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Abstract

Argumentation in Artificial Intelligence (AI) builds on formal
approaches to reasoning argumentatively. Common to many
such approaches is to use argumentation frameworks (AFs)
as reasoning engines, with AFs being composed of arguments
and attacks between arguments, which are instantiated from
knowledge bases in a principle-based manner. While repre-
senting what can be argued for in an AF provides a conceptu-
ally clean way, this process can face challenges arising from
generating a large number of arguments, which can act as a
barrier to explainability. Inspired by successful approaches
to model checking where the state explosion is mitigated by
applying existential abstraction, we study an adaption of ex-
istential abstraction in form of clustering arguments in an AF
to address an associated ”argument explosion”. In this pa-
per, we provide a foundational investigation of this form of
existential abstraction by defining semantics of the resulting
clustered AFs, which balance two inherent aspects of exis-
tential abstractions: abstracting from concrete AFs and not
permitting too much spuriousness (i.e., conclusions that hold
on the abstraction but not on the original AF). Moreover, we
show properties of clustered AFs, including complexity re-
sults, discuss use of clusterings for explaining results of rea-
soning tasks, and employ the recently introduced methodol-
ogy of abstraction in answer set programming (ASP) for ob-
taining and reasoning over clustered AFs.

1 Introduction
Computational models of argumentation (Baroni et al. 2018)
provide versatile formal approaches to non-monotonic and
argumentative reasoning within Artificial Intelligence (AI),
and find heterogeneous application venues such as in le-
gal and medical reasoning (Atkinson et al. 2017). In or-
der to provide rational accounts of what can be argued for,
approaches to what is called structured argumentation pre-
scribe formal workflows to argumentative reasoning. From
a knowledge base ways of generating arguments and their re-
lationships are defined. Based on these acceptable sets of ar-
guments can be identified. The most prominent approach to
model arguments and their relations is to use argumentation
frameworks (AFs) (Dung 1995), which consist of arguments
and a binary attack relation between arguments, interpreted
as a counter-argument relation. Argumentation semantics
specify criteria to find sets of arguments in an AF that can
be deemed acceptable, from an argumentative standpoint.

A prominent criterion for argumentation semantics is that
of admissibility. A set of arguments in an AF is called ad-
missible if this set is conflict-free (no attacks between argu-
ments in the set), and each attack onto this set is countered
from inside the set. As an example for an important reason-
ing task, one can ask whether an argument is credulously
accepted under admissibility, i.e., whether there is an ad-
missible set containing this argument (implying that one can
coherently argue in favour of this argument).

While formal workflows to obtain AFs allow for satis-
faction of rationality postulates in subsequent argumenta-
tive reasoning (Caminada 2018), current approaches to AF
construction face the inherent challenge of generating large
AFs. For instance, the number of arguments in an AF might
not be polynomially bounded by (the size of) a knowledge
base the AF was constructed from, even when considering
optimizations or restrictions (Yun, Vesic, and Croitoru 2018;
Amgoud, Besnard, and Vesic 2014; Lehtonen, Wallner, and
Järvisalo 2017). Recent competitions (Thimm and Villata
2017; Gaggl et al. 2020; Bistarelli et al. 2020) show that,
from a computational perspective, scalability is increasing,
and systems are capable of solving argumentative reason-
ing tasks in an automated manner for larger and larger AFs.
Nevertheless, large AFs still pose a barrier to applicability of
computational models of argumentation. It remains difficult
to digest large AFs, even when, e.g., admissible sets can be
found efficiently: both human and artificial agents working
on AFs face the barrier of having to handle many arguments
or large admissible sets (for artificial agents this can be an
issue, e.g., when using conclusions in processes later on).

1.1 Motivation for Existential Abstraction
In similar terms to what is referred to as “state explosion”
in complex systems, we face the issue of “argument explo-
sion”. In this paper, we use this opportunity to introduce
and study a concept that has been successfully employed
to address the state explosion problem: existential abstrac-
tion, prominently used in model checking (Clarke, Grum-
berg, and Long 1994; Clarke et al. 2003). Before contin-
uing we need a precursor to our discussion: the term “ab-
straction” is already in use when referring to AFs, usually
meaning that the arguments in an AF are seen as “abstract
entities”, i.e., they are seen as entities without further (inter-
nal) structure. In contrast, in this paper we mean a differ-
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Figure 1: An example AF (a), a faithful clustered AF (b), and a clustered AF with a spurious admissible set (c).

ent concept of abstraction. We adapt existential abstraction
found in model checking to AFs by studying a formally de-
fined approach that abstracts AFs, resulting in “abstracted”
AFs. Concretely, we apply existential abstraction by cluster-
ing arguments in an AF. We assume finite sets of arguments.

A convenient way of clustering of arguments in an AF
is to consider a (surjective) mapping m : A → Â, which
maps arguments A in an AF to a set Â. We exemplify such
a clustering (formal definitions follow in the main part).
Example 1. Consider an AF composed of five arguments a,
b, c, d, and e, and attacks as shown in Figure 1(a). Say, we
map arguments a, b, and c to a cluster â, and both d and e
to themselves. The resulting “clustered AF” can be seen in
Figure 1(b). The attacks involving clustered arguments are
interpreted existentially: if clustered argument â attacks an
argument d, then in the AF mapped to the clustered AF there
exists an argument inside the cluster attacking b. In our case
c, which is mapped to â, attacks d.

Naturally, abstractions are useful if certain properties are
preserved from the structures we abstract from. In order to
study properties, or semantics, that can be preserved, we
need to answer a key question: how to interpret clustered
AFs, from a semantical viewpoint?

Starting from an intuitive view, what is the concept of an
admissible set within a clustered AF? We can use the exis-
tential flavour of the abstraction to answer this question. We
abstracted away knowledge about the exact attack structure
involving clustered arguments. That is, we need to be pre-
pared to assume some attack structure compatible with the
clustered AF. Considering again Example 1 (Figure 1(b)),
we can infer that there exists an attack from a, b, or c onto
d, and at least one attack among a, b, and c in a concrete
AF mapped to the clustered AF, but which one we cannot
directly infer from the clustered AF due to the abstraction.
Thus, our notion of existential abstraction involves loss of
information (common to abstraction). Reasoning further,
there can be an argument in the cluster that defends itself
(or is unattacked) and attacks c, thereby defending d. Faced
with the information stored in the clustered AF we are re-
quired to list {â, d} as a “potential admissible set” (more
precisely, one argument in the cluster and d). This contrasts
classical admissibility: âwould be considered self-attacking
in a classical AF. In the AF in Figure 1(a), a together with d
is an admissible set. That is, {â, d} in fact corresponds to an
admissible set in the “original” AF.

Equipped with a notion of “potential admissible sets” on
clustered AFs, we can specify existential abstraction in way
such that if an AF F is mapped to a clustered AF F̂ , then

each admissible set in F can be mapped to a “potential ad-
missible set” in F̂ (preserving admissible sets).

However, while abstractions preserve interesting features,
there is a constant companion of abstractions: spuriousness.
Example 2. Consider a different mapping for the AF in Fig-
ure 1(a): m′ maps all of a, b, c, and e to a cluster â′ and d
to itself. The corresponding clustered AF can be seen in
Figure 1(c). If we reason similar as before, then we need
to accept {d} as a potential admissible set (e.g., d defends
itself against all attacks).

Viewing {d} as a potential admissible set is misleading,
since in the original AF there is no admissible set {d}. We
say that such a set is spurious w.r.t. the AF from Figure 1(a).
In contrast, under the formal definitions to follow, the clus-
tered AF in Figure 1(b) does not have any spurious admissi-
ble set w.r.t. the AF in Figure 1(a). That is, the clustered AF
is faithful w.r.t. this AF.

On faithful clustered AFs we can see an interesting aspect:
faithfulness implies that there is an admissible set contain-
ing e in the original AF mapped to the clustered AF. We can
infer that one argument in the cluster â defends e against
d, but the concrete information which one is responsible for
defense is abstracted away. In this way, we arrive at a simpli-
fied AF (the clustered AF) that shows properties of concrete
AFs, but without providing all details, thereby leading to an
approach and methodological tool that can be used to obtain
simplifications of AFs. For instance, we envision that (exis-
tential) abstractions can be used for presenting results of au-
tomated argumentative reasoning to (human) users. For in-
stance, visualization methods of formalized arguments could
benefit from such approaches.

1.2 Contributions
Our main contribution is a formal study of clustering AFs:
• we formally define clustering on AFs with the notions of

being an abstraction, being spurious, and being faithful;
• we define conflict-free sets, admissible sets, and stable ex-

tensions on clustered AFs that are optimal in the sense of
being abstracting, by permitting as few sets (extensions)
as possible to reduce potential spuriousness;

• we show properties of the (abstract) semantics of clus-
tered AFs, including complexity results;

• we discuss the use of clustering for explaining results of
reasoning tasks on AFs;

• by employing the recently introduced methodology on
ASP abstraction, we construct such explanatory clustered
AFs that can be reasoned over using the novel semantics.
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2 Argumentation Frameworks
Argumentation frameworks (AFs) were introduced
by Dung (1995), and represent arguments as vertices
and attacks between arguments as directed edges in a graph.

Definition 1. An argumentation framework (AF) is a pair
F = (A,R), where A is a finite set of arguments and R ⊆
A×A is the attack relation. The pair (a, b) ∈ R means that
a attacks b.

We sometimes refer to AFs as “classical” AFs, to distin-
guish them from the clustered AFs we introduce in the next
section. A set S ⊆ A attacks an a ∈ A (in F ) if there is a
(b, a) ∈ R with b ∈ S.

Definition 2. Let F = (A,R) be an AF. An argument a ∈ A
is defended (in F ) by a set S ⊆ A if for each b ∈ A such
that (b, a) ∈ R there exists c ∈ S such that (c, b) ∈ R.

Semantics (Baroni, Caminada, and Giacomin 2011) for
argumentation frameworks are defined through a function σ
which assigns to each AF F = (A,R) a set σ(F ) ⊆ 2A

of extensions. We consider for σ the functions cf, adm,
com, grd, stb, and prf, which stand for conflict-free, ad-
missible, complete, grounded, stable, and preferred, respec-
tively. Towards the definition we make use of the charac-
teristic function of AFs, defined for an AF F = (A,R) by
FF (S) = {x ∈ A | x is defended by S}.
Definition 3. Let F = (A,R) be an AF. An S ⊆ A
is conflict-free (in F ) if there are no a, b ∈ S such that
(a, b) ∈ R. We denote the set of conflict-free sets of F by
cf(F ). For an S ∈ cf(F ) it holds that

• S ∈ adm(F ) iff S ⊆ FF (S);
• S ∈ com(F ) iff S = FF (S);
• S ∈ grd(F ) iff S is the least fixed-point of FF ;
• S ∈ stb(F ) iff S attacks in F each a ∈ A \ S; and
• S ∈ prf(F ) iff S ∈ adm(F ) and @T ∈ adm(F ) s.t. S⊂T .

For an AF F = (A,R), an argument a ∈ A is said to
be credulously accepted under σ if there is an E ∈ σ(F )
with a ∈ E. In contrast, a is skeptically accepted under σ if
a ∈ E holds for all E ∈ σ(F ).

3 Clustered Argumentation Frameworks
We formally introduce existential abstraction by first pre-
senting clustered argumentation frameworks, the outcome
of clustering. Main component of clustering is a mapping
on arguments.

Definition 4. Given a setA of arguments, an argument map-
ping m is a surjective mapping m : A 7→ Â for a set Â of
clustered arguments.

Surjectivity implies |Â| ≤ |A|. For convenience, we ex-
tend the mapping to sets of arguments and set of sets of argu-
ments (like semantics of AFs), as follows. For a set S ⊆ A
we define m(S) = {m(a) | a ∈ A}. For a set of sets
E ⊆ 2A we define m(E) = {m(S) | S ∈ E}.

A clustered AF is formally speaking an AF according to
a mapping m, which specifies arguments that are mapped
onto the clusters.

Definition 5. An AF F̂ = (Â, R̂) is a clustered AF accord-
ing to a mapping m if Â is the image of m.

Mapping a given (classical) AF using a mappingm is then
direct, defined formally next.
Definition 6. Let F = (A,R) be an AF, and m a mapping
on A. The (unique) clustered AF m(F ) = F̂ = (Â, R̂)

according to m is given by m(A) = Â and m(R) = R̂ =

{(â, b̂) | (a, b) ∈ R,m(a) = â,m(b) = b̂}.
That is, arguments in an AF F = (A,R) are mapped,

according to a mapping m on A, into clusters, which con-
stitute the arguments of the associated clustered AF. An at-
tack (a, b) inR is then mapped into (m(a),m(b)) (like argu-
ments, multiple attacks might map to the same attack). We
call arguments in a clustered AF also clustered arguments.

Whenever convenient, and when the mapping m is clear
from the context, we identify a clustered argument â ∈ Â
with the set m−1(â) = {a | m(a) = â}, i.e., the set of argu-
ments mapped onto â. A clustered argument â ∈ Â is called
a non-singleton cluster if there exists more than one “orig-
inal” argument a1, .., an ∈ A,n > 1, s.t. m(ai) = â, 1 ≤
i ≤ n (equivalently when using sets, |â| > 1). Otherwise, â
is a singleton, i.e., |â| = 1. For a clustered AF F̂ = (Â, R̂)

we define the shorthand singlem(Â) = {â ∈ Â | |â| = 1},
which contains all singleton clustered arguments, and omit
m if clear from the context. For convenience, from now on,
we assume that singletons are always mapped to themselves,
i.e., if x ∈ single(Â) then x ∈ A and m(x) = x.

Intuitively, the pair (â, b̂) ∈ R̂ means that there exists
some a ∈ m−1(â) that attacks some b ∈ m−1(b̂), reflecting
the underlying existential abstraction. There can be multiple
AFs mapped to a single clustered AF. In particular, there
can also be multiple AFs mapped onto a single clustered AF
even under a single mapping m (the attack relation of the
original AFs can be different).
Example 3. Consider again the AF F = (A,R) from Fig-
ure 1(a) which is formally given by A = {a, b, c, d, e} and
R = {(a, b), (b, a), (b, c), (c, b), (a, c), (c, a), (c, d), (d, e)}.
Define mapping m : A → Â with Â = {â, d, e} and
m(a) = m(b) = m(c) = â, m(d) = d, and m(e) = e.
The clustered AF m(F ) = F̂ according to m is the one
in Figure 1(b). We have m−1(â) = {a, b, c}. If one
would remove one attack among a, b, and c in F , result-
ing in F ′, then m(F ′) = F̂ remains the same (there still
exists an attack from one argument in {a, b, c} to one of
these arguments. That is, both F and F ′ are mapped, un-
der the same m, to the same clustered AF F̂ . Considering
m′(a) = m′(b) = m′(c) = m′(e) = â′ and m′(d) = d one
obtains m′(F ) = F̂ ′, from Figure 1(c).

4 Semantics for Clustered AFs
Syntactically, clustered AFs are close to classical AFs. Nev-
ertheless, classical semantics of AFs are not applicable to
clustered AFs within the existential abstraction methodol-
ogy. As an intuitive example, if a clustered argument is not
a singleton, then certain information about the arguments
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clustered in this clustered argument is abstracted away, mak-
ing standard AF semantics inapplicable. Towards semantics
of clustered AFs, we first define such semantics in a general
manner (in order to study such semantics formally).
Definition 7. A semantics σ̂ on clustered AFs returns a set
of sets of arguments σ̂(F̂ ,m) ⊆ 2Â, for any given clustered
AF F̂ = (Â, R̂) according to a mapping m.

Again, if the mapping m is clear from the context, we
simply write σ̂(F̂ ). However, we remark that it will be im-
portant for a semantics to distinguish, in particular, between
clustered arguments that are singleton and those that are not.
Simply put, attacks between singletons imply that no infor-
mation (involvement of attacks regarding this argument) was
abstracted away.

Next, we define central properties of clustered AFs, re-
flecting central notions of existential abstractions.
Definition 8. Let F = (A,R) be an AF, m a mapping on
A, m(F ) = F̂ , σ a semantics on AFs, and σ̂ a semantics on
clustered AFs. According to m, we say that

• F̂ under σ̂ abstracts F under σ if m(σ(F )) ⊆ σ̂(F̂ ),
• Ê ∈ σ̂(F̂ ) is spurious w.r.t. F under σ if @E ∈ σ(F ) s.t.
m(E) = Ê, and
• F̂ under σ̂ is faithful w.r.t. F under σ if there is no spuri-

ous Ê ∈ σ̂(F̂ ) w.r.t. F under σ.

In words, a clustered AF F̂ under a clustered semantics
σ̂ abstracts a classical AF F under a classical semantics
σ if for each σ-extension E of F it holds that mapping
this σ-extension under m leads to a σ̂-extension in F̂ (i.e.
m(E) ∈ σ̂(F̂ )). This means that clustered framework F̂
does preserve all σ-extensions (under σ̂ and the mapping).
It might be that there are σ̂-extensions Ê for F̂ s.t. there is
no E ∈ σ(F ) with m(E) = Ê. This means that Ê is spuri-
ous (i.e., clustering F underm leads to a clustered AF F̂ that
introduces “artificial” σ̂-extensions not corresponding to any
σ-extensions of F ). If such a case does not occur, then F̂ is
faithful, under σ̂ and w.r.t. F and σ. If F̂ under σ̂ abstracts
F under σ, and additionally is faithful w.r.t. F under σ, then
we get equality under the mapping: m(σ(F )) = σ̂(F̂ ).

A semantics on clustered AFs σ̂ is then abstracting a clas-
sical semantics σ if it holds that for every AF F and mapping
m we have m(F ) under σ̂ abstracts F under σ, or in other
words, that σ̂ prescribes σ̂-extensions in such a way that it is
never the case that a σ-extension is “missed”.
Definition 9. A semantics σ̂ on clustered AFs abstracts a se-
mantics σ on AFs if for every set of argumentsA, every map-
pingm onA, and every AF F = (A,R) it holds that F̂ under
σ̂ abstracts F under σ for the clustered AF F̂ =m(F ).

Before we can exemplify these notions fully, we define
the following semantics on clustered AFs. As the naming of
each such σ̂ will suggest, each is meant to abstract classical
semantics σ on AFs.
Definition 10. Let F̂ = (Â, R̂) be a clustered AF according
to m, and Ê ⊆ Â. We define the following semantics on
clustered AFs:

• Ê∈ ĉf(F̂ ) iff for each â, b̂∈single(Ê) we have (â, b̂) /∈R̂,

• Ê ∈ ˆadm(F̂ ) iff Ê ∈ ĉf(F̂ ) and if â ∈ Ê with (b̂, â) ∈ R̂
s.t. |â| = 1, then there is a ĉ ∈ Ê with (ĉ, b̂) ∈ R̂,

• Ê ∈ ˆstb iff Ê ∈ ĉf(F̂ ), b̂ /∈ Ê implies that there is an
â ∈ Ê with (â, b̂) ∈ R̂, and if Ê does not attack an â ∈ Ê
then b̂ /∈ Ê whenever (â, b̂) ∈ R̂ and |b̂| = 1.

That is, in a clustered AF F̂ , a set of clustered arguments
is conflict-free (in ĉf(F̂ )) if it holds that there is no attack
between singletons in the set. A set is admissible if it is
conflict-free, and if a singleton â inside the set is attacked,
then there must be a clustered argument ĉ in the same set
that attacks the attacker b̂ (however we do not require either
b̂ or ĉ to be singletons). The first two conditions for stable
semantics are a direct analogue to the classical stable seman-
tics on AFs. The third condition is specific to clustered AFs:
if Ê does not attack an â, which is in Ê, there cannot be any
singleton arguments adjacent to â in Ê.

Example 4. Going back to our running example from the
introduction (Example 1 and Figure 1), it holds that ∅, {a},
{b}, {c}, {a, d}, {b, d}, and {c, e} are admissible in the AF
in Figure 1(a). Inspecting the clustered AF in Figure 1(b),
we have the following sets in ˆadm(F̂ ): ∅, {â}, {â, d}, and
{â, e}. While there is a “self-attack” on â, admissibility
does not restrict non-singletons (reflecting the existential na-
ture of our abstraction: arguments inside the cluster might
be defended, e.g., in the AF in Figure 1(a)). Inclusion of e
in the set {â, e} is in a direct fashion an analogue to classi-
cal admissibility: â defends e against d. Set {â, d} reflects
that an argument in the cluster â may attack another in the
cluster, and then defend d against this attack (exactly the sit-
uation in Figure 1(a)). It holds that F̂ under ˆadm abstracts
F under adm (applying the mapping to each admissible set
in F results in ˆadm-extensions). No set in ˆadm(F̂ ) is spu-
rious (no “additional” sets than those mapped onto from
adm(F )). This means that F̂ under ˆadm is faithful w.r.t. F
under adm.

In contrast, consider the clustered AF F̂ ′ from Fig-
ure 1(c). Here we have ∅, {â}, {d}, and {â, d} are admissi-
ble sets in F̂ ′. Thus, the set {d} is spurious w.r.t. F under ad-
missibility, since there is no E ∈ adm(F ) s.t. m′(E) = {d}
(since m′(d) = d this would imply that {d} is admissible
in F , a contradiction). This means that F̂ under ˆadm is not
faithful w.r.t. F under adm.

Our definitions for semantics of clustered AFs for
conflict-free sets, admissible sets and stable extensions are
abstracting the corresponding notions on classical AFs, as
shown next. This means that whenever m(F ) = F̂ we have
m(σ(F )) ⊆ σ̂(F̂ ) for σ ∈ {cf, adm, stb}. A remark on no-
tation: if we specified σ to be a classical semantics on AFs,
e.g., σ = stb, we mean by σ̂ the semantics ˆstb. Through-
out the paper, for proof details see the supplement at http:
//www.kr.tuwien.ac.at/staff/zeynep/pub/kr/SW21 supp.pdf.

Theorem 1. For σ ∈ {cf, adm, stb} it holds that σ̂ abstracts
σ.
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Figure 2: Three AFs F1 (a), F2 (b), and F3 (c), mapped onto the same clustered AF F̂ (d).

As the reader might have guessed, being “abstracting”
(Definition 9) is, without further properties, not very re-
stricting: a semantics σ̂ that naively collects all subsets, i.e.,
σ̂(F̂ ) = 2Â for each F̂ = (Â, R̂), is abstracting each classi-
cal AF semantics (no σ-extension can be missed if we collect
all). We next prove for conflict-free sets, admissible sets,
and stable extensions, that our definitions for clustered AFs
(Definition 10) are “optimal” in a formally defined sense.
Concretely, for every semantics τ̂ on clustered AFs that ab-
stracts σ it holds that σ̂(F̂ ) ⊆ τ̂(F̂ ), for σ ∈ {cf, adm, stb}.
In words, if a semantics abstracts σ, then it necessarily con-
tains all sets prescribed by σ̂, as defined in Definition 10.
That is, if we require “being abstracting” then we need to
include all sets of σ̂. Together with σ̂ being abstracting (The-
orem 1), it follows that our definitions for these semantics on
clustered AFs are as minimal as possible (permitting as few
sets as possible). Even excluding one σ̂-extension leads to
the semantics being not abstracting anymore.

Theorem 2. Let F̂ = (Â, R̂) be a clustered AF with map-
ping m, and σ ∈ {cf, adm, stb}. Assume that τ̂ abstracts σ.
It holds that σ̂(F̂ ) ⊆ τ̂(F̂ ).

As the reader might have wondered, what about the com-
plete, preferred, and grounded semantics? It appears that
these are significantly more involved on the abstract level of
clustered AFs, in particular when aiming at the same notion
of optimality as exhibited in Theorem 2.

We first turn our attention to the preferred semantics. Let
us consider a simple example.
Example 5. Let F = (A,R) be an AF with A = {a, b, b′}
and R = {(a, b), (a, b′)}. Let m(a) = a, and m(b) =

m(b′) = b̂. We have adm(F ) = {∅, {a}}, and for the
clustered AF m(F ) = F̂ = ({a, b̂}, {(a, b̂)}) we get

ˆadm(F̂ ) = {∅, {a}, {b̂}, {a, b̂}}. Considering only subset
maximal members of both semantics, we get E = {a} as
the preferred extension of F , and Ê = {a, b̂} as a subset-
maximal ˆadm set of F̂ . However, m(E) = {a} 6= Ê.

Directly from the example we can infer that defining a
preferred semantics on clustered AFs is not immediate from
the definition of being subset-maximal admissible.
Observation 1. The semantics σ̂ on clustered AFs defined
as σ̂(F̂ ) = max⊆( ˆadm(F̂ )) for each clustered AF F̂ does
not abstract preferred semantics.

We hypothesize that complete-based semantics (e.g., pre-
ferred, complete, and grounded) face significant barriers for
defining optimal counterparts on clustered AFs. We first

give an example for grounded semantics that highlights chal-
lenges, and then argue that defining such semantics requires
potentially deeper results that were already challenging to
obtain on related questions.
Example 6. Consider the three AFs F1, F2, and F3 in Fig-
ure 2(a-c). Under the mapping that clusters b and b′ into
b̂, all three map onto the clustered AF F̂ in Figure 2(d).
The grounded extensions are grd(F1) = {a}, grd(F2) =
{a, b, c}, and grd(F3) = {a, b, d}. If a semantics on clus-
tered AFs abstracts grounded semantics, it is then required
to include {a}, {a, b̂, c}, and {a, b̂, d}. Apart from not be-
ing a unique-status semantics (at least three sets), we face a
further issue: if the cluster b̂ satisfies |b̂| = 2 (i.e., exactly
two arguments are mapped into b̂), then {a, b̂} is spurious
(i.e., cannot be a grounded extension in an AF mapped onto
F̂ ). The unattacked a and the self-attacking e necessarily at-
tack one argument in b̂ (possibly different ones), excluding at
least one argument in b̂ of being in the grounded extension.
If one argument in b̂ is part of the grounded extension, then
it cannot be attacked by either a or e. There is one attack
from one of the arguments in b̂ to c. This attack cannot orig-
inate from the unattacked one in b̂ (then d is defended and
included in the grounded extension). If the attack originates
only from the attacked argument in b̂, then c is defended.
In both cases, there is no grounded extension containing ex-
actly a and one of b and b′. However, if we expand the cluster
and add a third argument b′′ (i.e., b̂ = {b, b′, b′′}), then we
can have an unattacked argument in b̂, and an attack origi-
nating from an argument only attacked by the self-attacking
e (implying then that the grounded extension contains only
a and one of the cluster).

The example suggests that a semantics abstracting
grounded semantics is required to include multiple potential
grounded extensions, and, even more, information about car-
dinality (size) of clusters (not only information about single-
tons). This contrasts Definition 10, which could be defined
using more basic concepts taken from classical AF seman-
tics. Indeed, we hypothesize that the underlying issue is one
of the related problem of realizability (Dunne et al. 2015):
the proof of Theorem 2 relies on constructing AFs that map
to a given clustered AF and contain specific σ-extensions.
Similarly, realizability asks whether AFs exist that have spe-
cific sets of arguments as their σ-extensions. In our case, the
issue appears to be connected to completeness (in AFs in
Example 6, in the form of the grounded extension, but note
that there is a unique preferred extension which coincides
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with the grounded extension in these AFs). Realizability of
complete semantics does appear to be among the most in-
volved ones1, and here we would need a realizability-like
result in a restricted language of AFs (only those compatible
with clustered AFs).

We leave optimal semantics for clustered AFs that ab-
stract grounded, complete, or preferred semantics for fu-
ture work, but remark that ˆadm abstracts all three semantics
(however, not optimally), and moreover, in Section 7 we dis-
cuss a general method for obtaining semantics of clustered
AFs. One refinement regarding ˆadm can be achieved: for ab-
stracting complete, grounded, and preferred semantics, one
can restrict consideration to only those sets of clustered ar-
guments that contain all unattacked arguments. The reason
is that arguments in an unattacked cluster are unattacked.

5 Properties of Clustered Semantics
We investigate properties of the clustered semantics we in-
troduced. We start with clustered AFs that are faithful.
Proposition 3. Let F = (A,R) be an AF and σ∈{cf, adm}.
• if ∃E ∈ σ(F ) s.t. E 6= ∅, then ∃R̂′ s.t. F̂ ′ = ({A}, R̂′)

(according to an m′) under σ̂ is faithful w.r.t. F under σ.

Additionally, let m be a mapping over A, m(F ) = F̂ =

(Â, R̂). If F̂ under σ̂ is faithful w.r.t. F under σ, then

• if â ∈ Â \ single(Â) then there is an E ∈ σ(F ) with
E ∩ â 6= ∅, and

• if no x ∈ X is credulously accepted under σ in F and
|X| > 1, then there is no â ∈ F̂ with X = â.
That is, a non-singleton cluster, in a clustered AF faithful

to an AF under conflict-free or admissible sets, contains at
least one argument that is part of one conflict-free or admis-
sible set (i.e., contains an argument credulously accepted).
The first item means that if there is at least one non-trivial
σ-set (i.e., not equal to ∅), then one can cluster the whole set
of arguments into one big cluster, and be faithful. While this
item might seem to be “trivializing” clustering, it also is a
starting point for an initial clustering and subsequent itera-
tive refinements. We return to this in Section 7.1. Neverthe-
less, operations on clusters, like merging clusters to obtain
larger ones, is not a trivial task if one desires to preserve
faithfulness, as exemplified next.
Example 7. Let F = (A,R) be an AF with A =
{a, a′, b, b′, c, d} and R = {(a, a′), (b, c), (c, d)}. Define
m such that m(a) = m(a′) = â, m(b) = m(b′) = b̂,
m(c) = c, and m(d) = d. Let F̂ = m(F ) be the cor-
responding clustered AF according to m. We have ∅, {a},
{b}, {b′}, {a, b}, {a, b′}, {b, b′}, {b, b′, d}, {a, b, d}, {b, d},
{a, b, b′}, and {a, b, b′, d} are admissible sets in F . Notably,
there is no E ∈ adm(F ) with c ∈ E. For F̂ , these are
the ˆadm sets: ∅, {â}, {b̂}, {â, b̂}, {b̂, d̂}, and {â, b̂, d̂}. It
follows that F̂ under ˆadm is faithful w.r.t. F under adm.
However, “merging” the two clusters â and b̂ results in

1The case for complete semantics was later added as an adden-
dum to Dunne et al. (2015) in a technical report (Linsbichler 2018).

m′(a) = m′(a′) = m′(b) = m′(b′) = â, m′(c) = c, and
m′(d) = d. In the clustered AF F̂ ′ according to m′ we have
∅, {â}, {â, c}, {â, d}, and {â, c, d} are ˆadm in F̂ ′ (since â
is self-attacking in F̂ ′). It follows that F̂ ′ under ˆadm is not
faithful w.r.t. F under adm.

As an interesting corollary to Theorem 2, we also get that
for each Ê in σ̂(F̂ ) for a clustered AF F̂ according to m, it
holds that there exists some classical AF F with m(F ) = F̂

such that there is an E ∈ σ(F ) that is mapped onto Ê =
m(E), for σ ∈ {cf, adm, stb}. In a sense, this is a rephrasing
of the corresponding theorem, highlighting that no single σ̂-
extension can be removed.
Corollary 4. Let F̂ = (Â, R̂) be a clustered AF according
to m, and σ ∈ {cf, adm, stb}. It holds that Ê ∈ σ̂(F̂ ) iff
there is an AF F = (A,R) with m(F ) = F̂ s.t. Ê is not
spurious w.r.t. F under σ.

The corollary also implies that the computational task of
verifying whether for a given clustered AF F̂ according to
an m, and a σ̂-extension Ê, σ ∈ {cf, adm, stb}, there exists
an AF F , withm(F ) = F̂ and anE ∈ σ(F ) s.t.m(E) = Ê,
is trivial. By Corollary 4, there always exists such an AF.

Nevertheless, when checking whether Ê is spurious w.r.t.
a given AF, the task becomes coNP-complete under admis-
sibility.
Proposition 5. Verifying whether a set of clustered argu-
ments in a given clustered AF is spurious w.r.t. a given AF
under admissibility is coNP-complete.

The result suggests that checking faithfulness is not an
easy task in general, computationally speaking. We can also
see this from the following result. Faithfully showing cred-
ulous acceptance is defined by all σ̂-extensions containing a
queried singleton clustered argument being non-spurious in
a given clustered AF w.r.t. a given AF mapped to it. Or, put
simply, that there are no spurious sets from which credulous
acceptance could be derived.
Proposition 6. Deciding whether a given clustered AF is
faithful in showing the credulous acceptance of an argument
under admissibility w.r.t. a given AF is ΠP

2 -complete.
We close our study of complexity with stating that the

complexity for standard problems of checking whether a set
is a σ-extensions (dubbed verification), and credulous and
skeptical acceptance coincides for classical AFs and clus-
tered AFs (hardness follows from clustered AFs containing
classical AFs by mapping only to singletons, and member-
ship directly from Definition 10).
Proposition 7. Complexity of the problems of verification,
credulous and skeptical acceptance coincides for AFs and
clustered AFs under conflict-free sets, admissibility, and sta-
ble semantics.

Finally, for this section, we note an observation on faith-
fulness. Assume σ̂ abstracts σ. If two AFs F and F ′ are
mapped to the same m(F ) = m(F ′) = F̂ , and the clustered
AF is faithful under σ̂ to both AFs, under a σ, then both AFs
have correspondences regarding their semantics (under the
mapping).
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Proposition 8. Assume σ̂ abstracts σ. Let F = (A,R) and
F ′ = (A,R′) be AFs, m a mapping over A, and m(F ) =

m(F ′) = F̂ = (Â, R̂) a clustered AF according to m. Let
S = single(Â). If F̂ under σ̂ is faithful w.r.t. both F and F ′
under σ, then
• m(σ(F )) = m(σ(F ′)) and
• {E ∩ S | E ∈ σ(F )} = {E′ ∩ S | E′ ∈ σ(F ′)}.

Since these AFs share the same set of arguments, this
means that the associated attack structures induce the same
σ-extensions, under the mapping.

6 Clustering for Reasoning Tasks
We discuss the use of clustering for the tasks of credulous
and skeptical reasoning. We begin with the positive case,
i.e., we look at an argument a credulously accepted under
σ in an AF F = (A,R). When considering clustered AFs,
for this case faithfulness appears as a strict requirement: if
m(F ) = F̂ is a clustered AF according to m, and if a ∈ Ê
for some Ê ∈ σ̂(F̂ ), then Ê might be spurious. In this case
we do not have a witness for credulous acceptance of a (in
fact amight not be credulously accepted in the original AF).
Proposition 9. Let F = (A,R) be an AF, m a mapping on
A, and m(F ) = F̂ = (Â, R̂) under σ̂ faithful w.r.t. F under
σ. For an a ∈ single(Â) it holds that a ∈ A is credulously
accepted in F under σ iff a is credulously accepted in F̂
under σ̂.

Strictly speaking, faithfulness is only required in a re-
stricted form: those σ̂-extensions that contain a should not
be spurious. Note that if m(a) = â where â is not a single-
ton, then the existence of â ∈ Ê might not be a witness for
credulous acceptance of a, but for some other argument a′
mapped to â.

For the negative case, say a is not credulously accepted
under admissibility. Interestingly, abstraction directly gives
indication of this acceptance status.

Proposition 10. Assume σ̂ abstracts σ, and let F̂ = (Â, R̂)

be a clustered AF according to m, and â ∈ Â. If there is no
Ê ∈ σ̂(F̂ ) with â ∈ Ê, then for all F such that m(F ) = F̂ ,
it holds that there is no E ∈ σ(F ) with E ∩ â 6= ∅.

This statement follows from the definition of a semantics
being abstracting (Definition 9). Note that for σ = adm
we can directly infer that then â is a singleton (see Proposi-
tion 3). In more words, if m(F ) = F̂ for some F and map-
ping m, and we find â is not credulously accepted, under σ̂
in m(F ), then all arguments clustered into â are not cred-
ulously accepted under σ in the original F . This holds in-
dependently of F̂ being faithful (follows from abstraction).
For stable semantics, if there are no stable extensions in the
clustered AF, then there are no stable extensions in the AFs
mapped to the clustered one. More formally, we have the
following (which is a consequence of m(σ(F )) ⊆ σ̂(F )).

Proposition 11. Assume σ̂ abstracts σ, and let F̂ = (Â, R̂)

be a clustered AF according to m. If σ̂(F̂ ) = ∅, then for all
F such that m(F ) = F̂ , we have σ(F ) = ∅.

Example 8. Consider the somewhat more involved AF in
Figure 3(a). Let us focus on non-acceptance under the cred-
ulous view. The AF has no stable extensions, and c is not
credulously accepted. The reasons can be seen with clus-
tering. The clustered AF in (b) has no stable extensions (no
ˆstb-extensions): we need to include e (for attacking f ), and

then we can include neither c nor d. This leaves only the
cluster for inclusion in a potential stable set, but then d is
neither attacked nor inside the set, a contradiction to stabil-
ity. In particular, it holds that any AF mapped to this clus-
tered AF does not have any stable extensions. This clustered
AF provides the underlying reason: the particular odd-cycle
and self-attacking f prevent stability. It is of no importance
how the attacks compatible with the cluster exactly look like
(as long as they are compatible).

For credulous non-acceptance under admissibility of c,
consider clustered AF in Figure 3(c). To defend c against
attacks from e or the cluster, we need d, but d and c are con-
flicting. However, this clustered AF has a stable extension:
d together with the cluster attacks all other arguments (and
conflict-freeness is weaker on clusters: we restrict only at-
tacks regarding singletons). While this stable extension is
spurious w.r.t. the AF on the left side, there exists an AF
mapped to this clustered AF with such a stable extension.
Consider, e.g., to have d not attack a, a attack c, and d at-
tacks all b, f , g, and h, and b self-attacking.

Reasoning skeptically is, naturally, dual to credulous ac-
ceptance. If a singleton clustered argument is skeptically
accepted in a clustered AF, then for all AFs mapped onto
this one, we get that this argument is skeptically accepted,
as well. Note that being a singleton is required.

Proposition 12. Assume σ̂ abstracts σ, and let F̂ = (Â, R̂)
be a clustered AF according to m. If there exists a ∈
single(Â) such that a ∈ Ê for all Ê ∈ σ̂(F̂ ), then for all F
such thatm(F ) = F̂ , a is skeptically accepted under σ in F .

7 Clustered AFs with ASP Abstraction
Recently, a notion of abstraction (Saribatur and Eiter 2018;
Saribatur, Schüller, and Eiter 2019) inspired by Clarke et
al. (2003) has been introduced to answer set programming
(ASP) as a means for simplifying the ASP program and its
vocabulary while ensuring that the original answer sets are
preserved in the abstract program, with the potential of in-
troducing spuriousness.

In this section, we show how the ASP abstraction method
can be used to obtain and reason over clustered AFs.

Abstraction in ASP We first recall the basics of ASP. A
logic program Π is a finite set of rules of the form

α0 ← α1, . . . , αm,not αm+1, . . . , not αn, 0≤m≤n.

where each αi is an atom and not is default negation. We
also write r as α0←B(r), such that H(r) = α0 denotes
the head or asH(r)← B+(r),not B−(r), whereB+(r) =
{α1, . . . , αm} is the positive body and B−(r) = {αm+1,
. . . , αn} is the negative body of r. We may omit r from
B(r), B+(r) etc. if r is clear. A rule r is a constraint, if
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e

f , g, h
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Figure 3: AF (a), two clustered AFs for no stable extensions (b) and c not credulously accepted under admissibility (c), and three clustered
AFs (d-e-f) for witnessing credulous acceptance of d, where (e) and (f) are refinements of (d) and (e), respectively, showing more details for
the (bold) attacks of the cluster.

α0 is falsity (⊥, then omitted) and a fact, if n= 0 and no
variable occurs in r. A rule is ground, if all atoms occurring
in it are ground. Choice rules are syntactic sugar of the form
{a} ← B, which stands for the rules a ← B,not a and
a ← B,not a, where a is a new atom. An interpretation
I is a subset of the Herbrand base, and it is an answer set
of Π if it is a minimal model of the reduct ΠI = {r ∈
ground(Π) | I |= B(r)} (Faber, Leone, and Pfeifer 2004).

In the well-known ASP encodings for AFs and AF seman-
tics (Egly, Gaggl, and Woltran 2010), the graph structure of
an AF F = (A,R) is encoded by πF = {arg(a). | a ∈
A} ∪ {att(a, b). | (a, b) ∈ R}. We encode credulous ac-
ceptance of a ∈ A by constraint ← not in(a). That is,
the corresponding ASP has an answer set iff the argument is
credulously accepted. Admissible semantics can be encoded
as follows (Egly, Gaggl, and Woltran 2010).

{in(X)} ← arg(X).

← in(X), in(Y ),att(X,Y ).

def(X)← in(Y ),att(Y,X).

← in(X),att(Y,X),not def(Y ).

A generic notion of abstraction in ASP is as follows.
Definition 11 (cf. Saribatur and Eiter, 2018). Given two pro-
grams Π and Π′ on sets A and A′ of ground atoms, respec-
tively, where |A|≥|A′|, and a mapping m : A → A′, Π′ is
an abstraction of Π w.r.t. m, if for every answer set I of Π,
I ′ = {m(α) | α ∈ I} is an answer set of Π′.

The propositional view of this notion is then lifted to a
first-order view in Saribatur, Schüller, and Eiter (2019). The
abstraction mapping is defined over the Herbrand universe
of Π, called domain, by merging the constants.
Definition 12 (cf. Saribatur, Schüller, and Eiter, 2019).
Given a domain D of Π, a (domain abstraction) mapping
is a function m :D→ D̂ for a set D̂ (the abstracted domain)
with |D̂| ≤ |D|.

A domain abstraction mapping divides D into clusters of
elements. Abstracting the elements in the Herbrand universe
induces an abstraction of the Herbrand base. Each domain
abstraction mapping m naturally extends to ground atoms
α= p(v1, . . . , vn) by m(α) = p(m(v1), . . . ,m(vn)).

Given a (non-ground) program Π and an induced mapping
m :A→Â from the Herbrand baseA of Π to Â = m(A) =
{m(α) | α ∈ A}, Saribatur, Schüller, and Eiter (2019)
present a method to construct an abstract (non-ground) pro-
gram Π′ that achieves over-approximation over the answer
sets as in Definition 11. Here, we make use of this method,
and refer the reader for details to the referenced paper.

For an AF F = (A,R), given an argument mapping m
over A, we obtain the abstraction of πF for m(F ) = F̂ =

(Â, R̂) as πF̂ = {arg(â). | â ∈ Â} ∪ {att(â, b̂). | (â, b̂) ∈
R̂} ∪ {single(â) | â ∈ Â, |Â| = 1}. The abstracted encod-
ing of admissible sets becomes as shown next.

{in(X)} ← arg(X).

← in(X), in(Y ),att(X,Y ), single(X),

single(Y ).

def(X)← in(Y ),att(Y,X), single(Y ).

{def(X)} ← in(Y ),att(Y,X),not single(Y ).

← in(X),att(Y,X),not def(Y ), single(X).

Observe that this abstract admissible semantics encoding
exactly matches ˆadm , while also containing ĉf in the first
two rules. Note that using the method by Saribatur, Schüller,
and Eiter (2019), we can abstract on an ASP encoding of an
AF semantics to obtain an abstract semantics, automatically.
Though, as discussed before, optimality of the abstract se-
mantics might not be guaranteed, e.g., for complete.

7.1 Obtaining Explanatory Clustered AFs
In Saribatur, Schüller, and Eiter (2019), an abstraction and
refinement methodology (inspired by Clarke et al. (2003))
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is introduced with prototype tools, that allows to automati-
cally compute abstractions by starting with an initial coarse
abstraction and refining it whenever a spurious answer set
is encountered. This process continues until a non-spurious
answer set is encountered or the unsatisfiability is observed.
For the non-acceptance case, we can, with this tool, automat-
ically find abstraction mappings to obtain non-acceptance
at the abstract level as described in Example 8: starting
with a highly coarse abstraction of clustering all the nodes
into one, and automatically refining whenever spuriousness
is encountered. Note that for achieving the abstraction in
Figure 3(b), the abstract stable encoding obtained with the
method by Saribatur, Schüller, and Eiter (2019), which is
able to check the first two conditions of ˆstb, can also be used.
As discussed in Example 8, the obtained abstractions give an
understanding for the non-acceptance cases.

For our purposes on reasoning over clustered AFs for the
acceptance cases, achieving faithful abstractions shows to be
important. For this, we modified the tool to compute faithful
abstractions, by checking all of the answer sets of the com-
puted abstract program, and refining the mapping whenever
the faithfulness is not achieved.

However, for credulous acceptance of arguments under
admissibility, clustering all arguments into one large clus-
ter also results in a faithful clustered AF (as indicated by
Proposition 3). Consider the graph in Figure 3(a) and the
credulous acceptance of d. Clustering all arguments into
one results in faithfulness w.r.t the credulous acceptance of
d. However, such a large cluster would not contain any ex-
planatory details on the acceptance of d in the original AF.
To obtain further details, one can ask for the refinement of
this clustering to one where d is mapped to a singleton, and
given this refinement, start the search for a new faithful clus-
tered AF. Figure 3(d) shows a mapping which shows more
details. Here, we can infer that there exists an argument in
the cluster defending d which is not in conflict with d. If
further details on the clustered AF are required, one can ask
for the refinement of this clustering, by making (all) attack-
ers of c singleton, which gives us Figure 3(e). Further such
refinement would result in Figure 3(f). Such a guidance by
the user on the refinement to obtain a new faithful clustered
AF would help the user in understanding the reason for the
credulous acceptance of d, while the irrelevant parts of the
AF still remain abstracted.

The tool with the search for faithful abstractions and
the user guided refinement can be found at http://www.kr.
tuwien.ac.at/research/systems/abstraction/.

8 Related Work
Broadly speaking, abstraction is used in many areas for state
space reduction: e.g., in model checking (Clarke, Grumberg,
and Long 1994), in multi-agent systems (Cohen et al. 2009),
and in planning (Edelkamp 2001; Helmert, Haslum, and
Hoffmann 2007; Seipp and Helmert 2013). The well-known
counterexample guided abstraction refinement (Clarke et al.
2003) approach automatically refines abstractions.

Clustering on AFs, in rather different directions, is studied
using semantic similarity measures of arguments (Block et

al. 2019), for classification (Gómez and Chesñevar 2003),
and for computing reasoning tasks efficiently (Doutre,
Lafages, and Lagasquie-Schiex 2019). Block argumenta-
tion (Arisaka, Santini, and Bistarelli 2019) and fibring argu-
ment frames (Gabbay 2009) can be seen as a kind of “clus-
tering” in the sense that an argument may stand for whole
AFs. In Boella, Kaci, and van der Torre (2009), properties of
abstraction by removal of arguments and attacks are studied.
To our knowledge, the closest approach to ours is presented
in a technical report (Arisaka and Dauphin 2018), which, for
the treatment of cycles, proposed a different kind of abstrac-
tion motivated by abstract interpretation (Cousot and Cousot
1977) based on monotonic functions over ordered sets, in
particular for sharpening extensions, which induce different
acceptance statuses.

Our work is connected to the notion of realizabil-
ity (Dunne et al. 2015) as discussed before. Through an
observation like in Proposition 8, our work can be related
to works studying replacements of parts of an AF (Baroni
et al. 2014; Dvořák et al. 2019) which investigate, e.g., sim-
plifications (modifications) that preserve equivalences rela-
tivized to certain arguments.

For simplification, works that obtain subframeworks (Fan
and Toni 2015; Saribatur, Wallner, and Woltran 2020; Niska-
nen and Järvisalo 2020; Ulbricht and Wallner 2021) and re-
moval of arguments and attacks, e.g., in abduction (Sakama
2018), relate to our clustering approach, but differ in not
considering clusterings. Incomplete AFs (Baumeister et al.
2018) are AFs with some parts being uncertain. When con-
sidering all arguments in clusters, and making possible com-
patible attacks uncertain, an AF mapped to a clustered AF
can be seen as a completion in the framework of incomplete
AFs, however the set of completions does not directly cor-
respond to all AFs mapped to the same clustered AF (in our
approach existential existence of attacks must be respected).

9 Conclusions
We introduced existential abstraction on argumentation
frameworks, via clustering arguments. We presented se-
mantics for the clustered AFs which abstract corresponding
semantics for classical AFs, showed properties, complexity
results, and an automated way of deriving clusterings and
reasoning on clustered AFs. We view clustering (existential
abstraction) as part of a larger set of methodological tools to
simplify AFs, for enhancing explanation capabilities.

Our clustering is applied on AFs, in particular by focusing
on existential abstraction according to the attack structure
and argumentation semantics as vehicles driving the cluster-
ing. Clustering of arguments in this way is not restricted to
arguments without internal structure: faithful clusterings of
structured arguments (if following the prominent approach
of using AFs as reasoning engines) preserve argumentation
semantics still when including internal structure of argu-
ments. Moreover, we think that when taking internal struc-
tures additionally into account, one can have more fine-
grained control on the clustering, e.g., by preferring clus-
ters whose arguments share structural similarities, which we
view as a promising direction for future research that builds
upon our work.
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