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Abstract
Detecting, characterizing and adapting to novelty, whether in
the form of previously unseen objects or phenomena, or un-
expected changes in the behavior of known elements, is es-
sential for Artificial Intelligence agents to operate reliably in
unconstrained real-world environments. We propose an auto-
matic, unsupervised approach to novelty characterization for
dynamic domains, based on describing the behaviors and in-
teractions of objects in terms of their possible actions. To
abstract from the variety of realizations of an action that can
occur in physical domains, we model states in terms of qual-
itative spatial relations (QSRs) between their entities. By
first learning a model of actions in the non-novel environ-
ment from the state transitions observed as the agent interacts
with the world, we can detect novelty by the persistent de-
viations from this model that it causes, and characterize the
novelty by new or modified actions. We also present a new
method of learning action models from observation, based on
conceptual similarity and hierarchical clustering.

1 Introduction
In the real world, “novelty” refers to situations that vio-
late implicit or explicit assumptions about agents, the en-
vironment, or their interactions (Langley 2020). As Artifi-
cial Intelligence (AI) agents such as robots become increas-
ingly ubiquitous, they are expected to operate reliably in un-
constrained environments where novelties are increasingly
likely to occur. Therefore, it is essential for AI agents to be
capable of detecting, characterizing and adapting to novelty
in their environment (Boult et al. 2020). In this paper, we fo-
cus on the tasks of detecting and characterizing novelty, i.e.,
constructing an update to the agent’s world model to reflect
the detected novelty. Arguably, an agent could adapt to nov-
elty through a process of trial-and-error, without an explicit
characterization of the novelty. However, an explicit model
of the novelty can enable more efficient adaptation, as it al-
lows for reasoning about the novelty. The characterizations
we create are expressed in terms of actions, with precondi-
tions and effects, that describe the behavior of the novelty,
and thus very close to the kind of model that is used in AI
planning (Li et al. 2018). An explicit model of the novelty
also enables the agent to share the knowledge it has learned
about the novelty with other agents, including humans. This
is key to making the agent’s response to the novelty explain-
able to an observer, such as a human monitoring the agent.

(:action shoot-into-goal
:parameters (?a - ball ?b - goal)
:precondition (and (disconnected ?a ?b)

(far ?a ?b)
(approaching ?a ?b)
(stationary ?b))

:effect (and (not (disconnected ?a ?b))
(nt proper part ?a ?b)
(not (far ?a ?b))
(touching ?a ?b)
(not (approaching ?a ?b))
(stationary ?a))

Figure 1: Left: Some possible realizations of the action of shoot-
ing a ball into a goal. Right: The corresponding qualitative action
model. Predicates are in the form of relation object triples like
(disconnected ?a ?b).

Furthermore, we focus on physical domains, in which the
agent and other world objects interact according to physi-
cal laws. In such domains, the behavior of novel objects is
consistent, following the same laws when interacting with
the world. As a case study, we apply our approach to the
physics-based video game Angry Birds.

Our approach to characterizing novelty in the environ-
ment consists of two steps (see Figure 3 for an overview).
In the first step, we learn, from observation, a model of the
environment without novelty. This model takes the form of
a set of actions, defined by their preconditions and effects,
which describe the possible behaviors of objects in the en-
vironment. We call this the base model. Actions are gener-
alized from state transitions observed during training. This
step is done off-line, which means we can use a large vol-
ume of training data. However, because training data can
never be guaranteed to be complete, neither is, in general,
the model. Also, generalization from observed state transi-
tions means the model may permit some transitions that do
in fact not occur in the environment. Note that although we
term them “actions”, state transitions permitted by the base
model are not necessarily actions taken by the agent. They
can also represent events that occur spontaneously, or as de-
layed consequences of the agent’s actions.

The second step occurs on-line, when novelty is encoun-
tered. We detect novelty by the recurring presence of state
transitions that are not possible in the base model; we call
such transitions uncovered. Because the base model cannot
be guaranteed to be complete, some uncovered state tran-

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

454



sitions may occur also without novelty, i.e., there is some
noise. However, because novel behaviors are persistent,
uncovered state transitions caused by novelty are far more
likely to be repeated as we observe more of the agent’s in-
teraction with the world, and we use this fact to distinguish
when novelty appears. The repeated uncovered state transi-
tions also become the basis for our novelty characterization.
We create new actions, covering the novel behaviors, from
these transitions, by a process similar to that which creates
the base model.

Learning action models in physical domains is challeng-
ing because of the great variety of realizations of an action
that can occur. For example, the action of kicking a ball into
a goal (shown in Figure 1, left) can be taken from a myriad
of different positions, with different ball trajectories, end-
ing at different locations in the goal. Although what time
a state transition occurs is ambiguous because state proper-
ties such as the relative positions of objects can change by
arbitrarily small quantities, only changes that are somehow
significant should be considered a transition to a different
state. To address this problem, we abstract the observation
of the world state into a set of qualitative spatial relations
(QSRs) between observed objects.

QSRs represent relations between objects in space us-
ing qualitative terms. They represent intuitive, human-
understandable concepts, such as disconnected, which
means two objects appear separate from each other. There
is a large number of formally defined QSRs (Randell, Cui,
and Cohn 1992; Van de Weghe et al. 2005; Dylla et al. 2017;
Renz and Nebel 2007; Cohn and Renz 2008), which cover
most of the spatial aspects relevant to our world, such as rel-
ative object location, distance and movement. QSRs have
also previously been used to model physical states and state
transitions (Delafontaine, Cohn, and Van de Weghe 2011;
Duckworth, Hogg, and Cohn 2019).

The action models we generate are defined by their typed
parameters, precondition and effects, and can be expressed
as a planning domain, e.g., in the Planning Domain Def-
inition Language (PDDL) (McDermott et al. 1998), using
the QSRs as predicates. An example is shown in Figure 1
(right). We make one departure from standard PDDL, by al-
lowing for effects that assign an arbitrary relation to one of
the spatial aspects. For example, in the action in Figure 1,
the (center of the) ball can end up with any direction to the
(center of the) goal. This is simply a shorthand for a larger
number of possible actions.

Contributions The novelty, and advantage, of our ap-
proach is that it is able to compute a characterization of
observed novel behavior in the environment at a qualitative
level of abstraction, and to do so automatically, in an unsu-
pervised manner.

We show that different novelties mostly give rise to highly
distinct characterizations, with very little overlap in their
novel actions. We also propose a new method to create the
base model, combining neighborhood and hierarchical clus-
tering to group observed state transitions likely to be caused
by the same action. We show that this combination yields a
better trade-off between the model’s coverage, validity and

size than other methods. Therefore, our approach is also rel-
evant to applications that require automated generation of a
world representation, without considering novelty.

2 Background and Related Work
In this section, we first review the literature on generating
action models to characterize novelty and applying QSRs to
represent actions. We then describe the qualitative spatial
calculi that we use.

2.1 Action Model Extraction for Novelty
Characterization

Most AI research into novelty has focused on detection,
rather than characterization. For example, Sabokrou et al.
(2018) proposed a Generative Adversarial Network (GAN)
for anomaly and outlier detection in images, and Yahaya,
Lotfi, and Mahmud (2019) used several machine learning
models to classify novel behaviors in daily activities based
on human-selected features, e.g. duration.

There is a long history of research on action model gener-
ation in AI. Pasula, Zettlemoyer, and Kaelbling (2007) learn
models of stochastic actions in a simulated physical Block
Stacking game, but assume that the actions taken (not just
their consequences) are observed. Konidaris, Kaelbling, and
Lozano-Perez (2015) and Andersen and Konidaris (2017)
learn models of stochastic actions that unfold over time
(termed “options”), in video games. Recently, researchers
have attempted unsupervised/semi-supervised action model
generation. Miglani (2020) apply deep reinforcement learn-
ing to produce action models from descriptions in natural
language. Asai and Fukunaga (2017) and Asai and Muise
(2020) propose an unsupervised approach using autoen-
coders to derive a representation of states and cluster state
transitions into actions. Several researchers have studied
learning action models from observation of symbolic actions
and states (Amir and Chang 2008; Cresswell, McCluskey,
and West 2013; Aineto, Jimenez, and Onaindia 2018).

2.2 Action Representation by Qualitative Spatial
Relations

QSRs have been used to recognize action from video in
an automatic way (Sridhar, Cohn, and Hogg 2011a; 2011b;
Dubba et al. 2015). Tayyub et al. (2014) use both qualitative
and quantitative spatio-temporal representations as joint fea-
tures to recognize daily activities. Young and Hawes (2015)
combined four kinds of qualitative spatial calculi to demon-
strate the movements of agents in a soccer game simulator,
like kick or shoot. Duckworth et al. (2016) and Duckworth,
Hogg, and Cohn (2019) extracted qualitative spatial rela-
tions like qualitative distance relation from robotic move-
ment observations, and combined them as features for unsu-
pervised clustering algorithms such as K-means (Yuan and
Yang 2019), and Latent Semantic Analysis (LSA) (Deer-
wester et al. 1990). However, while these works use QSR
features to represent states, they are used only to recognize
known actions. Without a description specifying the precon-
ditions and effects of actions, actions can not be instantiated
and explained.
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Figure 2: (a) RCC-8: topology relations; (b) QTC: movement rela-
tions; (c) STAR-4: direction relations; (d) QDC: distance relations;
(e) EXISTS: existence relations. Adjacent (connected) relations
are are conceptual neighbors.

2.3 Qualitative Spatial Relations
In this paper, states will be described as QSRs between ob-
jects. The QSRs are drawn from four calculi, correspond-
ing to four essential spatial aspects of any physical domain:
topology, movement, direction and distance.

RCC-8 The Region Connection Calculus (RCC) (Ran-
dell, Cui, and Cohn 1992) describes topological relations
between regions. RCC-8 consists of 8 relations: dc (dis-
connected), ec (externally connected), po (partially overlap-
ping), eq (equal), tpp (tangential proper part), tppi (tangen-
tial proper part inverse), ntpp (non-tangential proper part)
and ntppi (non-tangential proper part inverse) as shown in
Figure 2 (a).

QTC Relations in the Qualitative Trajectory Calculus
(QTC) (Van de Weghe et al. 2005) express if one object is
approaching (−), moving away from (+), or stationary rela-
tive to (0) another object. For example, (+,+) indicates two
objects are moving away from each other. There are 9 QTC
relations as shown in Figure 2 (b).

STAR-4 STAR-4 (Renz and Mitra 2004) consists of qual-
itative direction relations. Given two objects, as shown in
Figure 2(c), the 2D space is uniformly divided into 8 cones
by 4 dotted lines with the first object in the center and the
direction relation is decided by which cone the second ob-
ject locates in. The 8 cones stand for 8 direction relations: tp
(top), tr (top right), rt (right), br (bottom right), bt (bottom),
bl (bottom left), lt (left) and tl (top left).

QDC The Qualitative Distance Calculus (QDC) (Clemen-
tini, Di Felice, and Hernández 1997) indicates distance be-
tween objects. As shown in Figure 2 (d), we use the three
relations fr (far), nr (near) and to (touching).

Conceptual Distance The conceptual distance between
two QSRs can be defined by conceptual neighborhood di-
agrams (Van de Weghe and De Maeyer 2005; Dondrup et al.

2015). In such diagrams, shown in Figure 2, nodes are rela-
tions and edgeconnect conceptual neighbors. Two QSRs are
conceptual neighbors if there is no other intermediate rela-
tion in a consecutive change. For example, in a scenario
where two touching objects move away from each other,
their QDC relation changes from to to nr and then to fr.
Thus nr is a conceptual neighbor to both fr and to while
to is not a neighbor of fr. Note, however, that all steps of
the change may not be observed: if the objects are moving
fast enough, we may see it as a transition from to to fr in
consecutive video frames. We will use the conceptual dis-
tance as a (dis-)similarity measure between QSRs to cluster
similar state transitions.

3 Proposed Approach
An overview of our approach is shown in Figure 3. The
inputs are sequences of unlabelled frames (from videos) of
the environment without novelty, for base model generation,
and with novelty, for detection and characterization. Quali-
tative states are created by detecting and classifying objects
in each frame, and computing their QSRs. Classification
assigns each object a type, based on its appearance (e.g. a
ragdoll is of type “cat”). If objects of a novel type appear, we
have of course no knowledge of that type, but we assume that
the classifier can recognize different objects with the same
appearance as belonging to the same (novel) type. We do
not assume that object detection, tracking or classifcation is
perfect, although if they are too unreliable the quality of the
generated model will suffer. Because the four QSR calculi
we use are made up of binary relations, a state can be de-
composed into a collection of object-pair states. State tran-
sitions are created from consecutive object-pair states where
a change in at least one qualitative aspect occurs.

To create the base model, we cluster the extracted state
transitions. Clustering is done in two stages, as explained
later in this section, and results in a set of clusters of similar
state transitions. From each cluster we create one action,
which is representative of the transitions in that cluster.

In the novelty detection step, observed state transitions are
matched against actions in the base model; a state transition
that is not matched by any action is said to be uncovered.
Uncovered state transitions that occur repeatedly indicate
novelty, once they exceed a certain threshold. From these
repeated uncovered state transitions (RUSTs), we extract a
set of novel actions that characterize the novel behavior.

3.1 State and State Transition
Our qualitative state representation is made up of the QSRs
of four calculi, namely RCC-8, QTC, STAR-4 and QDC,
and one additional property which describes a change in ob-
ject existence (EXIST). We refer to each of these five as
an aspect of the state. Because the relations in each calcu-
lus are mutually exclusive and exhaustive, and binary, each
pair of objects satisfies exactly one relation from each cal-
culus, and a state is the union of the pair-wise states of all
object pairs. The possible existence relations are EXIST
= {(n, n), (n, y), (y, n), (y, y)}, i.e., it is the cross product
of a binary property of each object. We represent it as a re-
lation for uniformity with the other aspects. Non-existent
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Figure 3: An overview of our proposed solution for the problem of novelty characterization by its novel actions in physical domains. The
input is two sets of game-playing videos (with/without novelty) and the output is the novel actions (i.e., uncovered state transitions). Our
approach consists of 4 procedures: (1) two sets of states and corresponding state transitions are extracted from both inputs; (2) state transitions
are grouped into clusters by our two-stage graph-based hierarchical clustering approach: first, constructing neighborhood graphs, where each
node represents a state transition and state transition with similar relation changes are connected; second, merging similar neighborhood
graphs into larger clusters; (3) A base model that includes a set of actions is generated from clusters; and (4) select repeated uncovered state
transitions from Input 2 as the novel actions.

objects are of course not detected, and are not represented in
the state; a change in existence from y to n means the object
is about to disappear (is not present in the next frame) and a
change from n to y means the object has just appeared (was
not present in the previous frame).

Definition 1 (Object-Pair State). An object-pair state is a 2-
tuple s = (op,R), where op = ((o1, t1), (o2, t2)) is a pair
of typed objects, andR = (r1, r2, r3, r4, r5) is the 5-tuple of
relations, one for each aspect, that hold between o1 and o2,
i.e., r1 ∈ RCC-8, r2 ∈ QTC, r3 ∈ STAR-4, r4 ∈ QDC, r5 ∈
EXIST.

For each frame, we extract one object-pair state for each
pair of detected objects. Automatic state extraction can be
done by object detection algorithms like Fast-RCNN (Dias
et al. 2020) and QSR computation tools like QSRLib (Gat-
soulis et al. 2016). A state transition occurs where the
object-pair states referring to the same pair of objects in two
consecutive frames differ in at least one aspect.

Definition 2 (State Transition). Given a sequence of sets of
object-pair states S1, S2, . . ., where Si is the set of object-
pair states extracted from frame i, a state transition is a pair
of object-pair states (s = (ops, RS), s

′ = (ops′ , Rs′) such
that: (1) s ∈ Si and s′ ∈ Si+1 for some i; (2) ops = ops′ ;
and (3) Rs 6= Rs′ , We refer to s and s′ as the before and
after states of the transition.

In the following, we will use a slightly different repre-
sentation of state transitions: instead of a pair of object-
pair states, (s, s′), we describe a transition as ((t1, t2), r1-
r′1, . . . , r5-r′5), where (t1, t2) are the types of the object pair
and ri and r′i the relation of the i-th aspect that holds be-
tween the objects in the before state s and after state s′, re-
spectively. That is, once we have identified state transitions,
the individual objects’ identities are no longer important; we
regard it as a transition of the objects’ types. We refer to the

pair ri-r′i as the transition in aspect i. Note that ri may equal
r′i for some i, since a state transition requires only that there
is a change in at least one aspect.

3.2 Graph-based Hierarchical Clustering
The clustering of state transitions proceeds in two stages. In
the first stage, we construct a neighborhood graph, based on
conceptual similarity, and form initial clusters from the con-
nected components of this graph. In the second stage, we
iteratively merge pairs of clusters that satisfy certain con-
ditions to form larger clusters. At both stages, we cluster
only state transitions with the same pair of object types. The
complete clustering procedure is shown in Algorithm 1.

Neighborhood Graph Construction Due to the qualita-
tive abstraction, and because state transitions are identified
with pairs of object types, not objects, it is common to ob-
serve the same state transition more than once in any data
set of sufficient size. Hence, we first group all identical state
transitions together. These initial sets can be represented as
pairs of a state transition and a repetition count, (st, nst).

The neighbourhood graph is an undirected graph whose
nodes are the unique state transitions. Two state transitions
st1 = (otp1, r1,1-r′1,1, . . . , r1,5-r′1,5) and st2 = (otp2, r2,1-
r′2,1, . . . , r2,5-r′2,5) are connected iff otp1 = otp2 and
d(st1, st2) =

∑5
i=1(di(r1,i, r2,i) + di(r

′
1,i, r

′
2,i)) = 1,

where di(r1,i, r2,i) is the conceptual distance between re-
lations r1,i and r2,i in the i:th aspect (i.e., the length of the
shortest path between them in the corresponding conceptual
distance graph shown in Figure 2). In other words, transi-
tions are connected in the neighbourhood graph iff they dif-
fer in exactly one aspect, and in that aspect either their be-
fore or after state relations are conceptual neighbours. The
initial clusters are the connected components of this graph.

The first clustering stage improves efficiency by reducing
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the number of initial clusters for the next stage. It can also
improve model generalization, since it may cluster some
transitions not considered mergeable in the next stage.

Hierarchical Agglomerative Clustering Hierarchical ag-
glomerative clustering starts from an initial set of clusters,
and iteratively select a most similar pair of clusters to be
merged into one, until no more mergers are possible (Rokach
and Maimon 2005).

In our application of this idea to clustering state transi-
tions, we impose two conditions that a pair of clusters must
meet to be merged: (1) their sets of state transitions must
refer to the same object type pair; and (2) for at least δ of
the aspects, a fraction τ of transitions in their union must
have the same before and after relation. The parameters
δ ∈ {0, . . . , 5} and τ ∈ [0, 1] control how much the actions
generated from the clusters are permitted to generalize from
the observed state transitons. To state this more precisely,
we need the following definitions:
Definition 3. Let C be a set of state transitions, and i ∈
{1, . . . , 5}. The representative transition in aspect i for C is
a relation pair ri-r′i in aspect i that occurs most frequently
in C, taking into account repetitions. If two or more relation
pairs in aspect i are tied for highest frequency, one of them
is chosen arbitrarily.

The agreement in aspect i ofC is the number of state tran-
sitions in C whose relation pair in aspect i is the represen-
tative transition in that aspect for C divided by the size of
C, again taking into account repetitions.
We denote the agreement in aspect i of C by ηi(C).
Definition 4. Two sets of state transitions C1 and C2 are
mergeable, under parameters δ ∈ {0, . . . , 5} and τ ∈ [0, 1],
iff (1) all state transitions in C1 ∪ C2 have the same ob-
ject type pair, and (2) there are at least δ different aspects
i1, . . . , iδ such that ηi(C1∪C2) ≥ τ for each i in i1, . . . , iδ ,
i.e., the agreement in each of those aspects of C1 ∪ C2 is at
least τ .

Definition 4 tells us which clusters may be merged, and
therefore also provides the stopping condition for the hierar-
chical clustering process (when there are no more mergeable
clusters). It remains to specify which pair of mergeable clus-
ters are selected in each iteration, i.e., the similarity mea-
sure. Given two mergeable candidate clusters C1 and C2,
their similarity θ(C1, C2) is the average agreement in the δ
aspects that have the highest agreement. The cluster pair
with the highest similarity score is selected to be merged.

3.3 Base Model Formation
The output of clustering is a set of clusters; each cluster is a
set of state transitions. By construction, all state transitions
in each cluster have the same object type pair. We generate
one action from each cluster. How this is done is described
in this section. The resulting set of actions is our base model.

Representative State Transition Given a cluster C, we
form a single representative state transition, RSTC =
(otpC , r1-r′1, . . . , r5-r′5), where otpC is the object type pair
common to all state transitions in C and ri-r′i is the rep-
resentative transition in aspect i for C if ηi(C) ≥ τ . If

Algorithm 1 Graph-based Hierarchical Agglomerative
Clustering.

1: procedure G-HAC
2: # Stage 1: Neighbourhood graph clustering
3: # Collect unique state transitions with counts:
4: nodes(G) = {(st1, nst1), . . . , (stn, nstn)}
5: for (sti, nsti), (stj , nstj ) ∈ nodes(G) do
6: if sti 6= stj ∧ d(sti, stj) = 1 then
7: connect (sti, nsti) and (stj , nstj ) in G.
8: CS = connected components(G) # initial clusters
9: # Stage 2: Hierarchical clustering

10: # mergeableδ,τ (CS) denotes cluster pairs that are
11: # mergeable under params δ and τ (cf. Definition 4)
12: while ∃Ci, Cj ∈ mergeableδ,τ (CS) do
13: # Select pair with highest similarity:
14: Ci, Cj ← argmax{θ(Ci, Cj) |
15: Ci, Cj ∈ mergeableδ,τ (CS)}
16: CS = (CS \ {Ci, Cj}) ∪ {Ci ∪ Cj}
17: return CS

ηi(C) < τ , the representative state transition has a special
value ? in place of a relation pair for aspect i. The meaning
of this value is that any transition is considered possible in
this aspect.

An example is shown in Figure 4. The clus-
ter consists of 5 state transitions (note that the third
and fourth row are two repetitions of the same state
transition). The agreements in each of the five as-
pects are 1, 0.8, 0.8, 0.6 and 0.8 respectively. Assuming
τ = 0.7, we obtain the representative state transition
((bird, pig), dc-dc, (0, 0)-(−, 0), bl-lt, ?, (y, y)-(y, n)).
Actions An action consists of three components: param-
eters, precondition and effect. The action generated from a
cluster C has two parameters, whose types are given by the
common object type pair of the cluster. The action’s pre-
condition and effect are determined by the before and after
relations of the representative state transition RSTC . When
RSTC has a relation pair ri-r′i in aspect i, the relation in the
before state, ri, becomes an action precondition, and the re-
lation in the after state, r′i, becomes an effect if it is different
from ri. This follows the planning convention that persis-
tence of facts is implicit (McDermott et al. 1998). When
RSTC has an arbitrary change, ?, in aspect i, the action has
no corresponding precondition, and an effect that allows any
one of the relations in this aspect to become true. This can be
seen as a shorthand, representing one action for each possi-
ble relation that can hold in the after state. The action created
in the example above is also shown in Figure 4.

The predicates used by these actions are simply one for
each possible relation in each of the five aspects that make
up our qualitative state representation.

3.4 Novelty Characterization
The output of the first step is the base model: a set of ac-
tions, A0, that describe the possible state transitions in the
environment without any novelty. In the second step, we
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Figure 4: Example of how an action is created from a cluster. There
are 5 state transitions in the cluster C as shown in the table. These
state transitions share the same object type pair (bird, pig). Below
the table is shown the most frequent relation pair for each aspect
and the corresponding agreement (η(C)). The representative state
transition (RSTC ) also has the most frequent transition in each as-
pect, except for the distance aspect where it has an arbitrary change
effect (marked by a ?) because the agreement in this aspect in C is
below the threshold τ = 0.7. Finally, the generated action.

observe new state transitions, as the agent interacts with the
world, and attempt to match them to actions in this set.

Definition 5. A state transition (s, s′) for the typed object
pair ((o1, t1), (o2, t2)) is covered by action a iff (1) t1 and
t2 are the types of a’s parameters; (2) the before state s
satisfies a’s precondition; and (3) a’s effects can be applied
to s in a way that yields the after state s′.

A state transition is covered by a set A of actions iff it is
covered by some action a ∈ A.

If an action has an arbitrary change effect in an aspect, we
can choose any of the possible relations for this aspect in the
after state; hence the wording of condition (3) above.

A state transition not covered by A0 is said to be uncov-
ered. Because the base model is learned from a finite set of
observations, it is not perfect, and hence there will normally
be some uncovered state transitions also when observing the
environment without novelty. However, because novelties in
a physical environment cause a persistent change to the be-
havior of the environment, or some types of objects in it, we
claim that repeated uncovered state transitions (RUSTs) will
be more frequent when a novelty is introduced, compared to
the non-novel environment, and that this difference is often
sufficient to detect novelty. We demonstrate this claim holds
for most of the novelties in our case study in Section 5.

The RUSTs are also the basis for generating the character-
ization of the novelty once detected. From these we create a

set of novel actions, following the same process as described
in Section 3.3. Note, however, that we do not apply any clus-
tering to the RUSTs before generating the novel actions.

4 Experiment 1: Base Model Generation
We conduct two sets of experiments: First, we evaluate how
well the generated base model describes the non-novel envi-
ronment. We compare our method with three other methods
from the literature, and evaluate the impact of the δ and τ
parameters on the model. In the second set of experiments
(Section 5), we introduce novelties and measure how well
our approach can detect and characterize them.

4.1 Dataset
Our testbed is a classical physics-based video game – Angry
Birds. In this game, the player uses a slingshot to shoot birds
at structures made up of different kinds of building blocks,
with the aim of destroying all pigs to clear a level. The game
can be described as a “physics-based puzzle”: the behavior
of objects as they fly, collide, and so on is calculated by an
internal physics simulation, and solving a level requires an
element of logical thinking. Playing Angry Birds has been a
challenge for AI agents since 2012 (Renz et al. 2015).

We use the Science Birds open source clone of the game1

(Ferreira and Toledo 2014), since this allows to introduce
novel behaviors. We extract objects and the properties
needed to compute the qualitative state in each frame from
the game engine directly, instead of indirectly from the ren-
dered video frame. Thresholds for qualitative distances
(QDC relations) were set based on the distribution of all ob-
ject pair distances in the training data set, as follows: touch-
ing to ∈ [0, 10], near nr ∈ [10, 50], and far fr ∈ [50,∞].

Training Data is the set of qualitative state transitions col-
lected from 170 game levels, each played 10 times. To gen-
erate training data exhibing a broad range of possible ob-
ject behaviors, we use a random game-playing agent to play
these levels. This agent shoots each bird randomly, with-
out any strategy or target. This means each time the agent
replays a game level, different actions are likely to happen,
which helps capture more infrequent actions.

To limit the size of the experiment, we focus on actions
related to birds. These are the most interesting from the
agent’s perspective, since it is the birds that the player con-
trols. This means we keep only the state transitions in which
at least one of the two objects is of the type “bird”, resulting
in 6233 state transitions in total in the training data set.

Test Data is extracted from playing another 30 unseen
game levels, each 3 times. These are played by an agent
that is more goal-directed, targetting the pigs. The agent’s
strategy is not sophisticated: it selects which pig to shoot at
randomly, ignoring obstacles. Hence, it is called the “naive”
agent. Nevertheless, it is a better representative of how an in-
telligent agent may act than the random agent used in train-
ing. Only state transitions in which at least one of the two

1https://gitlab.com/aibirds/sciencebirdsframework/-/tree/
release/alpha0.4.1
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objects is of type “bird” are kept, resulting in 520 state tran-
sitions in the test data set.

4.2 Evaluation Metrics
The performance of the base model is evaluated on three
criteria: (1) the validity of its actions, meaning the degree to
which they represent state transitions that can actually hap-
pen in the game; (2) coverage on the test set, i.e., on unseen
game levels without novelty; and (3) size, meaning the num-
ber of actions. A perfect model would achieve 100% validity
and coverage, with a small number of actions. Actions cor-
responding exactly to state transitions in the training set are
sure to be valid, but their coverage outside the training set
may be low. Introducing some generalization increases cov-
erage on the unseen test set, but also risks lowering validity.

Action Validity Since we cannot know the set of all state
transitions that are possible in the environment, we approx-
imate it with the union of the training and test sets; call this
set SU . Actions without arbitrary change effects represent
only one state transition, and thus have a validity score of
either 1 (if found in SU ) or 0 (if not). An action a that has an
arbitrary change effect in one or more aspects can result in a
set of state transitions, all (otpa, r1-r′1, . . . , r5-r′5) such that
either ri is in the precondition of a and r′i in the effect of a
or equal to ri, or a has an arbitrary change effect on aspect
i. The validity of the action is the fraction (in [0, 1]) of these
state transitions found in SU . The validity score of the base
model is the average validity of all its actions.

Coverage on Test Data Coverage on test data measures
how well the base model describes game levels outside the
training set, i.e., how general it is. This is measured sim-
ply as the fraction of state transitions in the test set that are
covered (cf. Definition 5) by the base model’s action set.

4.3 Baseline Approaches
We compare our proposed graph-based hierarchical clus-
tering approach (G-HAC) with three baseline approaches:
(1) the Cube-space Action Auto-Encoder (AAE), proposed
by Asai and Muise (2020); (2) the widely-used clustering
method K-means and (3) Latent Semantic Analysis (LSA).
We also apply hierarchical agglomerative clustering (HAC)
alone as a comparison. Without the neighborhood graph-
based clustering stage, the initial clusters each contain only
repetitions of a unique state transition.

AAE is a neural network that produces action models by
learning the object distribution changes as state transitions.
State transitions are represented as numeric vectors by em-
bedding the pixel distribution of consecutive game state im-
ages. With the state transitions as the input to AAE, the
result is which action the input state transition belongs to,
where the total number of actionsK is predefined. K-means
and LSA were both successfully used by Duckworth, Hogg,
and Cohn (2019) to classify human activities based on the
similarity of their QSR changes. Given a predefined num-
ber of clusters K (the same as in AAE), they both return K
clusters (i.e., activities).

Figure 5: Coverage on test data (left) and validity (right) of the base
models generated by G-HAC and HAC with different parameter
values. δ ∈ {3, 4, 5}, τ ∈ [0.5, 0.99].

4.4 Experiment Results and Analysis
Both G-HAC and HAC are tested with different combina-
tions of τ ∈ [0.5, 0.99] and δ ∈ {3, 4, 5}. Figure 5 shows
the results. Increasing τ boosts coverage for both meth-
ods, while varying δ does not affect coverage much. This
is because as τ increases, fewer clusters are mergeable, and
more actions are generated. For the same parameter settings,
the model generated by G-HAC has slightly better coverage
than the one generated by HAC alone. Validity, on the other
hand, is strongly affected by δ. When δ < 5, hierarchical
clustering can generate actions with arbitrary change effects,
and all the possible state transitions represented by those ac-
tions are rarely present in the combined training and test set.

The three other methods all require a number of clusters
K as an input parameter. We use values of K equal to the
number of clusters generated by G-HAC with all different δ
and τ values. Figure 6 shows the coverage–validity trade-
off achieved by the models generated by all five methods,
under all tested parameter settings. The closer a model is to
the top right corner, the better its performance. Models gen-
erated by AAE and LSA have visibly lower validity scores,
though their coverage is high. In other words, these methods
generate models that over-generalize.

Figure 6: Comparison of coverage and validity achieved by all
models generated using G-HAC, HAC, AAE, K-means and LSA.

Table 1 shows the size, coverage and validity of the best
(i.e., closest to the top right corner in Figure 6) model gener-
ated by each method. While no method dominates in all
three performance criteria, the G-HAC method offers the
best trade-off. The model generated by AAE has the high-
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G-HAC HAC K-means AAE LSA
No. of actions 593 662 663 166 496
Coverage (%) 93.0 90.4 90.4 94.1 91.0
Validity (%) 95.2 100.0 94.6 18.7 66.6

Table 1: Size, coverage and validity of the best model generated by
each method. These correspond to the points that are closest to the
top right corner in Figure 6.

Figure 7: Part of the model of interactions between “red bird” and
“fat ice rect”. The aspects, from left to right, are RCC8, QTC,
STAR4, QDC and EXISTS.

est coverage, but it is only slightly higher than that of the
G-HAC model and its validity is vastly lower.

Clustering with G-HAC and action generation take
around 20 seconds. HAC alone takes about 10 times longer.

4.5 Using the Model
The generated model cannot be used directly to plan the
actions of an Angry Birds playing agent, because it does
not distinguish which actions are actions of the agent and
which are uncontrollable events that happen as delayed con-
sequences. However, plan existence can be used as a predic-
tor of what future states can occur. As an example, Figure 7
shows a small part of the model of interactions between ob-
jects of the “red bird” type and the “fat ice rect” type. It can
be seen that, for example, these particular starting conditions
never result in the ice block being destroyed.

5 Experiment 2: Novelty Detection and
Characterization

We select the best model generated by G-HAC, as shown in
Table 1, as the base model for testing novelty detection and
characterization.

5.1 Novelties
For this experiment, we introduce five novelties, of three
different kinds, in the Angry Birds game. Novelties 1–3
are changes to the properties of some object type, which
changes its behavior; novelty 4 is a “global” change – ro-
tating the screen 180 degrees – which causes a change in
apparent behavior of almost all objects; novelty 5 introduces
a new object type, with a different appearance but which is
behaviorally the same as the red bird type in the non-novel
game. These correspond to levels 2, 3 and 1 of the classi-
fication proposed by DARPA (2019). Figure 8(a) shows an

example of one action in the standard game, and how this
action may change with each of the novelties (b–f).

Figure 8: (a) A red bird hits a wood block in the environment with-
out novelty; right: the corresponding action model. (b) Novelty 1:
Increasing the bounciness of the red bird causes it to bounce back
after hitting the wooden block. QTC and QDC in the effect change
accordingly. (c) Novelty 2: Increasing the linear drag of the red
bird causes it to fall slowly and more vertically. QTC in the effect
is different. (d) Novelty 3: Increasing health points of the wooden
block, a single hit from the bird is not sufficient to destroy it. The
EXIST relation changes in the effect. (e) Novelty 4: Rotating the
view of the environment 180 degrees. The STAR-4 relation in the
effect changes to tp. (f) Novelty 5: Introducing a new object type
with different appearance but the same properties as the red bird.

5.2 Novelty Detection
Detecting novelty is a prerequisite for characterization. To
determine the detection ability of our approach and the num-
ber of levels needed to detect these novelties, we insert the
novelties into the 30 unseen game levels used to generate the
test data set. For each novelty, and also for the unseen lev-
els without novelty, we randomly sample nl = {5, 10, 20}
of the levels, observe the naive agent play each of them
three times, and collect all state transitions which involve
an object of type red bird. We then calculate the number
of repeated uncovered, by the base model, state transitions
(RUSTs) in this set. We repeat the experiment 100 times for
each novelty (including no novelty) to obtain a distribution
of the number of RUSTs, which is shown in Figure 9.

Without novelty, the number of RUSTs is always small
(< 10). Novelties cause a greater number of RUSTs. Nov-
elties 4 and 5 are clearly detectable even at nl = 5, while
novelties 1–3, which change the behavior of only one object
type, are harder to detect. Nevertheless, at nl = 20 we can
detect all novelties except #2 with a high recall rate with-
out false positives, by setting the decision boundary at max-
imum number of RUSTs seen in the non-novel environment
(shown by the dashed line in the graph).

Novelty detection and characterization time is linear in
data size (length of the frame sequence), and at nl = 20
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takes around 40 seconds, over 99% of which is extracting
object-pair states and transitions.

Figure 9: Cumulative distribution of the number of repeated un-
covered state transitions (RUSTs) for each novelty (including the
non-novel environment as #0) under different number of game lev-
els observed (nl) over 100 trials. The vertical dashed line in each
graph marks the maximum number of RUSTs in non-novel levels.

5.3 Novelty Characterization
We create characterizations of each of the novelties from the
RUSTs collected after observing nl = 20 game levels. The
characterization of novelty k is a set of novel actions, NAk,
each corresponding to one of the RUSTs.

We evaluate the specificity of these characterizations by
measuring their overlap. The overlap of two novel action
sets, O(NAi, NAj), is the fraction (in [0, 1]) of actions in
NAi that are also found in NAj , i.e., |NAi∩NAj |/|NAi|.
Note that this is not symmetric. The overlap is an indication
of the risk that given the characterization of novelty j, sub-
sequent observations of game levels with novelty i would
not be recognized as a different novelty, or, in other words,
the degree to which novelty i fails to stand out.

NA1 NA2 NA3 NA4 NA5

NA1 0.22 (0.06) 0.02 (0.03) 0 0
NA2 0.36 (0.11) 0 0 0
NA3 0.02 (0.03) 0 0 0
NA4 0 0 0 0
NA5 0 0 0 0

Table 2: The average overlap rate OR(NAi, NAj). NAi is the
row andNAj is the column. In parenthesis, the standard deviation.

Table 2 shows the average overlap, and standard devia-
tion, obtained over the 100 repeats of the experiment. Ex-
cept for novelties 1 and 2, the overlaps are zero or close
to zero, indicating that the novel actions are highly distinct.
Novelties 1 and 2, which both change properties of red bird
objects, produce some visually similar behaviors, and there-
fore a greater overlap. This can be seen Figure 8(b) and (c),

as the position of the bird in one can be an intermediate state
on course to the other. This indicates that our action-based
novelty characterization can not only distinguish novelties,
but also see similarities between them.

Figure 10: Cumulative distribution of the number of repeated state
transitions which are uncovered by A0 ∪ NA1. For each novelty,
these are taken over the 10 remaining unseen game levels.

To further examine the quality of the characterization of
each novelty, we test how well it can help to detect the same
novelty and still distinguish other novelties in new, unseen
game levels. We take the 10 remaining unseen game lev-
els, after selecting nl = 20 that the characterization is based
on, and collect the state transitions from three plays each of
these in each environment version, i.e., with each novelty as
well as without novelty. From each of these sets, we calcu-
late the number of repeated state transitions that are uncov-
ered by A0 ∪NAi. Figure 10 shows the result for novelty 1.
As can be seen, the number of RUSTs relative to A0 ∪NA1

for novelty 1 as well as no novelty are now small (smaller
in fact than what we observed in the graph for nl = 10 in
Figure 9). This means that after we incorporate the novel
actions into the model, new, unseen levels with novelty 1
no longer appear novel; in other words, the characteriza-
tion recognizes new instances with the same novelty. The
other novelties, except #2, still stand out, and thus would
be detected as different novelties after learning of novelty 1.
Novelty 2, which is the most difficult to detect and also has
a high overlap with novelty 1, does not.

6 Conclusion
We propose an approach to automatically generating a char-
acterization of novelty in physical environments, based on
the novel observable behavior (actions) it creates. We
demonstrated, using the physics-based puzzle game Angry
Birds as our testbed, that our approach can detect and distin-
guish most of the novelties.

The more precisely the base model describes the non-
novel environment, the more accurate our novelty detection
and characterization will be. Thus, refining the base model
with information not just about what actions are possible,
but also what sequences of them can occur, how likely they
are, and quantitative delays between them is a direction for
future work. We also seek to evaluate how well the novelty
characterization can guide adaptation of an agent’s behavior,
for example, using the extended model to predict possible
action outcomes.
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reia, M. D.; Márcio, P.; Marcelo, P.; and Coelho, J. M.

2020. Automatic detection of fractures and breakouts pat-
terns in acoustic borehole image logs using fast-region con-
volutional neural networks. Journal of Petroleum Science
and Engineering 107099.
Dondrup, C.; Bellotto, N.; Hanheide, M.; Eder, K.; and
Leonards, U. 2015. A computational model of human-robot
spatial interactions based on a qualitative trajectory calculus.
Robotics 4(1):63–102.
Dubba, K. S.; Cohn, A. G.; Hogg, D. C.; Bhatt, M.; and
Dylla, F. 2015. Learning relational event models from video.
Journal of Artificial Intelligence Research 53:41–90.
Duckworth, P.; Gatsoulis, Y.; Jovan, F.; Hawes, N.; Hogg,
D. C.; and Cohn, A. G. 2016. Unsupervised learning of
qualitative motion behaviours by a mobile robot. In AAMAS,
1043–1051. AAMAS.
Duckworth, P.; Hogg, D. C.; and Cohn, A. G. 2019. Un-
supervised human activity analysis for intelligent mobile
robots. Artificial Intelligence 270:67–92.
Dylla, F.; Lee, J. H.; Mossakowski, T.; Schneider, T.;
Delden, A. V.; Ven, J. V. D.; and Wolter, D. 2017. A sur-
vey of qualitative spatial and temporal calculi: algebraic and
computational properties. ACM Computing Surveys (CSUR)
50(1):7.
Ferreira, L., and Toledo, C. 2014. A search-based ap-
proach for generating angry birds levels. In Proceedings
of the 9th IEEE International Conference on Computational
Intelligence in Games, CIG’14.
Gatsoulis, Y.; Alomari, M.; Burbridge, C.; Dondrup, C.;
Duckworth, P.; Lightbody, P.; Hanheide, M.; Hawes, N.;
Hogg, D.; Cohn, A.; et al. 2016. Qsrlib: a software li-
brary for online acquisition of qualitative spatial relations
from video.
Konidaris, G.; Kaelbling, L. P.; and Lozano-Perez, T. 2015.
Symbol acquisition for probabilistic high-level planning. In
Proceedings of the 24th International Conference on Artifi-
cial Intelligence.
Langley, P. 2020. Open-world learning for radically au-
tonomous agents. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, 13539–13543.
Li, D.; Scala, E.; Haslum, P.; and Bogomolov, S. 2018.
Effect-abstraction based relaxation for linear numeric plan-
ning. In IJCAI, 4787–4793.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.;
Ram, A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. Pddl–
the planning domain definition language–version 1.2. Yale
Center for Computational Vision and Control, Tech. Rep.
CVC TR-98-003/DCS TR-1165.
Miglani, S. 2020. Nltopddl: One-shot learning of pddl
models from natural language process manuals. In Working
Notes of the ICAPS’20 Workshop on Knowledge Engineer-
ing for Planning and Scheduling (KEPS’20). ICAPS.
Pasula, H. M.; Zettlemoyer, L. S.; and Kaelbling, L. P. 2007.
Learning symbolic models of stochastic domains. Journal of
Artificial Intelligence Research 29:309–352.
Randell, D. A.; Cui, Z.; and Cohn, A. G. 1992. A spatial
logic based on regions and connection. KR 92:165–176.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

463



Renz, J., and Mitra, D. 2004. Qualitative direction calculi
with arbitrary granularity. In PRICAI, volume 3157, 65–74.
Renz, J., and Nebel, B. 2007. Qualitative spatial reason-
ing using constraint calculi. In Handbook of spatial logics.
Springer. 161–215.
Renz, J.; Ge, X.; Gould, S.; and Zhang, P. 2015. The Angry
Birds AI competition. AI Magazine.
Rokach, L., and Maimon, O. 2005. Clustering methods. In
Data mining and knowledge discovery handbook. Springer.
321–352.
Sabokrou, M.; Khalooei, M.; Fathy, M.; and Adeli, E. 2018.
Adversarially learned one-class classifier for novelty detec-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 3379–3388.
Sridhar, M.; Cohn, A. G.; and Hogg, D. C. 2011a. Bench-
marking qualitative spatial calculi for video activity analy-
sis. In Proceedings ijcai workshop benchmarks and appli-
cations of spatial reasoning, 15–20. Leeds.
Sridhar, M.; Cohn, A. G.; and Hogg, D. C. 2011b. From
video to rcc8: exploiting a distance based semantics to sta-
bilise the interpretation of mereotopological relations. In
COSIT, 110–125. Springer.
Tayyub, J.; Tavanai, A.; Gatsoulis, Y.; Cohn, A. G.; and
Hogg, D. C. 2014. Qualitative and quantitative spatio-
temporal relations in daily living activity recognition. In
ACCV, 115–130. Springer.
Van de Weghe, N., and De Maeyer, P. 2005. Conceptual
neighbourhood diagrams for representing moving objects.
In International Conference on Conceptual Modeling, 228–
238. Springer.
Van de Weghe, N.; Kuijpers, B.; Bogaert, P.; and De Maeyer,
P. 2005. A qualitative trajectory calculus and the composi-
tion of its relations. In International Conference on GeoSpa-
tial Sematics, 60–76. Springer.
Yahaya, S. W.; Lotfi, A.; and Mahmud, M. 2019. A consen-
sus novelty detection ensemble approach for anomaly de-
tection in activities of daily living. Applied Soft Computing
83:105613.
Young, J., and Hawes, N. 2015. Learning by observation us-
ing qualitative spatial relations. In AAMAS, 745–751. AA-
MAS.
Yuan, C., and Yang, H. 2019. Research on k-
value selection method of k-means clustering algorithm.
J—Multidisciplinary Scientific Journal 2(2):226–235.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

464


