ∈ Φn is in PDŁn.

Proof. It follows from Theorems 5.10 and 5.11 that χ ∈
PDŁn iff χ is valid in M

FL(χ)
n . By Lemma 6.2, Algorithm

1 constructs a model N isomorphic to M
FL(χ)
n ; the algo-

rithm is easily seen to be terminating in time O(n|FL
′(χ)|).

Validity of χ in N can be checked in polynomial time. (See
(Fischer and Ladner 1979), Theorem 3.3 for the case n = 2;
the general case can be established similarly.)

6.2 A Lower Bound
The PDL validity problem is known to be EXPTIME -
complete (Fischer and Ladner 1979). In this section we
show that the validity problem for PDŁn is EXPTIME -
hard for all n > 1; we give for each n > 1 a translation τn
from L2, the classical language of PDL, to any Ln such that
ϕ ∈ PDL iff τn(ϕ) ∈ PDŁn.

In what follows, an Ł2-frame (model) will be called also
a crisp frame (model). Let M = (S,E, V) be a Łn-model
for any n ≥ 2. The crisp variant of M is the crisp model
Mc = (S,Ec, V c), where

• Ec(i)(s, t) = 1 if E(i)(s, t) = 1 and = 0 otherwise;

• V c(i)(s) = 1 if V (i)(s) = 1 and = 0 otherwise.

Algorithm 1 An algorithm that returns, on input χ ∈ Φn, a
model isomorphic to M

FL(χ)
n .

Input: A formula χ ∈ Φn. Return: A Łn-model M.
Part 1. Construct FL(χ); take FL′(χ), the set of ϕ ∈
FL(χ) such that either ϕ is a propositional variable, or ϕ
is a formula of the form[α]ψ; construct M0, the set of all
functions f : FL′({χ})→ Łn;

(Comment: The cardinality of M0 is n|FL
′(χ)|. Each

f ∈ M0 extends uniquely to a Łn-homomorphism h(f)
from FL(χ) to Łn and each such homomorphism is an
extension of some f ∈M0.)

Construct M1, the set of all Łn-homomorphisms from
FL(χ) to Łn, by extending each f ∈ M0 to a Łn-
homomorphism. End of Part 1.
Part 2. For all h ∈M1, check if h satisfies the following:
• if[α ∪ β]ϕ ∈ Γ, then

h([α ∪ β]ϕ) = min
(
h([α]ϕ), h([β]ϕ)

)
;

• if[α;β]ϕ ∈ Γ, then h([α;β]ϕ) = h([α][β]ϕ);
• if[α∗]ϕ ∈ Γ, then

h([α∗]ϕ) = min
(
h(ϕ), h([α][α∗]ϕ)

)
;

• if[ψ?]ϕ ∈ Γ, then h([ψ?]ϕ) = h(ψ → ϕ).
Construct M2, the set of all h ∈ M1 that satisfy these re-
quirements. End of Part 2.
Part 3. Let ∆ = {[α]ϕ ∈ FL′(χ) | α ∈ A or ∃β(α =
β∗)}; we assume that ∆ is ordered by Co(α), increasingly.
Set M := M2. Construct the Łn model M = (M,E, I)
where, for all h, g ∈M ,

• E(j)(h, g) =
∧Łn{h([aj]ϕ)→Łn g(ϕ) |[aj]ϕ ∈ Γ};

• V (j)(h) = h(pj) if pj ∈ Γ and = 0 otherwise;
• I is defined as usual.

Assume some ordering of M . Search for the first h ∈ M
such that there is[α]ϕ ∈ ∆ such that

Łn∧
g∈M

{
I(α, h, g)→Łn g(ϕ)

}
v h([α]ϕ) (1)

is not satisfied. Return M if no such h is found. Otherwise
let h be the first element of M found in the search; assign
M := M \ {h}, re-compute E, V and I , and repeat the
search.

(Comment: It can be easily checked that tests ψ? satisfy
(1) for all h and ϕ and if α, β satisfy (1) for all h and ϕ,
then so do α ∪ β and α;β. Hence we may work with ∆
instead of the set of all modal formulas in FL′(χ).)

IMc is defined as usual. It is clear that Mc is a crisp model
for each M.

For any n ≥ 2, let τn be the function from L2-expressions
to Ln-expressions defined as follows (? ∈ {∧,∨,→} and

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

577

† ∈ {∪, ; }):

τn(p) = pn τn(a) = a

τn(c) = c τn(α † β) = τn(α) † τn(β)

τn(ϕ ? ψ) = τn(ϕ) ? τn(ψ) τn(α∗) = τn(α)∗

τn([α]ϕ) = n
(
[τn(α)]τn(ϕ)

)
τn(ϕ?) = τn(ϕ)?

Lemma 6.4. Take any Łn-model M. For each ϕ ∈ Φ2,
α ∈ Π2 and s, t in M:

1. IMc(ϕ, s) = 1 iff IM(τn(ϕ), s) = 1;
2. IMc(α, s, t) = 1 iff IM(τ(α), s, t) = 1.

Proof. Simultaneous induction on the complexity of expres-
sions. We write Ic instead of IMc , I instead of IM and τ
instead of τn.

The base cases follow from the definition of Mc. In the
induction step for the first claim, we make use of the obvious
fact that I(τ(χ), s) ∈ {0, 1} for all χ ∈ L2 (hence the extra
n in the definition of τ([α]ϕ)). The claims for c,∧ and ∨
of the induction step are straightforward; moreover, Ic(ϕ→
ψ, s) = 1 iff Ic(ϕ, s) 6= 1 or Ic(ψ, s) = 1 iff I(τ(ϕ), s) 6= 1
or I(τ(ψ), s) = 1 (by the induction hypothesis) iff I(τ(ϕ→
ψ), s) = 1. Note that the last equivalence does not hold if
it is not guaranteed that I(τ(χ), s) ∈ {0, 1} for all χ ∈ L2.
The modal case is established as follows:

Ic([α]ϕ, s) 6= 1

⇐⇒ ∃t ∈ S
(
Ic(α, s, t) = 1 & Ic(ϕ, t) = 0

)
⇐⇒ ∃t ∈ S

(
I(τ(α), s, t) = 1 & I(τ(ϕ), t) 6= 1

)
⇐⇒ ∃t ∈ S

(
I(τ(α), s, t) = 1 & I(τ(ϕ), t) = 0

)
⇐⇒

Łn∧
t∈S

{
I(τ(α), s, t)→Łn I(τ(ϕ), t)

}
= 0

⇐⇒ I([τ(α)]τ(ϕ), s) = 0 ⇐⇒ I(n([τ(α)]τ(ϕ)), s) = 0

⇐⇒ I(τ([α]ϕ), s) 6= 1

The second equivalence uses the induction hypothesis (for
both claims), the third one uses the fact that I(τ(ϕ), t) ∈
{0, 1} and the sixth one uses Lemma 2.3.

The cases for ∪, ; and ∗ in the induction step for the sec-
ond claim are straightforward; moreover, Ic([ψ?]ϕ) = 1
iff s = t and Ic(ψ, t) = 1 iff s = t and I(τ(ψ), t) = 1 iff
I(τ(ψ)?, s, t) = 1.

Lemma 6.4 implies that IM(ϕ, s) = IMc(ϕ, s) if ϕ is a
L2-formula and M is a Ł2 model, since then Mc = M.

Lemma 6.5. For all ϕ ∈ L2, ϕ ∈ PDL iff τn(ϕ) ∈ PDŁn.

Proof. If ϕ 6∈ PDL, then there is a Ł2-model C such that
IC(¬ϕ, s) = 1 for some s and so IC(τn(¬ϕ), s) = 1 for all
n by Lemma 6.4. Hence, for all n there is a Łn-model M
(namely, C) such that IM(¬τn(ϕ), s) = 1. Hence, by The-
orem 5.11, τn(ϕ) 6∈ PDŁn. Conversely, if τn(ϕ) 6∈ PDŁn,
then there is a Łn-model M such that IM(τn(ϕ), s) < 1 for
some s in M by Theorem 5.11. Hence, IM(τn(¬ϕ), s) > 0,
which means that IM(τn(¬ϕ), s) = 1. It follows by Lemma
6.4 that IMc(¬ϕ, s) = 1 and so ϕ 6∈ PDL.

Theorem 6.6. For each n, the problem whether ϕ ∈ PDŁn
is EXPTIME -hard.

Proof. Lemma 6.5 and the known fact that the satisfiability
(and so the validity) problem for PDL is EXPTIME -hard.

7 Conclusion
We studied many-valued propositional dynamic logics based
on relational models where both satisfaction of formulas in
states and accessibility between states are evaluated in a fi-
nite Łukasiewicz chain. For each PDŁn where n > 1, we
provided a sound and weakly complete recursive axioma-
tization and established its decidability using filtration; we
generalized Pratt’s exponential-time algorithm for check-
ing validity in PDL (= PDŁ2) to arbitrary n > 1 and
we have shown that the validity problem for each PDŁn
is EXPTIME -hard by finding embeddings from PDL into
PDŁn. This work extends the sparse existing results on
many-valued dynamic logics and, we believe, lays the
groundwork for future developments and applications.

Many interesting problems remain open; let us mention
just two here. Firstly, it would be interesting to extend our
results to many-valued dynamic logic based on infinitely-
valued Łukasiewicz logic. An inspection of our complete-
ness proof reveals that we have relied on finiteness of Łn
and so our technique does not seem to be applicable to log-
ics using Ł, the uncountable Łukasiewicz chain based on the
real interval [0, 1]. Secondly, in light of the suggestion of
(Hájek 1998; Hájek, Godo, and Esteva 1995; Hájek, Godo,
and Esteva 2000) to use many-valued modal logic to formal-
ize reasoning about probabilities, it is interesting to explore
versions of many-valued dynamic logic formalizing reason-
ing about probabilistic actions.6 A first step toward this goal
would be an exploration of dynamic logics extending com-
binations of infinitely-valued Łukasiewicz logic (or Ratio-
nal Pavelka logic) with Product logic, and their two-layered
modal extensions developed to formalize reasoning about
probabilities in (Hájek 1998; Hájek, Godo, and Esteva 1995;
Hájek, Godo, and Esteva 2000).

Acknowledgements
This work was supported by the Czech Science Foundation
grant GJ18-19162Y for the project Non-Classical Logical
Models of Information Dynamics. The author is grateful to
three anonymous reviewers for valuable suggestions.

References
Baader, F. 1991. Augmenting concept languages by transi-
tive closure of roles: An alternative to terminological cycles.

6As explained in (Hájek, Godo, and Esteva 1995) for instance,
truth degrees differ from probabilities; however, one can consider
statements such as “p is probable” or “it is probable that a will ter-
minate in a state satisfying p” as statements admitting truth degrees
determined by the underlying probabilities—see also (Hughes, Es-
terline, and Kimiaghalam 2006) for a many-valued dynamic logic
reflecting this interpretation.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

578

In Proc. 12th International Joint Conference on Artificial In-
telligence (IJCAI’91), 446–451.
Bacchus, F.; Halpern, J. Y.; and Levesque, H. J. 1999. Rea-
soning about noisy sensors and effectors in the situation cal-
culus. Artificial Intelligence 111(1-2):171–208.
Běhounek, L. 2008. Modeling costs of program runs in
fuzzified propositional dynamic logic. In Hakl, F., ed., Dok-
torandské dny ’08, 11–18. ICS AS CR and Matfyzpress.
Blackburn, P.; de Rijke, M.; and Venema, Y. 2001. Modal
Logic. Cambridge University Press.
Bou, F.; Esteva, F.; Godo, L.; and Rodrı́guez, R. O. 2011. On
the minimum many-valued modal logic over a finite residu-
ated lattice. Journal of Logic and Computation 21(5):739–
790.
Cintula, P.; Noguera, C.; and Smith, N. J. J. 2017. A log-
ical framework for graded predicates. In Baltag, A.; Selig-
man, J.; and Yamada, T., eds., Proc. 6th International Work-
shop on Logic, Rationality and Interaction (LORI’17), 3–16.
Springer.
Conradie, W.; Morton, W.; and Robinson, C. 2017. Filtra-
tions for many-valued modal logic with applications. Pre-
sentation at TACL 2017, Prague.
Di Nola, A.; Grigolia, R.; and Vitale, G. 2020. Dynamic
Łukasiewicz logic and dynamic MV-algebras. International
Journal of Approximate Reasoning 124:103–110.
Fagin, R.; Halpern, J. Y.; Moses, Y.; and Vardi, M. Y. 1995.
Reasoning About Knowledge. MIT Press.
Fischer, M. J., and Ladner, R. E. 1979. Propositional dy-
namic logic of regular programs. Journal of Computer and
System Sciences 18:194–211.
Grigolia, R. 1977. Algebraic analysis of Łukasiewicz-
Tarski’s n-valued logical systems. In Wójcicki, R., and Ma-
linowski, G., eds., Selected Papers on Łukasiewicz Senten-
tial Calcuuli. Polish Academy of Sciences. 81–92.
Hájek, P.; Godo, L.; and Esteva, F. 1995. Fuzzy logic and
probability. In Proc. 11th Conference on Uncertainty in Ar-
tificial Intelligence (UAI’95), 237–244.
Hájek, P.; Godo, L.; and Esteva, F. 2000. Reasoning
about probability using fuzzy logic. Neural Network World
10(5):811–824.
Harel, D.; Kozen, D.; and Tiuryn, J. 2000. Dynamic Logic.
MIT Press.
Hughes, J.; Esterline, A.; and Kimiaghalam, B. 2006.
Means-end relations and a measure of efficacy. Journal of
Logic, Language and Information 15(1):83–108.
Hájek, P. 1998. Metamathematics of Fuzzy Logic. Kluwer.
Kozen, D., and Parikh, R. 1981. An elementary proof of
the completeness of PDL. Theoretical Computer Science
14:113–118.
Kozen, D. 1985. A probabilistic PDL. Journal of Computer
and System Sciences 30(2):162 – 178.
Laverny, N., and Lang, J. 2005a. From knowledge-based
programs to graded belief-based programs, part II: Off-line
reasoning. In Proc. 19th International Joint Conference on

Artificial Intelligence (IJCAI’05), IJCAI’05, 497–502. Mor-
gan Kaufmann Publishers Inc.
Laverny, N., and Lang, J. 2005b. From knowledge-based
programs to graded belief-based programs, part I: On-line
reasoning. Synthese 147(2):277–321.
Liau, C.-J. 1999. Many-valued dynamic logic for qualitative
decision theory. In Zhong, N.; Skowron, A.; and Ohsuga,
S., eds., New Directions in Rough Sets, Data Mining, and
Granular-Soft Computing, 294–303. Springer Berlin Hei-
delberg.
Madeira, A.; Neves, R.; and Martins, M. A. 2016. An exer-
cise on the generation of many-valued dynamic logics. Jour-
nal of Logical and Algebraic Methods in Programming 85(5,
Part 2):1011–1037. Articles dedicated to Prof. J. N. Oliveira
on the occasion of his 60th birthday.
McCarthy, J. 1963. Situations, actions and causal laws.
Technical report, Stanford University.
Meyer, J.-J. C.; van der Hoek, W.; and van Linder, B. 1999.
A logical approach to the dynamics of commitments. Artifi-
cial Intelligence 113(1-2):1–40.
Meyer, J.-J. C. 1987. A different approach to deontic logic:
deontic logic viewed as a variant of dynamic logic. Notre
Dame Journal of Formal Logic 29(1):109–136.
Meyer, J.-J. C. 2000. Dynamic logic for reasoning about
actions and agents. In Minker, J., ed., Logic-Based Artificial
Intelligence. Springer US. 281–311.
Mio, M., and Simpson, A. 2017. Łukasiewicz µ-calculus.
Fundamenta Informaticae 150(3-4):317–346.
Pratt, V. R. 1979. Models of program logics. In Proc.
20th Annual Symposium on Foundations of Computer Sci-
ence (FOCS’79), FOCS ’79, 115–122. IEEE Computer So-
ciety.
Reiter, R. 2001. Knowledge in Action: Logical Foundations
for Specifying and Implementing Dynamical Systems. The
MIT Press.
Rosenschein, S. J. 1981. Plan synthesis: A logical perspec-
tive. In Proc. 7th International Joint Conference on Artificial
Intelligence (IJCAI’81), 331–337.
Sedlár, I. 2020. Finitely-valued propositional dynamic logic.
In Olivetti, N.; Verbrugge, R.; Negri, S.; and Sandu, G., eds.,
Proc. 13th International Conference on Advances in Modal
Logic (AiML’20), 561–579. College Publications.
Smith, N. J. J. 2008. Vagueness and Degrees of Truth. Ox-
ford University Press.
Spalazzi, L., and Traverso, P. 2000. A dynamic logic for
acting, sensing, and planning. Journal of Logic and Compu-
tation 10(6):787–821.
Teheux, B. 2014. Propositional dynamic logic for searching
games with errors. Journal of Applied Logic 12(4):377–394.
van der Hoek, W., and Meyer, J. J. C. 1992. Graded modali-
ties in epistemic logic. In Nerode, A., and Taitslin, M., eds.,
Proc. 2nd International Symposium on Logical Foundations
of Computer Science (LFCS’92), 503–514. Springer Berlin
Heidelberg.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

579

van der Hoek, W.; van Linder, B.; and Meyer, J.-J. C.
1994. A logic of capabilities. In Proc. 3rd International
Symposium on Logical Foundations of Computer Science
(LFCS’94), 366–378. Springer.
Wooldridge, M. J. 2000. Reasoning about Rational Agents.
The MIT Press.
Zhang, X.; Jiang, M.; Zhou, C.; and Hao, Y. 2012. Graded
BDI models for agent architectures based on łukasiewicz
logic and propositional dynamic logic. In Wang, F. L.;
Lei, J.; Gong, Z.; and Luo, X., eds., Proc. 4th Interna-
tional Conference on Web Information Systems and Mining
(WISM’12), 439–450. Springer Berlin Heidelberg.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

580

	Introduction
	Truth Degrees and Finite Łukasiewicz Chains
	Modelling Truth Degrees
	Finite Łukasiewicz Chains

	Propositional Dynamic Logic Over Łn
	A Practical Example
	Completeness and Decidability
	Complexity
	A Deterministic Exponential-time Algorithm
	A Lower Bound

	Conclusion

