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Abstract

Recently, abstract argumentation-based models of case-based
reasoning (AA-C'BR in short) have been proposed, origi-
nally inspired by the legal domain, but also applicable as
classifiers in different scenarios. However, the formal prop-
erties of AA-CBR as a reasoning system remain largely
unexplored. In this paper, we focus on analysing the non-
monotonicity properties of a regular version of AA-CBR
(that we call AA-CBRy). Specifically, we prove that
AA-CBRy is not cautiously monotonic, a property fre-
quently considered desirable in the literature. We then define
a variation of AA-CBRy which is cautiously monotonic.
Further, we prove that such variation is equivalent to using
AA-CBRy with a restricted casebase consisting of all “sur-
prising” and “sufficient” cases in the original casebase. As
a by-product, we prove that this variation of AA-CBRy is
cumulative, rationally monotonic, and empowers a principled
treatment of noise in “incoherent” casebases. Finally, we il-
lustrate AA-C' BR and cautious monotonicity questions on a
case study on the U.S. Trade Secrets domain, a legal casebase.

1 Introduction

Case-based reasoning (CBR) relies upon known solutions
for problems (past cases) to infer solutions for unseen prob-
lems (new cases), based upon retrieving past cases which are
“similar” to the new cases. It is widely used in legal settings
(e.g. Prakken et al. 2015; éyras, Satoh, and Toni 2016a),
for classification (e.g. via the k-NN algorithm and, recently,
within the DEAr methodology (Cocarascu et al. 2020)) and
for explanation (e.g. see Nugent and Cunningham 2005;
Kenny and Keane 2019; Cocarascu et al. 2020).

In this paper we focus on a recent approach to CBR
based upon an argumentative reading of (past and new)
cases (éyras, Satoh, and Toni 2016a; éyras, Satoh, and Toni
2016b; Cocarascu, éyras, and Toni 2018; Cyras et al. 2019;
Cocarascu et al. 2020), and using Abstract Argumentation
(AA) (Dung 1995) as the underpinning machinery. We will
refer to all proposed incarnations of this approach in the lit-
erature generically as AA-C'BR (the acronym used in the
original paper (Cyras, Satoh, and Toni 2016a)): they all
generate an AA framework from a CBR problem — a graph
structure where cases are arguments, “more specific” past
cases attack “less specific” past cases or a “default argu-
ment” (which embeds a sort of bias), and new cases at-
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tack “irrelevant” past cases; then, CBR is reduced to testing
membership of this default argument in the grounded exten-
sion (Dung 1995). The use of argumentation in AA-CBR
naturally paves the way towards explanation generation for
CBR tasks, e.g. in the form of dispute trees (Cyras, Satoh,
agd Toni 2016b; Cocarascu et al. 2020) or excess features
(Cyras et al. 2019), possibly for supporting interactions with
users, in the spirit of recent research on incorporating feed-
back in recommender systems (Rago et al. 2021) and show-
ing influence structures from neural network classifiers (Dejl
et al. 2021).

Different incarnations of AA-CBR use different mech-
anisms for defining the aforementioned ‘“‘specificity”, “ir-
relevance” and “default argument”: the original version in
(éyras, Satoh, and Toni 2016a) is applicable only to cases
characterised by sets of features and defines all three no-
tions in terms of subsets, while the version used for clas-
sification in (Cocarascu et al. 2020) defines specificity in
terms of a generic partial order, irrelevance in terms of a
generic relation and default argument in terms of a generic
characterisation. Thus, it is in principle applicable to cases
characterised in any way, as sets of features or unstructured
(Cocarascu et al. 2020). We will study a special, regular
instance (AA-CBR;) of this more recent presentation, in
which irrelevance and the default argument are both defined
via specificity (and in particular the default argument is de-
fined in terms of the most specific case). AA-C' B R, admits
the original AA-CBR in (Cyras, Satoh, and Toni 2016a)
as an instance, obtained by choosing the partial order to be
the subset relation. Differently from previous presentations,
AA-C B Ry accepts “incoherent” casebases, in which there
is “noise” in the form of different cases with the same char-
acterisation but different outcomes. Incoherence may result
from a limited language to express features or genuine errors
in generating the casebases. Independently of the reasons
behind incoherence, and especially when this is outside the
control of reasoning system designers, it is important that
the reasoning system is able to tolerate it.

AA-CBR was originally inspired by the legal domain in
(éyras, Satoh, and Toni 2016a), but some incarnations of
AA-CBR, integrating dynamic features, have proven useful
in predicting and explaining the passage of bills in the UK
Parliament (Cyras et al. 2019), and instantiations of the more
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generic version of Cocarascu et al. (2020) have shown to be
fruitfully applicable as classifiers (Cocarascu et al. 2020).
We study non-monotonicity properties of AA-CBRy un-
derstood at the same time as a reasoning system and as a
classifier. These properties, typically considered in logic,
intuitively characterise in which sense systems may stop in-
ferring some conclusions when more information becomes
available (Makinson 1994). These properties are thus re-
lated to modelling inference which is tentative and defeasi-
ble, as opposed to the indefeasible form of inference of clas-
sical logic. Non-monotonicity properties have already been
studied in argumentation, e.g. for ABA, ABA+ (Cyras and
Toni 2015; éyras and Toni 2016), ASPIC* (Dung 2014;
Dung 2016) and logic-based argumentation (Hunter 2010).
We study them for the application of argumentation to clas-
sification via AA-CBRy-.

Specifically, we prove that the kind of inference underpin-
ning AA-CBR; lacks a standard non-monotonicity prop-
erty, namely cautious monotonicity, sanctioning, intuitively,
that if a conclusion is added to the set of premises (here,
the casebase), then no conclusion is lost, that is, everything
which was inferable still is so. In terms of a supervised clas-
sifier, satisfying cautious monotonicity culminates in being
“closed” under self-training. That is, augmenting the dataset
with conclusions inferred by the classifier itself does not
change the classifier. Then, we make a two-fold contribu-
tion: we define (formally and algorithmically) a provably
cautiously monotonic variant of AA-C'BR,-, that we call
cAA-CBR, and prove that it is equivalent to AA-CBR-
applied to a restricted casebase consisting of all “surpris-
ing” and “sufficient” cases in the original casebase. We also
show that cautious monotonicity of cAA-CBR leads to
the desirable properties of cumulativity and rational mono-
tonicity, and that, as a by-product, our cautiously monotonic
variant leads to a desirable treatment of noise in incoherent
casebases. It is interesting that cAA-C'BRy- deals with it
serendipitously, as a direct consequence of insuring cautious
monotonicity.

This paper generalises our previous work (Paulino-Passos
and Toni 2020) by also dealing with incoherent casebases,
presenting a case study, and discussing the position of our
contribution in the related literature. We omit some proofs
and details for lack of space but they are available in the
appendix at https://arxiv.org/abs/2107.06413.

2 Motivating Illustration

In this section we introduce a simple setting for the informal
illustration of the original AA-C'BR, its non-monotonicity
and the desirability of some restrictions thereof, as well as
problems raised by the presence of incoherence in the case
base when deploying AA-CBR. Thus, this section serves
as a motivating illustration for our approach, which restricts
non-monotonicity and is incoherence-tolerant.

Example 1 (Non-Monotonicity). Consider a simplified le-
gal system built by cases and adhering, like most modern
legal systems, to the principle by which, unless proven oth-
erwise, no person is to be considered guilty of a crime. This
can be represented by a “default argument” (&, —), indicat-
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ing that, in the absence of any information about any person,
the legal system should infer a negative outcome — (that the
person is not guilty). (&, —) can be understood as an argu-
ment, in the AA sense, given that it is merely what is called
a relative presumption, since it is open to proof to the con-
trary, e.g. by proving that the person did indeed commit a
crime. Let us consider here one possible crime: homicide'
(hm). In one case, it was established that the defendant com-
mitted homicide, and he was considered guilty, represented
as ({hm},+).

Consider now a new case ({hm, sd}, 7), with an unknown
outcome, of a defendant who committed homicide, but for
which it was proven that it was in self-defence (sd). In or-
der to predict the new case’s outcome by CBR, AA-CBR
reduces the prediction problem to that of membership of the
default argument in the grounded extension (Dung 1995) G
of the AA framework in Figure la: given that (&, —) ¢ G,
the predicted outcome is positive (i.e. guilty), disregarding
sd and, indeed, no matter what other feature this case may
have. Thus, up to this point, having the feature hm is a
sufficient condition for predicting guilty. If, however, the
courts decide that for this new case the defendant should
be acquitted, the case ({hm, sd}, —) enters in our casebase.
Now, having the feature hm is no longer a sufficient con-
dition for predicting guilty, and any case with both ~Am and
sd will be predicted a negative outcome (i.e. that the per-
son is innocent). This is the case for predicting the outcome
of a new case with again both hm and sd, in AA-CBR us-
ing the AA framework in Figure 1b. Thus, adding a new
case to the casebase removed some conclusions which were
inferred from the previous, smaller casebase, showing that
AA-CBR is indeed non-monotonic. This does not mean
that some restrictions on non-monotonicity might not be de-
sirable. For instance, we might expect in a legal system that,
if for the current case law, two cases are to be judged in a
certain way, then one of the cases happening in court and in-
deed being decided in that way would not affect the body of
case law itself, thus the outcome for the second case would
be expected to be unchanged.

The following example illustrates the challenges posed by
incoherent casebases, with noisy cases, in AA-C' BR.

Example 2 (Noise-intolerance). Consider a different aug-
mentation of the initial casebase in Example 1, resulting
in the casebase {({hm},+), ({hm},—)}, whereby a pos-
itive and a negative outcomes are recorded for exactly the
same profile for defendants. This can be deemed to be “in-
coherent”. In AA-CBR, this case would have a positive
outcome (guilty), since the default argument is not in the
grounded extension. However, this seems unsatisfactory,
since the default argument is not attacked by any argument in

IThis is a toy example, so the terms used do not correspond to
a specific jurisdiction.

2This casebase may result from a limited language for charac-
terising cases, e.g. ignoring the possibility of indicating core differ-
ences between defendants, such as that the defendant characterised
by ({hm},—) is a minor. We assume here that this incoherence
cannot be rectified by a language variation, or simply that it comes
from the data, and we cannot remove it based on the data alone.
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(a)  Initial framework.
AA-CBR predlcts outcome “+”
for the new case.

TR

o ok otos

(b) Revised framework. The added past case (c) Incoherent casebase. AA-C'BR pre-
changes the AA-CBR-predicted outcome to dicts outcome “+”, but the default argu-

ment is not attacked by arguments in G.

Figure 1: AA frameworks when using AA-C'BR for Examples 1 and 2. Past cases (with outcomes) and new case (with unknown outcome)

are arguments. (Grounded extensions G are shaded.)

the grounded extension of the corresponding AA framework
(see Figure 1c). In some sense, this means that no past case
serves as ground for the decision, but the outcome is guilty
nonetheless. Thus, what is deciding the outcome is not a
relevant case per se, but the incoherence itself. This can be
regarded as a form of intolerance to noise. Note that incoher-
ence does not always give this form of noise intolerance in
AA-CBR: if a past case ({hm, sd}, +) were included, the
outcome would be the same, but the default argument would
be attacked by (some argument in) the grounded extension.

Our form of AA-C'BR is guaranteed to be tolerant of
noise always, independently of the casebase.

3 Preliminaries

Abstract Argumentation. An abstract argumentation
framework (AF) (Dung 1995) is a pair (Args,~), where
Args is a set (of arguments) and ~CArgsx Args is a binary
relation on Args. For o, 8 € Args, if a ~> 3, then we say
that « attacks (8 and that « is an attacker of 3. For a set of
arguments ¥ C Args and an argument « € Args, E defends
«a if for all 3 ~~ « there exists v € F such that v~ 5. Then,
the grounded extension of (Args,~-) can be constructed as
G = U;>0 Gi» where Gy is the set of all unattacked argu-
ments, and Vi > 0, G, is the set of arguments that G
defends. For any (Args,~-), the grounded extension G al-
ways exists and is unique and, if (Args, ~) is well-founded
(Dung 1995), extensions under other semantics (e.g. sta-
ble extensions) are equal to G. For finite AFs, (Args,~>)
is well-founded iff it is acyclic. Given (Args,~>), we will
sometimes use o € (Args, ~~) to stand for a. € Args.

Non-monotonicity Properties. We will be interested in
the following properties.> An arbitrary inference relation F
(for a language including, in particular, sentences a, b, etc.,
with negations —a and —b, etc., and sets of sentences A, B)
is said to satisfy:

1. non-monotonicity, iff A+ aand A C B do not imply that
BFa;

2. cautious monotonicity, iff A F a and A F b imply that
AU{a} kb

3. cut,iff A- aand AU {a} F bimply that A |- b;

3We are mostly following the treatment of (Makinson 1994).
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4. cumulativity, iff |- is both cautiously monotonic and satis-

fies cut;

5. rational monotonicity, iff A + a and A t/ —b imply that

AU{b}F a;

6. completeness, iff either AF a or A F —a.

4 Abstract Argumentation for Case-Based
Reasoning

Here, we define AA-C'BR.-, adapting definitions from (Co-
carascu et al. 2020). All incarnations of AA-CBR, includ-
ing AA-CBRy, map a dataset D of examples labelled with
an outcome and an unlabelled example (with unknown out-
come) into an AF. The dataset may be understood as a case-
base, the labelled examples as past cases and the unlabelled
example as a new case: we will use these terminologies in-
terchangeably throughout. In this paper, as in (Cocarascu
et al. 2020), examples/cases have a characterisation (e.g., as
in (éyras, Satoh, and Toni 2016a), characterisations may be
sets of features), and outcomes are chosen from two avail-
able ones, one of which is selected up-front as the default
outcome. Finally, in the spirit of (Cocarascu et al. 2020),
we assume that the set of characterisations of (past and new)
cases is equipped with a partial order < (whereby o < 3
holds if « <8 and o # 3 and is read “« is less specific than
[3”) and with a relation ¢ (whereby « ¢ 3 is read as “ is
irrelevant to o). Formally:

Definition 3 (Adapted from (Cocarascu et al. 2020)). Let X
be a set of characterisations, equipped with partial order <
and binary relation . Let Y = {J,,d,} be the set of (all
possible) outcomes, with §, the default outcome. Then, a
casebase D is a finite set such that D C X x Y (thus a past
case a € D is of the form (¢, a,) for ac € X, a, €Y)
and a new case is of the form (N¢,?) for No € X. We
also discriminate a particular element ¢ € X and define the
default argument (3¢, 0,) € X XY

A casebase D is coherent iff there are no two cases
(ac,a,), (B, Bo) € D such that g = Sc but oy # fo,
and it is incoherent otherwise.

For simplicity of notation, we sometimes extend the def-
inition of = to X x Y, by setting (v, o) = (Bc, Bo) iff
Qe = Bc~4

“In (Cocarascu et al. 2020), > was directly given over X x Y.
Note that, when D is coherent, our “lifted” > is guaranteed to be a
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Definition 4 (Adapted from (Cocarascu et al. 2020)). The
AF mined from a dataset D and a new case (N¢,?) is
(Args,~>), in which:
* Args = DU{(0¢,0,)} U{(Nc,N};
e for (ac,®,), (Be,Bo) € D U {(d¢,d,)}, it holds that
(ac, @) ~ (Be, Bo) iff
L. oo # fo,

2. ac > Bc, and

3. ﬂ(’}/(;',’yo) e DU {((50,(50)} with ac = v¢ = B¢ and
Yo = o,
e for (8¢,8,) € D U{(0¢,d,)}, it holds that (Ng,?) ~~
(BesBo) ifE (Ne, 7)4(Be,Bo)-
The AF mined from a dataset D alone is (Args’, ~"), with
Args’ = Args \ {(N¢,?)} and ~'=~» N(Args’ x Args’).
Note that if D is coherent, then the “equals” case in item
2 of the definition of attack will never apply. As a result, the
AF mined from a coherent D (and any (N¢, 7)) is guaran-
teed to be well-founded, in the sense of Dung (1995).

Definition 5 (Adapted from (Cocarascu et al. 2020)). Let
G be the grounded extension of the AF mined from D and
(N¢,?), with default argument (d¢, d,). The outcome for
N¢ is d, if (0¢, 0,) is in G, and §, otherwise.

In this paper we focus on a particular case of this scenario:

Definition 6. The AF mined from D alone and the AF
mined from D and (N¢, 7), with default argument (d¢, d,),
are regular when the following holds:

1. the irrelevance relation ¢ is defined as: z1 ¢ xo iff z1 ¥
To, and

2. ¢ is the least element of X0

This restriction connects the treatment of a characterisa-
tion ¢ as a new case and as a past case and is necessary
in order to satisfy desirable properties, such as a relation be-
tween new cases and “nearest” past cases, which is proven
to hold in the appendix®.

From now on, we will restrict our attention to regu-
lar mined AFs. We will refer to the (regular) AF mined
from D and (N¢,?), with default argument (d¢,d,), as
AF. (D, N¢), and to the (regular) AF mined from D alone
as AF\.- (D). Also, for short, given AF\- (D, N¢), with de-
fault argument (d¢, 0, ), we will refer to the outcome for N
as AA-CBRy (D, N¢).” Unless otherwise stated, we will
assume arbitrary X, Y, D, (N¢,?), and (0¢, d,) (satisfying
the previously defined constraints). Finally, we will refer to
AA-CBRy instantiated with ==2 and (¢, d,) = (&, —)
as AA-CBR>.

partial order on X XY (and thus equivalent to the one in (Cocarascu
et al. 2020)), but when D is incoherent anti-symmetry may fail for
two cases with different outcomes but same characterisation, and
thus > is merely a preorder on X x Y.

3Indeed this is not a strong condition, since it can be proved
that if ac % dc then all cases (¢, o) in the casebase could be
removed, as they would never change an outcome. On the other
hand, assuming also the first condition in Definition 6, if (ac, ?) is
the new case and ac % dc, then the outcome is d, necessarily.

Shttps://arxiv.org/abs/2107.06413

"In the notation we omit (d¢, d,), and leave it implicit instead
for readability.
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5 Non-Monotonicity Analysis of Classifiers

In this section we provide a generic analysis of the non-
monotonicity properties of data-driven classifiers, using D,
X and Y to denote generic inputs and outputs of classifiers,
admitting our casebases, characterisations and outcomes as
special instances. Later in the paper, we will apply this anal-
ysis to AA-C' B Ry and our modification thereof. Typically,
a classifier can be understood as a function from an input set
X to an output set Y. In machine learning, classifiers are ob-
tained by training with an initial, finite D C X x Y, called
the training set. In (any form of) AA-C'BR, D can also be
seen as a training set of sorts. Thus, we will characterise
a classifier as a two-argument function C that maps from a
dataset D C X x Y and from a new input z € X to a pre-
diction y € Y .® Notice that this function is total, in line with
the common assumptions that classifiers generalise beyond
their training dataset.

Let us model directly the relationship between the dataset
D and the predictions it makes via the classifier as an infer-
ence system in the following way:

Definition 7. Given a classifier C: 2X*Y x X Y, let
L = LTUL™ be alanguage consisting of atoms £ = X x
Y and negative sentences L~ ={—(z,y)| (z,y) € X x Y}.

Then, ¢ is an inference relation from 2£% to L such that

e Dt (z,y)iff C(D,z) = y;
* D t¢ —(z,y) iff there is a 3/ such that C(D, ) = ¢’ and
9

Y #u.

Intuitively, C defines a language consisting of atoms (rep-
resenting labelled examples) and their negations, and ¢ ap-
plies a sort of closed world assumption around C.

Then, we can study non-monotonicity properties (see Sec-
tion 3) of -¢. Here, completeness (the first item in the theo-
rem) causes them to collapse.

Theorem 8. /. ¢ is complete, i.e. for every (z,y) € (X x
Y), either D F¢ (z,y) or D F¢ —(z,y).

2. b is consistent, i.e. for every (z,y) € (X X Y), it does
not hold that both D F¢ (x,y) and D ¢ —(z,y).

3. k¢ is cautiously monotonic iff it satisfies cut.
4. ‘¢ is cautiously monotonic iff it is cumulative.

5. Fc is cautiously monotonic iff it satisfies rational mono-
tonicity.

8Notice that this understanding relies upon the assumption that
classifiers are deterministic. Of course this is not the case for many
machine learning models, e.g. artificial neural networks trained
using stochastic gradient descent and randomised hyperparameter
search. This understanding is however in line with recent work us-
ing decision functions as approximations of classifiers whose out-
put needs explaining (e.g. see (Shih, Choi, and Darwiche 2019)).
Moreover, it works well when analysing AA-CBR:-.

We could equivalently have defined D F¢ —(z,y) iff
C(D,z) # y. We have not done so as the used definition can
be generalised for a scenario in which C is not necessarily a total
function. This scenario is left for future work.
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6 Cautious Monotonicity in AA-CBRy

Our first main result is about (lack of) cautious mono-
tonicity of the inference relation drawn from the classifier
AA-CBRs- (D, N¢).

Theorem 9. -44.cpr, is not cautiously monotonic.

Proof. We show a counterexample, choosing X
olabezt 'y — {41 and <=D. Define D = {({a},+)
({C}7+)7 ({avb}v_)v ({C,Z},—)} and (5Ca50)= (Qa_)
and two new cases: N1 = {a,b,c} and Ny = {a,b, ¢, z}.

Consider now AA-CBRx- (D, Ny) and
AA-CBR-(D, N,). We can see in Figure 2a
that D Faacpr. (N1,+) and in Figure 2b that
DFaacpr. (N2, —).

Finally, let us consider AF.(DU{(Ny,+)}, N2))
in Figure 2c. We can then conclude that D U
{(N1,+)} Faa.cBr. (N2,+) even though D Fas.cBr.
(N1,4) and D Faa.cBr. (N2, —), as required. O

)
s

Note that the proof of Theorem 9 shows that the in-
ference relation drawn from the original AA-CBR (i.e.
AA-CBR>) is also non-cautiously monotonic, given that
the proof’s counterexample is obtained with AA-CBR>.
Also, note that the counterexample amounts to an expansion
of Example 1, as follows.

Example 10. (Example 1 cont.) Assume that a different
type of crime happened: public offending someone’s hon-
our, which we will call defamation (df). In one case, it was
established that the defendant did publicly damage some-
one’s honour, and was considered guilty ({df},+). In a
subsequent case, even if proven that the defendant did hurt
someone’s honour, it was established that this was done by a
true allegation, and thus the case was dismissed, represented
as ({df,td}, —). What happens, then, if a same defendant is:
1. simultaneously proven guilty of homicide, of defamation,
but shown to have committed the homicide in self-defence
(({hm,df,sd},?)); or 2. simultaneously proven guilty of
homicide, of defamation, shown to have committed the
homicide in self-defence, and also shown to have commit-
ted defamation by a true allegation (({hm, df, sd, td}, ?))?

We can map these situations to our counterexample in the
proof of Theorem 9 by setting a = hm, b = sd, ¢ = df, and
z = td. The first question is answered by the AF represented
in Figure 2a, with outcome +, that is, the defendant is con-
sidered guilty. The proof of Theorem 9 shows that the an-
swer to the second question in AA-C B R, would depend on
whether the case in the first question was already judged or
not. If not, then the cases ({hm, sd}, —) and ({df,td}, —)
would be the nearest cases, and the outcome would be —,
that is, not guilty. However, if the case in the first ques-
tion was already judged and incorporated into the case law,
it would serve as a counterargument for ({hm, sd}, —), and
guarantee that the outcome is + (guilty). Intuitively, this
seems strange, in particular, because the order in which the
case in the first answer is judged affects the case in the sec-
ond question.

This example aims only to illustrate an interpretation
in which AA-CBR operates seemingly inappropriately.
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Whether this behaviour is desirable in general depends on
the intended application and other elements such as the rela-
tion between the characterisations and the partial order.

7 A Cumulative AA-CBRy

We will now present cAA-CBR-, a novel, cumulative in-
carnation of AA-C'BR satisfying cautious monotonicity.

Concise Dataset. Firstly, let us present some general no-
tions, defined in terms of the ¢ inference relation from
an arbitrary classifier C. Intuitively, we are after a rela-
tion '_(/c such that if D ¢ cand D t¢ d, then D U
{c¢} F{ d (in our concrete setting, Fc=F44.cpr,. and
Fe=Fcaa-cB Rt)' We also want the property that, when-
ever D is “well-behaved” (in a sense to be made precise
later), D ¢ s iff D ¢ s. In this way, given that D ¢ ¢
and D ¢ d, then we would conclude D U {c} F{ d, mak-
ing ¢ a cautiously monotonic relation. We will define .
by building a subset of the original dataset in such a way
that cautious monotonicity is preserved. We start with the
following notion of includable examples:

Definition 11. An example (z,y) € X X Y is surprising
wrt. D iff D\ {(z,y)} Ve (z,y) and sufficient w.rt. D iff
D U{(z,y)} Fc (x,y). Additionally, an example (z,y) €
X x Y is includable w.r.t. D iff it is both surprising and
sufficient w.r.t. to D.

The definition of includable example has two parts: that
the example is surprising, in the sense that, without it, the
predicted outcome would be different, and that it is suffi-
cient, in the sense that adding it makes it inferable. We then
define the notion of concise subsets, amounting to includ-
able examples only:

Definition 12. Let S C X x Y be a dataset, S’ C S, and let
o(S") = {(x,y) € S| (x,y) is includable w.r.t. S’}. Then
S’ is concise w.r.t. S whenever it is a fixed point of ¢, that
is, p(8") = 9".

To illustrate in the context of AA-C' BR, consider S from
which the AF in Figure 2c is drawn. S is not concise
w.r.t. itself, since ({a, b, ¢}, +) is not includable w.r.t. S (in-
deed, S\ {({a,b,c},+)} Faa.cpr. ({a,b,c},+), see
Figure 2a). Also, S = S\ {({a,b},—), ({a,b,c},+)}
is not concise either (w.r.t. S), as ({a, b}, —) is includable
w.r.t. S’ (the predicted outcome being +), but not an ele-
ment of S’. The only concise subset of S here is S”
S\{({a,b,c},+)}.

Let us now consider D’ C D, for a dataset D. If D’
is concise w.r.t. D, (x,y) € (X x Y)\ D is an exam-
ple not in D already and D’ ¢ (z,y), then (z,y) is
not includable w.r.t. D’, and thus D’ is still concise w.r.t.
D U{(z,y)}. Now, suppose that there is exactly one such
concise D' C D w.rt. D (let us refer to this subset sim-
ply as concise(D)). Then, it seems attractive to define
Fe as: D ¢ (z,y) iff concise(D) ¢ (x,y). Such F¢
inference relation would then be cautiously monotonic if
concise(D) = concise(D U {(z,y)}). To see that, con-
sider (¢/,y') € X x Y such that D ¢ (2, y). Then, since
concise(D) = concise(D U {(x,y)}), for our new ¢, D
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(a) AF- (D, Ny)

@ @ @D

(b) AF- (D, N2)

(C) AFE (D U {(Nh +)}, Nz)

Figure 2: AFs for the proof of Theorem 9, with the grounded extension shaded.

Algorithm 1: simple_add for AA-CBR-.

Algorithm 2: Setup/learning for cAA-CBR-.

Input: An AA-CBR; framework (Args,~-) and a
case n = (ng,no)
Output: A new AA-CBRy (Args’,~~') framework
DEF « {(z,y) € AF-(Args,nc) |
(z,y) # (nc,?) and (ne, ?) defends
(.’L‘, y) in AFE(AT’QS, Tlc)};
Args' « Args U{n};
' (~ U{(n,a) | a = (ac,a,),a € DEF,
and a, # no});
return (Args’, ~")

and D U {(z, y)} would infer the exact same sentences, thus
DU{(z,y)} F (2',y'). This equality is indeed guaranteed
given that (x,y) ¢ D, thus it is not includable, and then a
concise subset of D is still a concise subset of D U {(z,y)}
(otherwise, if (z,y) € D, the equality would be trivial).
Note that concision is too strong a property here: all that is
needed is that a subset D’ is selected such that every case in
it is surprising w.r.t. D’ itself. However, concision implies
that as many cases are added as possible, while restricting to
the ones that guarantee their outcomes.

In the remainder, we state uniqueness and give an
algorithm that constructs concise(D), in the case of
AA-CBR. If D is incoherent, there might be no concise
subset thereof, but our method will still be useful, as we dis-
cuss later.

Uniqueness and Algorithm. We first give a property of
concise subsets:

Theorem 13. For AA-CBRy, if there is a concise D' C D
w.r.t. D then every concise subset of D w.r.t. D is the same
as D'

The procedure for finding this unique concise(D), if it
exists, is integrated within Algorithm 2, using in turn Algo-
rithm 1. If concise(D) does not exist, the algorithm will still
return some D’ C D consisting only of surprising examples
w.r.t. D’ (in fact, Algorithm 2 returns both this subset and
the AF mined from it, for ease of use). The main idea be-
hind the algorithm is simple: we start with the default argu-
ment, and progressively build the AF by adding cases from
D by following the partial order <. Before adding a past
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Input: A dataset D
Output: A subset D’ of D, an AF cAA-CBRy (D)
unprocessed < D;
Args < {(0c,00)};
=
while unprocessed # & do
stratum < {(z,y) € unprocessed |
(x,y)is =-minimal in unprocessed};
unprocessed < unprocessed \ stratum;
to_add + @,
for case € stratum do
(case_charac, case_outcome) < case;
if the outcome for case_charac w.r.t. (Args, ~)
is not case_outcome then
| to_add < to_add U {case};
for case € to_add do
| (Args,~) <—simple_add((Args, ~), case);
D'+ Args\ {(0¢,d0)};
return D', (Args, ~)

case, we test whether it is includable or not w.r.t. the dataset
underpinning the current AA framework: if it is, then it is
added; otherwise, it is not. More precisely, the algorithm
works with strata over D, alongside <. In the simplest set-
ting where each stratum is a singleton, the algorithm works
as follows: starting with Dy = & and the entire dataset
D = {di}iequ,....|p|y unprocessed, at each step i, we ob-
tain either D; = D;_, U{d;}, if d; is includable w.r.t. D;_1,
and D; = D,_1, otherwise. Then D = D\p| C D is an out-
put of the algorithm. Each example of the current stratum
is tested for “includability” with respect to the same (cur-
rent) subset D;, and only the includable examples are added
to it. Here, however, testing for surprise is enough for this
verification. We illustrate the application of the algorithm
next.

Example 14. Once more consider the dataset D
{({a}, +), ({c}, +), ({a, 0}, 1), ({e, 2}, +), ({a, b, ¢}, +)}
in Figure 2c, as well as the definitions used in the
proof of Theorem 9 for X, Y, (6¢,d,) and <. Let
us examine the application of Algorithm 2 to it. We
start with an AA framework AF\ consisting only of
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((Sc, (SO), that is, Dg o, AF, AFt (Do)
AF- (@) = ({(@,—)},2). The first stratum would be
stratumy = {({a},+), ({c},+)}. Of course, then, we
have AA-CBR-({(@,—)}, {a}) = —, and similarly for
({c},?). Thus, every argument in stratum; is includ-
able, and is then included in the next AF, resulting in
Dy = ({a},+), ({c},+) and AF} = AF-(D;). Now, the
second stratum is stratums = {({a,b},—), ({c, 2}, -)}.
We can verify that AA-CBRs-(D1,{a,b}) = + and
AA-CBRw(D1,{c,z}) = +. As aresult ({a,b},—) and
({c,z},—) are both includable, and then included in the
next step, thatis, Dy = Dy U{({a,b}, —), {¢, z}, —)}, and
AF,; = AF. (D). Finally, stratums = {({a,b,c}, +)}.
Now we verify that ({a, b, ¢}, +) is not includable, because
AA-CBRx(Dy,{a,b,c}) = +. Therefore, it is not added
to the AA framework, that is, D3 = D, and thus AF5=
AF»(D3)=AFs-(D3)=AF,. Now unprocessed = &, and
the selected subset is D3, with corresponding AF:- (D3)
AF3, and we are done. Note that using cAA-CBR; the
counterexample in the proof of Theorem 9 would fail, since
({a, b, c},+) would not have been added to the AF.

Note that, if D is coherent, we could have defined the
algorithm equivalently by looking at cases one-by-one rather
than grouping them in strata. However, using strata still has
the advantage of allowing for parallel testing of new cases.
If D is incoherent, then using strata is necessary.

A full complexity analysis of the algorithm is outside the
scope of this paper. However, note here that the algorithm
refrains from building the AA framework from scratch each
time a new case is considered. Still regarding Algorithm 1,
note that it is easy to compute the set DEF while checking
whether the next case is includable or not, thus we could
optimise its implementation with the use of caching. Be-
sides, the subset of minimal cases (that is, the stratum) can
be extracted efficiently by representing the partial order as a
directed acyclic graph and traversing this graph. Finally, the
order in which the cases in the same stratum are added does
not affect the outcome. Thus, each case in the same stratum
can be safely tested for includability in parallel.

Definition of cAA-CBRy-.

Theorem 15. Let D' be the dataset returned by Algorithm
2. Then for every « € D', « is surprising w.rt. D'. Addi-
tionally, if D has a concise subset, D’ is its unique concise
subset. In particular, there is always a concise subset if D is
coherent.

We cannot generalise the existence result for any D:
consider the (incoherent) counterexample when D
{{a},+), ({a, b}, —), {a,b},+)}, for AA-CBR>. None
of its subsets is concise. Still, our algorithm returns the sub-
set {({a},+), ({a,b}, =)}, which is coherent and consist-
ing only of surprising examples.

To conclude, we can then define inference in
cAA-CBRy, the classifier yielded by the strategy de-
scribed until now:

Definition 16. Let D be a dataset and D’ be the subset of
D identified by Algorithm 2. Let cAF- (D, N¢) be the AF
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mined from D’ and (N¢, 7), with default argument (6¢, d, ).
Then, cAA-CBRyx (D, N¢) stands for the outcome for N¢,
given cAF- (D, N¢).

Thus, we directly obtain the inference relation
Feaa-cBr,.. Then, cAA-CBR,- amounts to the form
of AA-CBR using this inference relation. It is easy
to see, in line with the discussion before Theorem 13
and using Theorem 8, that cAA-CBR, satisfies several
non-monotonicity properties, as follows:

Theorem 17. .4 4-cBRr, is cautiously monotonic and also
satisfies cut, cumulativity, and rational monotonicity.

Incoherence. An important additional property of
cAA-CBRy is that it naturally accommodates a way to
handle incoherences in the dataset. During the execution
of Algorithm 2, an incoherent pair of cases would be
considered at the same stratum. As every characterisation
receives an outcome in a cAA-CBRy- framework, and
exactly one, then if there is an incoherent pair in the dataset,
one of its examples would be includable while the other
would not. Therefore, only the includable example becomes
an argument in the AA framework. Although an incoherent
dataset may not have a concise subset, this approach finds
a coherent subset which always chooses among one of the
conflicting examples, using includability as the criterion
for choice.!” As an example, consider again Figure lc.
Following Algorithm 2, we see that in the first while loop
both ({hm},+) and ({km}, —) are in the stratum. Since
the default outcome is —, ({hm},+) is a surprising case
w.r.t. @ and thus is added, while ({hm}, —) is not and thus
is not added, and the algorithm terminates.

Theorem 18. The dataset returned by Algorithm 2 is coher-
ent.

Note that since now a coherent subset is used as basis
for the inference, whenever the default case is not in the
grounded extension, it will be attacked by a case which is
in it.!! Thus we have a “principled” way of dealing with in-
coherences, in which the includable example is always kept.

Spikes. An inconvenience in AA-C'BRy is the presence
of cases in the AF which do not reach the default case. While
part of the AF, they do not affect whether the default case
(6¢, do) is or not in the grounded extension, and thus the
outcome. Formally, these cases can be defined as follows,
for AA-CBR; as well as cAA-CBR-:

Definition 19. Let (Args,~) AF-(D,N¢) or
(Args,~») = cAF- (D, N¢),and & € DN Args. Then, o is
a spike iff there is no path in (Args, ~) from « to (6¢, 0,).

As a simple example, consider the casebase in Figure 2c,
and add ({b}, —) to it. It would be attacked by ({a, b, ¢}, +),

%Indeed, from this reasoning one can also see that every concise
subset is also coherent.

"'In more detail, this is so since the AF would be well-founded,
and thus every argument outside the grounded extension would be
attacked by it (see Dung 1995).
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but it would attack no other argument. Thus, ({b}, —) would
not reach any other argument and would, then, be a spike.

Spikes are unhelpful, since their presence is entirely su-
perfluous, that is, they can be removed with no change in
outcome, for any new case.

Theorem 20. Let (Args,~) = AF-(D,N¢) and «
D N Args be a spike. Then AA-CBRw(D \ {a}, N¢)
AA-CBRs (D, N¢).

Thus, a useful step in practice is removing spikes from the
AF when visualising or storing (e.g. for caching), since the
AF may become significantly leaner (indeed, we do this in
the case study in Section 8§).

Instead, cAA-CBR, shows no spikes, by construction,
given that spikes are not includable, and thus are not added
to cAF- (D, N¢).

Theorem 21. Let (Args,~) = cAF- (D, N¢). Then, there
are no spikes in Args.

8 Case Study

We now explore, as a case study for our approach, the US
Trade Secrets domain, frequently discussed in the Al and
Law literature (Rissland and Ashley 1987; Briininghaus and
Ashley 2003; Bench-Capon 2017). This area of law deals
with misappropriation of commercially relevant information
that, allegedly, should not have been available or used by an-
other party. The stereotypical scenario is of a company, the
plaintiff, suing another, the defendant, claiming that such
misappropriation happened, resulting in economic loss for
the plaintiff. In this setting, each case is represented by
factors each supporting either plaintiff or defendant, and an
outcome, which may be a win for plaintiff (II) or defendant
(A). Formally, each such case is of the form (F'™, 2, 0)
where F™ are the factors supporting the plaintiff, F'2, the
defendant, and o € {II, A} is the case outcome. Example
of pro-plaintiff factors are that the information was about
a product which was unique, in the sense that only the
plaintiff manufactured this product (F}}®), and that the de-
fendant knew that the information was confidential (Fl%l),
while some pro-defendant factors are that the plaintiff dis-
closed the information in negotiations with the defendant
(Fi), and that the plaintiff disclosed the information in a
public forum (F37). For this case study, we use the publicly
available 32 cases considered in (Chorley and Bench-Capon
2005; Al-Abdulkarim, Atkinson, and Bench-Capon 2015;
Al-Abdulkarim 2017; Grabmair 2016).

Since factors are polarised representations, that is, they
indicate a side, we would lose information in treating them
simply as features of AA-C'BR>. It is necessary to incor-
porate the idea that, if a case is in favour, for instance, of
the plaintiff, then removing one of its pro-defendant fac-
tors should still decide the same outcome. This is the idea
of a case being constrained, as typical in the literature of
precedential constraint in Al and Law (Horty and Bench-
Capon 2012; Horty 2019; Prakken 2020; Prakken 2021). We
accommodate this idea by changing the representation of
cases. Formally, if a case is (F1, Al 0), then it yields the
following set of AA-CBR cases: {(FIUY,II) | Y C FA},
ifo=1;and {(FAUY,A) | Y C F},if o = A. That

S
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is, a single case becomes multiple cases w.r.t. AA-CBR.
Even though this is not a compact representation (indeed, it
is exponential), we only aim to show how AA-CBR and
cautious monotonicity applies in this domain, not to provide
a scalable representation.

In order to give an appropriate comparison of the result-
ing AF of both AA-CBR, and cAA-CBR;, we remove
spikes in the AA-C'BRy AF. This makes a more appropriate
comparison to cAA-C' BRy- . It turns out that, for this case-
base, the resulting AF is the same for both AA-CBR;, and
cAA-CBRy, and shown in Figure 3. However, we show
that AA-CBR, could be manipulated by its violation of
cautious monotonicity, while cAA-C BR, cannot.

Consider the following new cases
Nic = ({F}, Fis F0. R PR} ) and
N2c = ({FA, FX°, P, FAY FRt FRP1, 7). We can

think in terms of two cases an attorney needs to argue,
and would like to have a specific outcome, for instance,
pro-plaintiff (II). For N1l¢, the predicted AA-CBRs-
outcome is II. For N2¢, it is A. However, when adding
(Nlcc,II) to the casebase, the AA-CBRs outcome of
N2 then changes to I1. In terms of the domain, a new case,
N1¢, which brings no different reason (be it distinguishing,
change of social values, among others) for change of the
case law, indeed changes the system, as proved by the
change in V2. This implies our attorney in consideration,
with no innovation in reasons, could achieve a desired
outcome in N2¢ by simply presenting it after N1 is
judged. Thus, presenting the cases in different orders would
necessarily change the results, even if no new element is in-
troduced, such as considerations of value, policy, or change
of legislation. This is not the case for cAA-CBR,. It is
straightforward to check that (N1¢,II) is non-includable,
and thus adding it to the casebase would not change the AF
mined from this dataset using cAA-CBR:-.

9 Related Work and Discussion

Cautious monotonicity is typically discussed in non-
monotonic reasoning literature (Makinson 1994; Lehmann
and Magidor 1992), originally presented by Gabbay (1984)
as a reasonable condition for verifying if an allegedly rea-
soning system is indeed reasoning, that is, a rationality pos-
tulate. It is usually presented along cut and cumulativ-
ity, which are argued for by Kraus, Lehmann, and Magi-
dor (1990) on computational and semantic bases.

An important element for the occurrence of incoherence
in a dataset is the representation of the cases themselves.
That is, an insufficiently expressive knowledge representa-
tion risks conflating otherwise distinct cases, giving rise to
incoherence if they have different outcomes. We should not
think this is a matter left entirely to a human user, which
would model a dataset by hand. If cases are thought as be-
ing originated from previous processes, such as automatic
extraction of features by a natural language processing sys-
tem, as previously done with AA-CBR (Cocarascu et al.
2020), it is expected that representations could fail in this
way, and thus treatment of incoherenceis indeed necessary.

There is a long literature on CBR models for legal rea-
soning, starting with Rissland and Ashley (1987), which
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({F18 F19 F27},A)

({FA, FA?, FRY, FR3Y, 0)

({FA, FA°, Fi®, FA°}, A)

(Ff, P, FAY, FAY, By, FRO), A)

({FA FAY, P, FAY PR FRPY, )

1 1 1
({FX, F®, FA

21 2
PN FR3Y, )

Figure 3: Resulting AA framework for the U.S. Trade Secrets casebase. Each case in the original dataset yields possibly many arguments,

each argument represented by its factors and outcomes.
negotiations with defendant; Fi2!

Some of the factors are: FA: the plaintiff disclosed its product information in
: defendant obtained plaintiff’s information altough he knew that plaintiff’s information was confidential

F8: defendant’s product was identical to plaintiff’s. (See https:/arxiv.org/abs/2107.06413 for a full list of factors.)

is surveyed by Bench-Capon (2017). The original goal
of this literature was to capture the argumentative process,
and the influence of abstract argumentation on this litera-
ture and on Al and Law in general is surveyed by Bench-
Capon (2020). However, its goal has expanded to in-
clude prediction of cases (Briininghaus and Ashley 2003;
Grabmair 2017) and to explain predictions (Prakken 2020).
Our treatment of factors (features for and against) in the
case study is non-scalable in general, dictated by the re-
strictions imposed by the structure of AA-C'BR. Factors
are subject to much research since their appearance in the
work of Aleven (2003), and making AA-C'BR more suit-
able for dealing with them is a topic left for future work,
with argumentation-based treatment of them for CBR al-
ready occurring in recent research, such as in the work of
Prakken (2020). Another knowledge engineering element
also beyond the scope of this work is background knowledge
not included in the cases themselves, frequent in the legal
CBR literature in the form of a (typically hand-built) domain
model, enriching the factor representation (Aleven 2003;
Ashley and Briininghaus 2009; Al-Abdulkarim, Atkinson,
and Bench-Capon 2016; Grabmair 2017). For (regular)
AA-CBR, it is assumed that every relevant knowledge en-
gineering aspect is captured by the partial order, case repre-
sentations, and default argument.

Notwithstanding this literature, the implications of cau-
tious monotonicity (or the lack of it) to legal reasoning has
remained largely unexplored, particularly on CBR scenar-
ios.!> We illustrate in Section 8 an unexpected consequence
of violating it, namely, manipulability of outcomes by lever-
aging on the order of presentation of new cases. Of course,
our analysis is limited and further exploration of the rela-
tions between CBR in law and properties of non-monotonic
reasoning systems is still required and left to future work.

Horty and Bench-Capon (2012) and Horty (2019) present
formal analyses of precedential constraint. In discussing

"2Prakken (1997) mentions it briefly, and cumulativity is crit-
ically discussed in non-monotonic reasoning more generally, but
not on a CBR or legally motivated context.
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casebase dynamics in the reason model of precedential con-
straint, Horty and Bench-Capon (2012) found out that “sim-
ply following a precedent rule can lead to a change in the
law”. One may be led to believe this is an affirmation that
an adequate modelling of case law is not cautious mono-
tonic. However, this is not necessarily so. They show that
following a rule originated from previous cases may make
a decision maker unable to distinguish a new case. That
is, merely following a past rule in a case may strengthen the
precedential constraint of it, but - and this is the crucial point
- we can verify that it would not make a new case previously
constrained to an outcome to be constrained to a different
outcome. Besides, this effect is only possible if the decision
maker is not constrained to an outcome in the changing case
(that is, it is still possible to distinguish consistently).

10 Conclusion

We have studied regular AA-C'BRy- frameworks, and pro-
posed a new form of AA-CBR, denoted cAA-CBR,,
which is cautiously monotonic and, as a by-product, cu-
mulative and rationally monotonic. We also show that it
results in a principled way of dealing with incoherence in
casebases, something which AA-C'BR. lacks. Given that

AA-CBRy admits the original AA-CBR> (Cyras Satoh,
and Toni 2016a) as an instance, we have (implicitly) also
defined a cautiously monotonic version thereof.

(Some incarnations of) AA-C' BR have been shown suc-
cessful empirically in a number of settings (Cocarascu et
al. 2020). The formal properties we have considered in
this paper do not necessarily imply better empirical results
at the tasks in which AA-CBR has been applied. We
thus leave for future work an empirical comparison between
AA-CBRy and cAA-CBR. Other issues open for future
work are comparisons w.r.t. learnability (such as model per-
formance in the presence of noise), as well as a full complex-
ity analysis of the new model. Also, we conjecture that the
reduced size of the AF our method generates could possibly
have advantages in terms of time and space complexity: we
leave investigation of this issue to future work.
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