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Abstract

Combining the closed-world reasoning of answer set pro-
gramming (ASP) with the open-world reasoning of ontolo-
gies broadens the space of applications of reasoners. Disjunc-
tive hybrid MKNF knowledge bases succinctly extend ASP
and in some cases without increasing the complexity of rea-
soning tasks. However, in many cases, solver development
is lagging behind. As the result, the only known method of
solving disjunctive hybrid MKNF knowledge bases is based
on guess-and-verify, as formulated by Motik and Rosati in
their original work. A main obstacle is understanding how
constraint propagation may be performed by a solver, which,
in the context of ASP, centers around the computation of un-
founded atoms, the atoms that are false given a partial inter-
pretation. In this work, we build towards improving solvers
for hybrid MKNF knowledge bases with disjunctive rules:
We formalize a notion of unfounded sets for these knowledge
bases, identify lower complexity bounds, and demonstrate
how we might integrate these developments into a DPLL-
based solver. We discuss challenges introduced by ontologies
that are not present in the development of solvers for disjunc-
tive logic programs, which warrant some deviations from tra-
ditional definitions of unfounded sets. We compare our work
with prior definitions of unfounded sets.

1 Introduction
Minimal Knowledge and Negation as Failure (MKNF) is
a modal autoepistemic logic defined by Lifschitz (1991)
which extends first-order logic with two modal operators K
and not . It was later built upon by Motik and Rosati (2010)
to define hybrid MKNF knowledge bases, where rule-based
MKNF formulas along with a description logic (DL) knowl-
edge base intuitively encapsulate the combined semantics of
answer set programs and ontologies. One argument for us-
ing hybrid MKNF is the existence of a proof theory based
on guess-and-verify - one can enumerate partitions (a term
that corresponds to interpretation in first-order logic) and for
each one check whether it is an MKNF model. Such an ap-
proach is not efficient enough to be practical.

To address the above issue, Ji et al. (2017) give a defini-
tion of unfounded sets and an abstract DPLL-based solver
(Nieuwenhuis, Oliveras, and Tinelli 2006) for normal hy-
brid MKNF knowledge bases, where rules are constrained
to a single atom in the head.

Disjunctive rules are a powerful extension to answer set
programming that increases the expressive power of pro-
grams in the polynomial complexity hierarchy (Eiter and
Gottlob 1995). In this work, we extend the work of Ji et
al. (2017) by defining unfounded sets for disjunctive hybrid
MKNF knowledge bases and we investigate the properties
of such sets. This task turns out to be substantially more
challenging than the normal case. We show the following
main results. First, we show that the problem of determin-
ing whether an atom is unfounded w.r.t. a given (partial) par-
tition is coNP-hard. This result is somewhat surprising in
that the claim holds even for normal rules under the con-
dition that the entailment relation in the underlying DL is
polynomial. This shows that the polynomial construction of
the greatest unfounded set as given by Ji et al. (2017) for
the normal case is only an approximation. Our proof relies
on an encoding that takes care of several conditions simul-
taneously (the hardness in the presence of non-disjunctive
rules and the entailment relation assuming the DL is poly-
nomial). Then, we formulate a polynomial operator to ap-
proximate the greatest unfounded set of disjunctive hybrid
MKNF knowledge bases. Unlike the conventional defini-
tion of unfounded sets for disjunctive logic program (Leone,
Rullo, and Scarcello 1997), greatest unfounded sets under
our definition exist unconditionally. We identify the con-
ditions under which our approximation becomes exact for
normal as well as for disjunctive hybrid MKNF knowledge
bases. These conditions are also the ones under which the
coNP-hardness reduces to polynomial complexity for the
normal and disjunctive cases respectively, thus these results
pinpoint the sources that contribute to the hardness of com-
puting greatest unfounded sets in general. Finally, based on
these results, we formulate a DPLL-based solver, where the
computation of unfounded sets becomes a process of con-
straint propagation for search space pruning.

The next section provides preliminaries. Section 3 gives
the definition of unfounded sets and studies its properties.
Section 4 shows the main technical results concerning the
challenges of computing unfounded sets, which lead to a
formulation of a DPLL-based solver in Section 5. Section
6 discusses related work. We make concluding remarks in
Section 7.
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2 Preliminaries
Minimal knowledge and negation as failure (MKNF) ex-
tends first-order logic with two modal operators, K and not ,
for minimal knowledge and negation as failure respectively.
MKNF formulas are constructed from first-order formulas
using these two modal operators for closed-world reason-
ing. Intuitively, Kψ asks whether ψ is known w.r.t. a col-
lection of “possible worlds” - the larger the set, the fewer
facts are known - while notψ checks whether ψ is not
known, based on negation as failure. An MKNF structure
is a triple (I,M,N) where I is a first-order interpretation
and M and N are sets of first-order interpretations. Oper-
ators shared with first-order logic are defined as usual. An
MKNF interpretationM is a set of first-order interpretations
(“possible worlds”). Hybrid MKNF knowledge bases rely
on the standard name assumption (Motik and Rosati 2010).
Under this assumption, every first-order interpretation in an
MKNF interpretation is required to be a Herbrand interpre-
tation with a countably infinite number of additional con-
stants. We refer to these constants as names. The satisfiabil-
ity relation under an MKNF structure is defined as:
• (I,M,N) |= A if A is true in I where A is a first-order

atom
• (I,M,N) |= ¬F if (I,M,N) ̸|= F

• (I,M,N) |= F ∧G if (I,M,N) |= F and (I,M,N) |=
G

• (I,M,N) |= ∃x, F if (I,M,N) |= F [α/x] for some
name α (where F [α/x] is obtained by replacing every oc-
currence of the variable x with α)

• (I,M,N) |= KF if (J,M,N) |= F for each J ∈M
• (I,M,N) |= notF if (J,M,N) ̸|= F for some J ∈ N
Other symbols such as ∨, ∀, and⊃ are interpreted in MKNF
as they are in first-order logic. An MKNF interpretation
M satisfies a formula F , written M |=MKNF F , if
(I,M,M) |= F for each I ∈M .
Definition 1. An MKNF model M of a formula F is an
MKNF interpretation such that M |=MKNF F and there
does not exist an MKNF interpretation M ′ ⊃ M such that
(I,M ′,M) |= F for each I ∈M ′.

Following Motik and Rosati (2010), a hybrid MKNF
knowledge baseK = (O,P) consists of a decidable descrip-
tion logic (DL) knowledge base O (typically called an on-
tology) which is translatable to first-order logic and a set of
MKNF rules P . We denote this translation as π(O). Rules
in P are of the form:

K a1, . . . ,K ak ← K ak+1, . . . ,K am, not am+1, . . . , not an

In the above, a1, . . . , an are function-free first-order atoms
of the form p(t1, . . . , ti) where p is a predicate and t1, . . . , ti
are either constants or variables, with k ≥ 1 andm,n, i ≥ 0.
A rule r in P is DL-safe if for every variable present in r,
there is an occurence of that variable in the rule’s positive
body inside a predicate that does not occur inK’s description
logic knowledge base.

A hybrid MKNF knowledge base K is DL-safe if every
rule in P is DL-safe. A knowledge base that is not DL-
safe may not be decidable (Motik and Rosati 2010). This
constraint restricts the assignment of variables inP to names
explictly referenced in the grounded P . Let π(P) denote
rule set P’s corresponding MKNF formula:

π(P) =
∧
r∈P

π(r), where

π(r) = ∀x⃗

(
k∨

i=1

K ai ⊂
m∧

i=k+1

K ai ∧
n∧

i=m+1

not ai

)
where x⃗ is the vector of free variables found in r.

The semantics of a hybrid MKNF knowledge base K is
obtained by applying both transformations to O and P and
placingO within a K operator, i.e. π(K) = π(P)∧Kπ(O).
We use P , O, and K in place of π(P), π(O), and π(K)
respectively when it is clear from context that the respec-
tive translated variant is intended. We refer to formulas of
the form K a and not a, where a is a first-order atoms, as
K-atoms and not -atoms respectively, and we refer to them
collectively as modal-atoms. When it is clear from context,
we may write a bare atom a in place of a K-atom K a. In
the rest of paper, we sometimes refer to disjunctive hybrid
MKNF knowledge bases simply as knowledge bases for ab-
breviation, or normal knowledge bases if each rule in the
knowledge base has exactly one atom in the head.

We now outline some definitions and conventions. For a
hybrid MKNF knowledge base K = (O,P), we denote the
set of all K-atoms found within P using KA(K) where

KA(K) = {K a | either K a or not a occurs
in the head or body of a rule in P}

We use head(r) to denote the set of K-atoms in the head
of the rule r, body−(r) to denote the set of not -atoms
in the body of r, and we use K (body−(r)) to denote the
same set with each occurence of not replaced with K , i.e.
K (body−(r)) = {K a | not a ∈ body−(r)}. We also use
body+(r) to denote the set of K-atoms from the positive
body of the rule r. The objective knowledge of a hybrid
MKNF knowledge base K w.r.t. a set of K-atoms S ⊆
KA(K) is the set of first-order formulas {π(O)}∪{a | K a ∈
S}. We denote this set as OBO,S .

A (partial) partition of KA(K) is a nonoverlapping pair
of subsets of KA(K) usually denoted as (T, F ). K-atoms in
T are said to be true and K-atoms in F are said to be false. A
partition is total if T ∪F = KA(K). A dependable partition
is a partial partition (T, F ) with the additional restriction
that OBO,T∪{¬b} is consistent for each K b ∈ F or OBO,T

is consistent if F is empty. We add this partition variant for
convenience and note that a partial partition that is not de-
pendable may not be extended to an MKNF model. In prac-
tice, a solver will include direct consequences of OBO,T

in T and it will only operate on dependable partitions. We
denote the partition induced by the body of a rule r with
body(r) = (body+(r),K (body−(r))). A rule body is ap-
plicable w.r.t. a partition (T, F ) if body(r) ⊑ (T, F ), i.e.,
if body+(r) ⊆ T and K (body−(r)) ⊆ F . We say that an
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MKNF interpretation M of K induces a partition (T, F ) if∧
K a∈T

M |=MKNF K a ∧
∧

K a∈F

M |=MKNF ¬K a

Note that the partition (T ∗, F ∗) induced by an
MKNF model M is unique and dependable. For a
partition (T, F ) that is a subset of this (T ∗, F ∗), i.e.,
(T, F ) ⊑ (T ∗, F ∗), we say that (T, F ) can be extended
to an MKNF model; such a partition is also dependable.
Throughout this work and without loss of generality we
assume that P is ground, i.e., it does not contain variables.

3 Unfounded Sets
First defined for normal logic programs by van Gelder
et al. (1991), unfounded sets encapsulate the notion that
some atoms can be inferred to be false w.r.t. a partial in-
terpretation. That is to say that given a partial partition
(T, F ) of KA(K), an unfounded set of a knowledge base
K w.r.t. (T, F ) is a set where every atom is false in every
instance where (T, F ) can be extended to a model.

A head-cut R ⊆ P × KA(K) is a set of rule atom pairs
such that a rule r ∈ P occurs in at most one pair in R and
for every pair (r, h) ∈ R we have Kh ∈ head(r). We use
head(R) to denote the set {h | (r, h) ∈ R} where R is a
head-cut.
Definition 2. Let K = (O,P) be a disjunctive hybrid
MKNF knowledge base and (T, F ) a partial partition of
KA(K). A set X of K-atoms is an unfounded set of K
w.r.t. (T, F ) if for each K-atom K a ∈ X and each head-
cut R such that:

1. head(R) ∪ π(O) |= a (with O, R can derive K a), and
2. head(R)∪OBO,T ∪{¬b} is consistent for each K b ∈ F

and head(R) ∪ OBO,T is consistent if F is empty (the
partition (T ∪ head(R), F ) is dependable),

there is a pair (r, h) ∈ R such that at least one of the fol-
lowing conditions hold:

i. body+(r)∩ (F ∪X) ̸= ∅ (r positively depends on false
or unfounded atoms),

ii. K (body−(r)) ∩ T ̸= ∅ (r negatively depends on true
atoms), or

iii. head(r) ∩ T ̸= ∅ (the head of r is already satisfied by
T )

K-atoms that are found in unfounded sets are called un-
founded atoms.

We illustrate some general characteristics of this defini-
tion of unfounded sets with the following example.
Example 1. Let K = (O,P) where

O = {(a ⊃ a′) ∧ (b ⊃ b′) ∧ ¬f}
P = {K f ← K b;

K a← not b;
K a,K b,K c←;

K a′ ← K a′; K b′ ← K b′}

Let (T, F ) be the dependable partition ({K b}, ∅). The K-
atom K f is an unfounded atom w.r.t. (T, F ) because K f
creates an inconsistency in O. K a is an unfounded atom
because the only way of deriving K a relies on ¬K b which
contradicts T . The K-atom K a′ is unfounded because K a is
unfounded and K b′ is not unfounded because OBO,T |= b.
Lastly, K c is an unfounded atom because the only rule that
can derive K c has another head-atom (K b) in T .

A head-cut R that satisfies the first two conditions of the
definition above is a set of rules that may be used in con-
junction with (T, F ) and O to derive K a. A K-atom is un-
founded only if every such head-cut has a pair in it that meets
one of the conditions i through iii. Note that if (T, F ) is de-
pendable, then it is impossible to derive a K-atom found in
F without violating condition 2 because an empty head-cut
can be used to derive any K-atom found in T . We demon-
strate this property in the following example.
Example 2. Let K = (O,P) where

O = {a ⊃ b}, and
P = {K a← not b; K b← not a}

The dependable partition ({K b}, {K a}) is the only total de-
pendable partition induced by an MKNF model of K. Sup-
pose we have the dependable partition (T, F ) = ({K a}, ∅).
Neither K a nor K b is an unfounded atom w.r.t. (T, F ):
when R = ∅ we have head(R) ∪ OBO,T |= a and
head(R) ∪OBO,T |= b.

Now suppose that (T, F ) = (∅, {K a}); The K-atom K a
is an unfounded atom w.r.t. (T, F ). The only head-cut that
can derive K a is the set R = {(K a← not b, a)}, however,
head(R)∪OBO,T∪{¬a} can be rewritten as {a}∪OBO,T∪
{¬a} which is inconsistent.

Under Definition 2, atoms in T cannot be unfounded if
(T, F ) is dependable. Note that if (T, F ) is not depend-
able, then every set X ⊆ KA(K) is an unfounded set
w.r.t. (T, F ). In the following, we formally establish that
no K-atom in T can be an unfounded atom w.r.t. (T, F ).
Lemma 1 (T is disjoint from any unfounded set). Let U be
an unfounded set of a disjunctive knowledge base K w.r.t. a
dependable partition (T, F ) of KA(K). We have T ∩U = ∅.

Proof. Assume for the sake of contradiction that U ∩ T ̸=
∅, and let K a ∈ U ∩ T . Because U is an unfounded
set w.r.t. (T, F ) we have for every head-cut R such that
head(R) ∪ OBO,T |= a, OBO,T ∪ {¬b} is consistent
for each K-atom K b ∈ F , and OBO,T is consistent, that
there is a pair (r, h) ∈ R such that one of the condi-
tions i, ii, or iii is satisfied. Let R = ∅. We have
head(R) ∪ OBO,T |= a because K a ∈ T . Because (T, F )
is dependable, OBO,T ∪{¬b} is consistent for each K-atom
K b ∈ F , and head(R) ∪ OBO,T is consistent. However,
there does not exist a pair (r, h) ∈ R because R is empty, a
contradiction.

The property demonstrated in Lemma 1 is inherited
from the definition of unfounded sets for normal hybrid
MKNF knowledge bases (Ji, Liu, and You 2017). This is
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quite different from the definition of unfounded sets for dis-
junctive logic programs: Leone et al. (1997) refer to (par-
tial) partitions (called interpretations in their context) where
no atom in T is unfounded (under their own definition of
unfounded sets) as unfounded-free. In some respects, un-
founded sets under Leone et al. (1997) can doubt the truth
of K-atoms in T . Since unfounded atoms are assumed to
be false, an unfounded set w.r.t. (T, F ) that shares K-atoms
with T is proof that (T, F ) cannot be extended to a model.
As shown in Lemma 1, Definition 2 lacks this property. We
illustrate this difference in the following example.
Example 3. Let K= (∅,P) where P = {K a,K b ←} and
construct the dependable partition (T, F )=({K a,K b}, ∅).
Under Leone et al.’s definition, both {K a} and {K b} are
unfounded sets w.r.t. (T, F ), however, the set {K a,K b}
is not an unfounded set w.r.t. (T, F ). Under Definition 2,
none of the three aforementioned sets are unfounded sets
w.r.t. (T, F ) due to Lemma 1.

Leone et al. show that the partial partitions that have the
unfounded-free property and satisfy every rule in P are pre-
cisely the partial partitions that can be extended to stable
models (1997). In the example above, the dependable par-
tition (T, F ) = ({K a,K b}, ∅) cannot be extended to an
MKNF model and neither K a nor K b is an unfounded atom
w.r.t. (T, F ). This indicates that unfounded sets under Defi-
nition 2 cannot be used to determine whether a partition can
be extended to an MKNF model in the same way as Leone
et al. We demonstrate that this is the case even for a normal
knowledge base with an empty ontology.
Example 4. Let K = (∅,P) where P = {K a ← not a}.
Note that K does not have an MKNF model. The two
possible total partitions are (T1, F1) = (∅, {K a}) and
(T2, F2) = ({K a}, ∅). Under both Definition 2 and Leone
et al.’s definition of unfounded sets, the only unfounded set
w.r.t. (T1, F1) is ∅. Like Leone et al. , we can determine that
(T1, F1) is not an MKNF model of K because there is a rule
r ∈ P such that body(r) ⊑ (T1, F1) and head(r) ∩ T1 = ∅.
Under Leone et al.’s definition, the set {K a} is an un-
founded set of P w.r.t. (T2, F2), however, {K a} is not an
unfounded set of K w.r.t. (T2, F2) under Definition 2. Criti-
cally, we cannot use Definition 2 to conclude that there is no
MKNF model that induces (T2, F2).

The above example demonstrates a limitation that pre-
vents unfounded sets from being used as a mechanism for
MKNF model checking. This limitation is also present in
the unfounded sets defined by Ji et al. (2017), however,
it does not inhibit unfounded sets from being useful in a
solver. Following Ji et al. (2017) and Leone et al. (1997),
we show that unfounded sets in Definition 2 are closed un-
der union. First we note that condition iii of Definition 2
(head(r) ∩ T ̸= ∅) does not depend on the unfounded set
X like it does in Leone et al.’s definition (in this context,
(head(r) \ X) ∩ T ̸= ∅). The property that all depend-
able partitions are unfounded-free (Lemma 1) removes the
need for an additional restriction on partitions as is needed
for disjunctive logic programs (Leone, Rullo, and Scarcello
1997). Applying Lemma 1, (head(r) \X) ∩ T ̸= ∅ can be
rewritten as head(r)∩T ̸= ∅. We formally demonstrate that

unfounded sets by Definition 2 are closed under union and
that there exists a greatest unfounded set in the following
proposition.
Proposition 1 (Existence of a greatest unfounded set).
Given a disjunctive hybrid MKNF knowledge base K =
(O,P) and a partial partition (T, F ) of KA(K), there ex-
ists a greatest unfounded set UK(T, F ) such that for every
unfounded set X of K w.r.t. (T, F ) we have UK(T, F ) ⊇ X .

Proof. We show that unfounded sets are closed under union
and the existence of a greatest unfounded set directly fol-
lows. Let Xa and Xb be unfounded sets of K w.r.t. a par-
tial partition (T, F ) of KA(K). We show that the set Xc =
Xa ∪Xb is an unfounded set of K w.r.t. (T, F ). If (T, F ) is
not dependable, then every setX ⊆ KA(K) is an unfounded
set of K w.r.t. (T, F ) including Xc. Assume that (T, F ) is
dependable and for the sake of contradiction, assume Xc is
not an unfounded set. For some K-atom K a ∈ Xc we have a
head-cut R s.t. conditions 1 (head(R)∪OBO,T |= a) and 2
(head(R)∪OBO,T ∪{¬b} is consistent for each K b ∈ F or
head(R) ∪OBO,T is consistent if F is empty) hold. In this
head-cut, there is a pair (r, a) such that none of the condi-
tions i (body+(r)∩(Xc∪F ) ̸= ∅), ii (body−(r)∩T ̸= ∅), or
iii (head(r)∩T ̸= ∅) hold. For simplicity, assume K a ∈ Xa

(proof is identical if K a ∈ Xb). If body+(r)∩(Xa∪F ) ̸= ∅
then we have body+(r) ∩ (Xc ∪ F ) ̸= ∅ and it follows that
Xc is an unfounded set.

This property is a natural result of Lemma 1 and differs
from Leone et al.’s unfounded sets, which are closed under
union only if (T, F ) is unfounded-free.

A solver can use any unfounded set to extend a depend-
able partition’s false atoms without altering which models it
finds. We now relate unfounded sets to MKNF models.
Proposition 2. Let (T ∗, F ∗) be the partition induced by
an MKNF model of a disjunctive hybrid MKNF knowledge
base K. For any dependable partition (T, F ) ⊑ (T ∗, F ∗),
UK(T, F ) ∩ T ∗ = ∅.

Proof. Let M be the MKNF model that induces (T ∗, F ∗).
Note that (T ∗, F ∗) is total and dependable. Let (T, F ) ⊑
(T ∗, F ∗) and U be an unfounded set of K w.r.t. (T, F ). We
show thatU∩T ∗ = ∅ and it follows thatUK(T, F )∩T ∗ = ∅.
Assume for the sake of contradiction that U ∩T ∗ ̸= ∅. With
B = U ∩ T ∗, let us construct an MKNF interpretation M ′

such that

M ′={I | I |= OBO,T and I |= t for each K t ∈ T ∗ \B }}

The dependable partition induced by M ′ is (T ∗ \ B,F ∗ ∪
B). For each b ∈ B, OBO,T ̸|= b, thus M ′ ⊃
M . We will derive a contradiction by showing U is not
an unfounded set of K w.r.t. (T, F ). By construction,
(I,M ′,M) |=MKNF π(O) for each I ∈M ′. We now show
∀I ∈ M ′, (I,M ′,M) |=MKNF π(P), and it then follows
that M is not an MKNF model which leads to a contradic-
tion. Let (T ∗ \B,F ) be the induced partition (from M ′ for
true K-atoms in T ∗\B and fromM for false K-atoms in F ).
Observe that if a rule r ∈ P is not satisfied w.r.t. (T ∗\B,F )
then it must be the case that body(r) ⊑ (T ∗ \ B,F ),
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head(r) ∩ T ∗ ̸= ∅, and head(r) ∩ (T ∗ \ B) = ∅. That
is, r is a rule whose body is satisfied by (T ∗ \ B,F ) but all
true atoms in its head come from B, because M satisfies all
rules in P .

Let R = {(r, h)} and b be some atom from head(r) ∩B.
Conditions 1 and 2 of Definition 2 are met for R to test if
U is an unfounded set of K w.r.t. (T, F ). We show that
none of the conditions i through iii are met by R, as such
U cannot be an unfounded set w.r.t. (T, F ), which leads
to a contradiction. First, body+(r) ⊆ T ∗ \ B gives us
body+(r)∩(F ∪U) = ∅ (which violates condition i). Then,
from K (body−(r)) ⊆ F , we derive K (body−(r)) ∩ T = ∅
(which violates condition ii). Finally, using head(r)∩T ∗ ⊆
B and B ∩ T = ∅ (Lemma 1), we obtain head(r) ∩ T = ∅
(which falsifies condition iii). We have shown U ∩ T ∗ = ∅,
as desired.

We have shown that if a dependable partition (T, F ) can
be extended to an MKNF model, no unfounded set of K
w.r.t. (T, F ) may overlap with the true atoms in the model. It
follows directly from Proposition 2 that the following anal-
ogous property holds for unfounded atoms w.r.t. (T, F ).
Corollary 2. Let (T ∗, F ∗) be the partition induced by an
MKNF model M of a disjunctive hybrid MKNF knowledge
base K. Then, for any dependable partition (T, F ) ⊑
(T ∗, F ∗), M |=MKNF ¬Ku for all u ∈ UK(T, F ).

With these properties, we have shown that unfounded sets
can be used to extend a partition without missing any mod-
els, i.e., if (T, F ) can be extended to an MKNF model M
then (T, F ∪ U) can be extended to the same model M for
any unfounded set U w.r.t. (T, F ).

4 Computing Unfounded Sets
Due to the inconsistencies that can arise in connection with
O, computing the greatest unfounded set w.r.t. a partial par-
tition is intractable in general.
Example 5. Let K = (O,P) where O = ¬(a ∧ b) and

P = {K a← not b; K b← not a; K c← K c}

Under Definition 2, K c is an unfounded atom w.r.t. (∅, ∅),
however, with the V (∅,∅)

K operator defined by Ji et al. (2017)
we have lfp(V (∅,∅)

K ) = KA(K) which misses K c as an un-
founded atom.1 It’s clear that a similar operator for disjunc-
tive knowledge bases would have the same limitation.

In the following, we first give a formal proof of in-
tractability and then we construct an operator for hybrid
MKNF knowledge bases with disjunctive rules that adopts
the same approximation technique used by Ji et al. in their
V

(T,F )
K operator (2017) for hybrid MKNF knowledge bases

with normal rules.
We now show that deciding whether an atom of a normal

hybrid MKNF knowledge base is unfounded is coNP-hard

1This is because in the least fixed point computations of the
V

(T,F )
K operator, a default negation not q is true if K q is not known

to be true, and as such, both K a and K b are derived in the first
iteration which leads to inconsistency with O.

by comparing the head-cuts that need to be considered to de-
termine unfoundedness with the SAT assignments that need
to be considered to determine the satisfiability of a 3SAT
problem.
Proposition 3. Let K = (O,P) be a normal hybrid
MKNF knowledge base such that the entailment relation
OBO,S |= a can be checked in polynomial time for any set
S ⊆ KA(K) and for any K-atom K a ∈ KA(K). Deter-
mining whether a K-atom K a ∈ KA(K) is an unfounded
atom of K w.r.t. a dependable partition (T, F ) of KA(K) is
coNP-hard.

Proof. We show that the described problem is coNP-hard.
The 3SAT problem is well known to be NP-complete (Sipser
1996). Let SAT be an instance of 3SAT in conjunctive
normal form such that CLAUSE = {c1, c2, . . . , cn} is
the set of clauses in SAT and V AR = {v1, v2, . . . , vn}
is the set of variables in SAT . Determining whether SAT
is unsatisfiable is coNP-hard. We construct a normal hybrid
MKNF knowledge base K = (O,P) s.t.

O ={vui ⊕ v
f
i ⊕ v

t
i | for each vi ∈ V AR

where ⊕ is exclusive-or }∪

{(
∧

vi∈V AR

¬vui ⇐⇒ total), total ⊃ sat}∪

{clausei ∨ ¬total | for each clause ci ∈ CLAUSE
where clausei is a formula
obtained by replacing all occurences

of vi and ¬vi in ci with vti and vfi respectively}
P ={K sat← K sat}∪⋃

{{(K vti ← not vfi ), (K vfi ← not vti)} | vi ∈ V AR}

Note that the rule K sat ← K sat is only required to en-
sure that K sat is in KA(K). The time to construct the above
knowledge base is linear in the number of clauses and vari-
ables in SAT . The first set of formulas in O requires ex-
actly one of vui , vfi , or vti to be true. This constraint is analo-
gous to a three-valued assignment for SAT where a variable
vi ∈ V AR is unassigned if vui is true, assigned false if vfi
is true, and assigned true if vti is true. The second set in O
ensures that the atom total is true if and only if no variable
is unassigned. Finally, the third set of formulas ensure that
π(O) is inconsistent if the assignment is total and a clause in
SAT is not satisfied. We show that (A) For any K-atom K a
and set of K-atoms S, the entailment relation OBO,S |= a
is computable in polynomial time and (B) that K sat is an
unfounded atom of K w.r.t. (∅, ∅) if and only if SAT is un-
satisfiable.

(A) We call a set of K-atoms S total if it contains either
K vti or K vfi for each variable vi ∈ V AR. Note that for
a variable vi ∈ V AR, the set KA(K) only contains K vti
and K vfi ; It does not contain K vui . Let S ⊆ KA(K). We
show that we can, in polynomial time, determine whether
S ∪ π(O) is consistent. We split cases where S is total and
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where it is not. First, assume S is not total: For some vari-
able vi ∈ V AR, neither K vti nor K vfi is in S. By fixing
vui to be true in a consistent first-order interpretation I of
S ∪ π(O), we ensure the atom total is false. If the atom
total is false, we can determine whether OBO,S is consis-
tent in polynomial time because we only need to consider
the first two sets of formulas in O. If S is total, we can,
in polynomial time, verify that S ∪ π(O) is consistent by
checking that only one of vti or vfi is present in S and that
every clause clausei is satisfied. After determining whether
S ∪ π(O) is consistent, we can quickly check the relations
OBO,S |= vti and OBO,S |= vfi for any variable vi ∈ V AR:
Assuming S ∪ π(O) is consistent, the entailment relation
OBO,S |= vti (resp. OBO,S |= vfi ) holds if and only if
K vti ∈ S (resp. K vfi ∈ S). When S ∪ π(O) is consistent,
the entailment relation OBO,S |= total holds if and only if
S is total. Finally, we have OBO,S |= sat if and only if
K sat ∈ S or OBO,S |= total. If S ∪ π(O) is inconsistent,
the entailment relation OBO,S |= K a holds vacuously for
any K a ∈ KA(K).

(B) When determining whether the K-atom K sat is un-
founded w.r.t. (∅, ∅), we must consider each way to select a
head-cutR. We show that there is a correspondence between
the head-cuts that can disprove the unfoundedness of K sat
w.r.t. (∅, ∅) and total sat assignments for SAT . Let X =
{K sat} be a set that is possibly unfounded w.r.t. (∅, ∅). Ob-
serve that a larger unfounded setX ′ ⊃ X w.r.t. (∅, ∅) cannot
exist unless X is an unfounded set w.r.t. (∅, ∅). A head-cut
R cannot be used to disprove the unfoundedness of K sat
if either condition 1 or 2 of Definition 2 do not hold. Be-
fore creating a mapping between head-cuts and sat assign-
ments for SAT , we exclude head-cuts that cannot be used
to disprove the unfoundedness of K sat, i.e., conditions 1
and 2 of Definition 2 are met and i, ii, and iii do not hold.
Firstly, we exclude head-cuts that contain the pair (r, sat)
because body+(r) ∩ X ̸= ∅. We further exclude any head-
cut R containing a pair of pairs (r0, v

t
i) and (r1, v

f
i )

2 be-
cause head(R) ∪ OBO,∅ is inconsistent. Thirdly, we ex-
clude any head-cuts that do not contain either (r0, v

t
i) or

(r1, v
f
i ) for each variable vi ∈ V AR noting that if such a

head-cut R also meets the previous two conditions we have
head(R) ∪ OBO,∅ ̸|= sat (See part (A) of this proof for
details). The remaining head-cuts have a one to one corre-
spondence with total assignments for SAT : if a head-cut
contains a pair with vti (resp. vfi ) the corresponding assign-
ment for SAT assigns vi to be true (resp. false). We have
for every such head-cut R that head(R)∪OBO,∅ |= sat and
that for every pair in (r, h) ∈ R we have head(r) ∩ T = ∅,
body+(r) ∩ (F ∪ X) = ∅, and body−(r) ∩ T = ∅. If
head(R) ∪ OBO,∅ is consistent, then every clause is sat-
isfied by the corresponding sat assignment, otherwise, the
inconsistency is caused by an unsatisfied clause ¬clausei,
thus the assignment does not satisfy SAT . If no such head-
cut R exists such that head(R) ∪ OBO,∅ is consistent, then

2Due to the uniqueness of the second component in such a pair,
there should be no confusion about which rule the first component
refers to.

K sat is unfounded w.r.t. (∅, ∅) and SAT is unsatisfiable.
Conversely, if SAT is unsatisfiable, a head-cut R such that
head(R)∪OBO,∅ is consistent and head(R)∪OBO,∅ |= sat
does not exist, thus {K sat} is an unfounded set w.r.t. (∅, ∅).
We have shown that deciding whether an K-atom is un-
founded is coNP-hard.

It follows that computing the greatest unfounded set of
a disjunctive hybrid MKNF knowledge base is coNP-hard.
Since we are unlikely to find a way to compute UK(T, F )
in polynomial time, we are motivated to construct a poly-
nomial operator that computes an approximation (a subset)
of the greatest unfounded set. We define a family of oper-
ators Z(T,F )

K where each operator induced by a dependable
partition (T, F ) computes an approximation of the greatest
unfounded set of K w.r.t. (T, F )

Z
(T,F )
K (X) =

{K a | OBO,X |= a for each K a ∈ KA(K)} ∪
{K a | ∃r ∈ P with K a ∈ head(r) s.t.

body+(r) ⊆ X ∧ body+(r) ∩ F = ∅ ∧
K (body−(r)) ∩ T = ∅ ∧ head(r) ∩ T = ∅ ∧
{a,¬b} ∪OBO,T is consistent for each K b ∈ F}

This operator is the direct result of combining the V (T,F )
K

operator for normal hybrid MKNF knowledge bases (Ji, Liu,
and You 2017) with the Φ operator for disjunctive logic pro-
grams (Leone, Rullo, and Scarcello 1997). It is easy to
see that the Z(T,F )

K operator is monotonic, and let us use
AtmostK(T, F ) to denote its least fixed point. This oper-
ator computes a subset of KA(K) \ UK(T, F ). In partic-
ular, if AtmostK(T, F ) ∪ π(O) is inconsistent, we have
KA(K) \ AtmostK(T, F ) = ∅, a compromise to keep the
operator computable in polynomial time.

To determine whether an atom is unfounded when there
are disjunctive rules, we must consider an exponential num-
ber of head-cuts. The Z

(T,F )
K operator instead consid-

ers the heads of rules all at once and this can result in
AtmostK(T, F ) missing some unfounded atoms even if
AtmostK(T, F ) ∪ π(O) is consistent.
Example 6. Let K = (O,P) be a disjunctive hybrid
MKNF knowledge base where P = {K a,K b ←; K c ←
K c} and O = (a ∧ b) ⊃ c. We have that {K c} is an un-
founded set of K w.r.t. (∅, ∅). However, AtmostK(T, F ) is
{a, b, c} and KA(K) \ {a, b, c} ̸= UK(∅, ∅).

We intend to identify the class of knowledge bases for
which the Z(T,F )

K operator does not miss unfounded atoms
as a result of disjunctive heads. First we define a weak
head-cut to be a set of rule atom pairs Rw such that Rw ⊆
P × KA(K) and h ∈ head(r) for each pair (r, h) ∈ R.
Note that this definition is identical to the definition of head-
cuts without the constraint that a rule can appear in at most
one pair in Rw; within a weak head-cut, there may be two
pairs (r, h0) and (r, h1) such that h0 ̸= h1. In the follow-
ing, we define a property that captures a subset of knowl-
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edge bases where AtmostK(T, F ) computes UK(T, F ) if
AtmostK(T, F ) ∪ π(O) is consistent.
Definition 3. A hybrid MKNF knowledge base K = (O,P)
is head-independent w.r.t. a dependable partition (T, F ) if
for every K-atom K a ∈ KA(K) and every weak head-cut
Rw such that head(R) ∪ OBO,T |= a, there exists a head-
cut R such that R ⊆ Rw and head(R) ∪OBO,T |= a.

Head-independence means that we cannot derive atoms
that we would not be able to derive using only a sin-
gle atom from each rule head by using multiple atoms in
the head of a rule in conjunction with the ontology. The
head-independence property is violated by the knowledge
base in Example 6 and it ensures that AtmostK(T, F ) ̸=
UK(T, F ). Were we to alter the knowledge base in Ex-
ample 6 such that the rule K a,K b ← were changed to
the pair of rules K a ← not b and K b ← not a then K
would have head-independence. We show formally that
for a head-independent knowledge base K, the Z(T,F )

K op-
erator computes the greatest unfounded set w.r.t. (T, F ) if
AtmostK(T, F ) ∪ π(O) is consistent.
Proposition 4. IfK is head-independent w.r.t. a dependable
partition (T, F ) and AtmostK(T, F ) ∪ π(O) is consistent,
then UK(T, F ) = KA(K) \AtmostK(T, F ).

Proof. First we show (1) that no K-atom computed by
AtmostK(T, F ) is unfounded w.r.t. (T, F ) and then we
show (2) that every atom that is not unfounded w.r.t. (T, F )
is computed by AtmostK(T, F ).

(1) We first show no K-atom in Z(T,F )
K (∅) is unfounded.

Let K a ∈ Z
(T,F )
K (∅). Construct a weak head-cut Rw that

contains a pair (r, h) for each head K-atom Kh ∈ head(r)
and rule r ∈ P where body+(r) ⊆ ∅, K (body−(r))∩T = ∅,
and head(r) ∩ T = ∅. The weak head-cut Rw contains ev-
ery rule that was applied in the computation of Z(T,F )

K (∅).
We have head(Rw) ∪ OBO,T |= a. Applying the head-
independence condition, we obtain a head-cut R such that
R ⊆ Rw and head(R) ∪ OBO,T |= a. For every pair
(r, h) ∈ R, body+(r) ⊆ T , K (body−(r)) ∩ T = ∅, and
head(r) ∩ T . The head-cut R shows that K a is not an un-
founded atom w.r.t. (T, F ), thus it is not a member of any
unfounded set. We show that no atom computed by a suc-
cessive application of Z(T,F )

K , e.g., Z(T,F )
K (Z

(T,F )
K (∅)), is

unfounded w.r.t. (T, F ). Let Zi be result of applying the
Z

(T,F )
K operator i times where Z0 = ∅. We assume that no

atom in Zi is unfounded w.r.t. (T, F ) and show the same
for Zi+1. Construct a weak head-cut Rw that contains a
pair (r, h) for each head a K-atom Kh ∈ head(r) and
rule r ∈ P where body+(r) ⊆ Zi, body−(r) ∩ T = ∅,
and head(r) ∩ T = ∅. Let K a ∈ Z

(T,F )
K (Zi). We have

head(Rw)∪OBO,T |= a. Applying the head-independence
condition, we obtain a head-cut R such that R ⊆ Rw and
head(R) ∪ OBO,T |= a. Now we have for each pair
(r, h) ∈ R, body+(r) ⊆ Zi. Knowing that no K-atom in
Zi is a member of an unfounded set, we conclude that a is
not an unfounded atom w.r.t. (T, F ).

(2) We show that if a K-atom K a is not computed
by AtmostK(T, F ) and it is not an unfounded atom

w.r.t. (T, F ), we can derive a contradiction. Let U =
KA(K) \AtmostK(T, F ). Let K a ∈ U be an K-atom such
that there exists a head-cutR where head(R)∪OBO,T |= a,
head(R) ∪ OBO,T is consistent and head(R) ∪ OBO,T ∪
{¬b} is consistent for each K b ∈ F and for each pair
(r, h) ∈ R, head(r) ∩ T = ∅ and body−(r) ∩ T = ∅. If for
each pair (r, h) ∈ R we have body+(r) ̸⊆ AtmostK(T, F )
then U is an unfounded set w.r.t. (T, F ), otherwise K a ∈
AtmostK(T, F ). Both cases contradict the initial assump-
tions.

For normal knowledge bases, i.e., where each rule con-
tains only a single head-atom, the head-independence condi-
tion is satisfied automatically. If a knowledge base K is not
head-independent, the Z(T,F )

K operator computes a subset
of UK(T, F ). Therefore, for a normal knowledge base and
dependable partition (T, F ) s.t. AtmostK(T, F ) ∪ π(O) is
consistent, we have UK(T, F ) = KA(K) \AtmostK(T, F ).
The following corollary follows directly from Proposition 4.
Corollary 3. If a knowledge base K is head-independent
w.r.t. a dependable partition (T, F ) and AtmostK(T, F ) ∪
π(O) is consistent, then the greatest unfounded set of K
w.r.t. (T, F ) is computable in polynomial time.

We have shown that computing the greatest unfounded
set of a normal knowledge base is coNP-hard (Proposition
3). Because AtmostK(T, F ) can be computed in polyno-
mial time, we conclude that the greatest unfounded set of a
normal knowledge base K can be computed in polynomial
time if AtmostK(T, F ) ∪ π(O) is consistent and the great-
est unfounded set of a disjunctive knowledge base K can
be computed in polynomial time if AtmostK(T, F )∪ π(O)
is consistent and K is head-independent. Observe that for
the knowledge base constructed in our proof of Proposition
3, AtmostK(T, F ) ∪ π(O) is inconsistent. We formally
demonstrate the intractability of computing UK(T, F ) for a
disjunctive knowledge base whenAtmostK(T, F )∪π(O) is
consistent but the head-independence condition is not met.
Proposition 5. Let K = (O,P) be a disjunctive hybrid
MKNF knowledge base such that the entailment relation
OBO,S |= a can be checked in polynomial time for any
set S ⊆ KA(K) and for any K-atom K a ∈ KA(K).
Let (T, F ) be a dependable partition of KA(K) such that
AtmostK(T, F )∪π(O) is consistent. Determining whether
a K-atom K a ∈ KA(K) is an unfounded atom of K
w.r.t. (T, F ) is coNP-hard.

Proof. Let SAT be an instance of 3SAT in conjunctive nor-
mal form such that CLAUSE = {c1, c2, . . . , cn} is the set
of clauses in SAT , and V AR = {v1, v2, . . . , vn} is the set
of variables in SAT . In Figure 1, we construct a disjunctive
hybrid MKNF knowledge base K = (O,P).

Let (T, F ) = (∅, ∅) and observe that AtmostK(T, F ) ∪
π(O) is consistent (AtmostK(T, F ) = KA(K) \ {K sat}).
We show that (A) For any K-atom K a and set of K-atoms S,
the entailment relation OBO,S |= a is computable in poly-
nomial time and (B) that K sat is an unfounded atom of K
w.r.t. (∅, ∅) if and only if SAT is unsatisfiable.

(A) Observe that KA(K) ∪ π(O) is consistent, therefore,
S ∪ π(O) is consistent for any set of K-atoms S ⊆ KA(K).
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O ={(vfi ∨ v
t
i)⊕ vui | for each vi ∈ V AR

where ⊕ is exclusive-or }∪
{(vfi ∧ v

t
i) ⊃ sat | for each vi ∈ V AR}∪

{

(
(

∧
ci∈CLAUSE

clausei) ∧ (
∧

vi∈V AR

¬vui )

)
⊃ sat |

where clausei is a formula
obtained by replacing all occurrences of

vi and ¬vi in ci with vti and vfi respectively}

P ={K sat← K sat} ∪
⋃
{{(K vti ,K vfi ←)} | vi ∈ V AR}

Figure 1: A disjunctive MKNF knowledge base

The entailment relation OBO,S |= vti (resp. OBO,S |= vfi )
holds if and only if vti ∈ S (resp. vfi ∈ S). What remains
to show is that OBO,S |= sat can be checked in polyno-
mial time when K sat ̸∈ S. We call a set of K-atoms S
consistent if it does not contain both K vti and K vfi for ev-
ery variable vi ∈ V AR. If S is not consistent, then we
have OBO,S |= sat due to the second set of formulas in O.
We assume that S is consistent. We call a set of K-atoms
S total if it contains either K vti or K vfi for each variable
vi ∈ V AR. We consider the cases where S is total and
where S is not total. If S is not total, we can construct a
consistent first-order interpretation of S ∪ π(O) such that
vui is true for some vi ∈ V AR, thus OBO,S ̸|= sat if S
is consistent and not total. Now we assume that S is total
and it follows that

∧
vi∈V AR

¬vui is satisfied in the third set of

formulas in O. We refer to a model M of S ∪ π(O) as a
proper model if for every vi ∈ V AR we have vfi (resp. vti )
to be false in M if vfi ̸∈ S (resp. vfi ̸∈ S). Observe that
for all models of S ∪ π(O) modulo proper models, sat is
true because of the second set of formulas in O (recall that
S is total and consistent). Note that for each proper model
M we haveM |= vfi ⊕vti (where⊕ is exclusive-or) because
S is consistent. The only case where OBO,S ̸|= sat is if we
have OBO,S |= sat if and only if S satisfies every formula
clausei. This can easily be checked in polynomial time.

(B) When determining whether the K-atom K sat is un-
founded w.r.t. (∅, ∅), we must consider each way to select a
head-cut R. This part of the proof carries out almost identi-
cally to part 2 of our proof of Proposition 3. We only outline
the key differences: Rather than relying on head(R)∪π(O)
to be inconsistent ifR does not correspond to a satisfying as-
signment of SAT like in our proof of Proposition 3, we rely
on there being a single model of head(R)∪π(O) where sat
is false (See part (A) of this proof for details on proper mod-
els). This is enough to show that head(R) ∪ OBO,∅ ̸|= sat.
When only considering proper models of head(R) ∪ π(O),
we can ignore the second set of formulas in O because a set
of rule atom pairsR containing both (r, vfi ) and (r, vti) is not
a valid head-cut. In order to determine whether a K-atom

K a is unfounded w.r.t. (∅, ∅), we must exhaustively check
head(R)∪π(O) for every head-cut R and can conclude that
SAT is unsatisfiable. If we know that SAT is unsatisfiable,
there cannot exist a head-cut R, which proves that K a is not
an unfounded atom.

5 A DPLL-Based Solver
In this section we formulate a DPLL-based solver. First, we
construct a well-founded operatorW (T,F )

K using the greatest
unfounded set approximator from the previous section:

T
(T,F )
K (X,Y ) =

{K a | where OBO,T∪X |= a for some K a ∈ KA(K)}∪
{K a | where head(r) \ F = {K a} and

body(r) ⊑ (T ∪X,F ∪ Y ) for some r ∈ P})

W
(T,F )
K (X,Y ) =(T

(T,F )
K (X,Y ) ∪ T,

(KA(K) \ Z(T,F )
K (X,Y )) ∪ F )

We show that this operator maintains the property shown
in Proposition 2.
Proposition 6. If a dependable partition (T, F ) can be ex-
tended to an MKNF modelM , then the dependable partition
lfp (W

(T,F )
K ) can also be extended to M .

Proof. It follows from Corollary 2 that if (T, F ) can be ex-
tended an MKNF model M , then (T, F ∪ Z(T,F )

K (T, F ))
can be extended to M . What’s left to show is that if
(T, F ) can be extended to an MKNF model M , then (T ∪
T

(T,F )
K (T, F )), F ) can be extended to M . Suppose that

there is some K-atom K a in T ∩ T (T,F )
K (T, F )) such that

M ̸|=MKNF K a. Then we either have that OBO,T |= a,
and thus M ̸|=MKNF π(O) or that M ̸|=MKNF Kh for
each Kh ∈ head(r) and thus M ̸|=MKNF π(P). Either
case contradicts the assumption that M is an MKNF model
of K.

Following Ji et al. (2017), we construct an abstract solver
in Algorithm 1 that prunes the search space for solving by
using the W (T,F )

K operator. The CHECK-MODEL proce-
dure checks whether the MKNF interpretation

{I | where I |= π(O), I |= t

for each K t ∈ T , and I ̸|= f for each K f ∈ F}

is an MKNF model of K whenever the solver reaches a to-
tal dependable partition. This procedure is analogous to the
NP-oracle required to check a model of a disjunctive logic
program (Ben-Eliyahu and Dechter 1994). Further devel-
opments are required for a more precise definition of this
procedure.

Proposition 7. Given a partial partition (T, F ) of KA(K),
the invocation of Algorithm 1 solver(K, (∅, ∅)) will return
true if (T, F ) can be extended to an MKNF model of K.
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Algorithm 1: solver(K, (T, F ))

1 (T, F )←WK(T, F ) ⊔ (T, F );
2 if T ∩ F ̸= ∅ then
3 return false;

4 else if T ∪ F = KA(K) then
5 if CHECK-MODEL(T, F) then
6 return true;

7 else
8 return false;

9 else
10 choose a K-atom K a from KA(K) \ (T ∪ F );
11 if solver(K, (T ∪ {K a}, F )) then
12 return true;

13 else
14 return solver(K, (T, F ∪ {K a}));

Proof. It follows from Proposition 6 that the extension
of (T, F ) on the first line of the algorithm, (T, F ) ←
WK(T, F ) ⊔ (T, F ), does not miss any models. A model
that induces a partition (T, F ) s.t. T ∩F ̸= ∅ does not exist.
Without the use of the WK(T, F ) operator, the solver algo-
rithm will explore every partition (T, F ) ⊆ KA(K)×KA(K)
where T∩F = ∅. Thus, the usage of theWK(T, F ) operator
simply prunes the search space.

Given Proposition 7, it is easy to modify Algorithm 1 to
report models instead of returning a boolean value.

We have identified some fundamental challenges in com-
puting unfounded sets for hybrid MKNF knowledge bases
that make the problem intractable. The operator constructed
by Ji et al. (2017) computes a subset of the greatest un-
founded set and we build on this approximation with an ex-
tension for programs with rules with disjunctive heads.

6 Related Work
Ji et al. establish a definition of unfounded sets for normal
hybrid MKNF knowledge bases and construct well-founded
operators that can be directly embedded in a solver (2017).
We extend their work by introducing a definition of un-
founded sets that handles disjunctive rules, rules that have
multiple K-atoms in their heads. Our extension borrows
from the unfounded-set techniques outlined by Leone et
al. (1997) for disjunctive logic programs but with a few note-
worthy differences. Namely, our definition cannot be used
directly for model-checking. If the ontology in K is empty,
our definition is equivalent to Leon et al.’s for unfounded-
free partitions. Similarly, if K is a normal knowledge base,
our definition is equivalent to Ji et al.’s definition.

Both Ji et al. and Leone et al. outline abstract solvers for
finding models of their respective languages. These solvers
follow the DPLL paradigm of exploring the search space for
a model. Both solvers substantially prune their search space

using unfounded sets. Because the complexity of model-
checking a disjunctive hybrid MKNF knowledge base is
greater than that of normal hybrid MKNF knowledge bases
(Motik and Rosati 2010), our abstract solver in this work
consults a model checker once it reaches a total partition.
This differs from the solver described by Ji et al. which does
not rely on a model checker (2017). Leone et al.’s solver
does not deepen its search on partial interpretations that as-
sign unfounded atoms as true (partitions that cannot be ex-
tended to models) (1997). This aggressive pruning strategy
requires, at each step of the solver, an invocation of an al-
gorithm with a complexity of ∆P

2 [O(log n)] (Leone, Rullo,
and Scarcello 1997). Industry-grade solvers, such as Clingo
(Gebser, Kaufmann, and Schaub 2012) or HEX (Eiter et
al. . 2005), recognize the impracticality of enumerating all
unfounded sets many times during the solving process and
these solvers introduce approximations techniques. As a
caveat of using approximations of unfounded sets, a solver
may deepen its search on partial interpretations that cannot
be extended to models. Because we rely on approximations
of greatest unfounded sets, we think it is reasonable for our
solver to employ similar strategies used by practical solvers
and include some partitions that cannot be extended to mod-
els in its search.

Both Clingo and HEX have additional support for external
atoms, atoms whose truth is dependant on external sources.
Clingo 5 defines T-stable semantics (Gebser et al. . 2016) to
reason about external atoms via external theories. HEX de-
fines semantics for external atoms using boolean functions
that take a total interpretation as input (Eiter and Gottlob
1995). For any hybrid MKNF knowledge base, models of
the accompanying ontology must be monotonic (Motik and
Rosati 2010). While it may be possible to encode the seman-
tics of hybrid MKNF knowledge bases using either the HEX
or Clingo extensions, neither solution exploits the mono-
tonicity of external sources and both support nonmonotonic
models of the external theories.

7 Conclusion
We have provided a definition of unfounded sets for dis-
junctive hybrid MKNF knowledge bases, studied its prop-
erties, and formulated an operator to compute a subset of
the greatest unfounded set of a knowledge base. This leads
to a DPLL-based solver where after each decision constraint
propagation is carried out by computing additional true and
false atoms on top of the current partial partition. Our meth-
ods can be directly embedded into a solver for a drastic in-
crease in efficiency when compared to a guess-and-verify
solver, the current state of art for reasoning with disjunctive
hybrid MKNF knowledge bases. The addition of ontologies
to answer set programs brings new challenges, namely, there
is a complexity increase in computing unfounded sets even
in the case of normal hybrid MKNF knowledge bases. We
leave computing unfounded sets in light of inconsistencies
that arise because of O to future work.
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