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Abstract

We propose a new approach to formally describing the re-
quirement for statistical inference and checking whether the
statistical method is appropriately used in a program. Specifi-
cally, we define belief Hoare logic (BHL) for formalizing and
reasoning about the statistical beliefs acquired via hypothesis
testing. This logic is equipped with axiom schemas for hy-
pothesis tests and rules for multiple tests that can be instanti-
ated to a variety of concrete tests. To the best of our knowl-
edge, this is the first attempt to introduce a program logic with
epistemic modal operators that can specify the preconditions
for hypothesis tests to be applied appropriately.

1 Introduction
Statistical inference has been widely used to derive and jus-
tify scientific knowledge in a variety of academic disci-
plines, from natural sciences to social sciences. This has
significantly increased the importance of statistics, but also
brought concerns about the inappropriate procedure and the
incorrect interpretation of statistics in scientific research. In
fact, previous studies have pointed out that many research
articles in biomedical science contain severe errors in the
application and interpretation of statistical inference (Lang
and Altman 2014). Furthermore, large proportions of these
errors have been reported for basic statistical methods, pos-
sibly performed by researchers who can use only elementary
techniques. For example, the concept of statistical signifi-
cance, evaluated using p-values, has been commonly mis-
used and misinterpreted (Wasserstein and Lazar 2016).

One of the main issues behind these human errors is that
the logical aspects of statistical inference are described in-
formally or implicitly using natural languages, and han-
dled manually by analysts who may not fully understand
the statistical methods. In particular, this makes them over-
look some assumptions necessary for statistical methods,
hence choosing inappropriate methods. Nevertheless, to our
knowledge, no prior work on formal methods has speci-
fied the preconditions for statistical inference or verified the
choice of statistical techniques.

In this paper, we propose a method for formalizing and
reasoning about statistical inference using symbolic logic.
Specifically, we introduce belief Hoare logic (BHL) to for-
malize the statistical beliefs acquired via hypothesis tests,

and to prevent errors in the choice of hypothesis tests by de-
scribing their preconditions explicitly. This is the first step to
build a framework for formalizing and verifying the validity
of empirical science on the basis of formal methods.
Contributions. Our main contributions are as follows:
• We propose a new approach to formalizing and reason-

ing about statistical inference in a program. In particular,
this approach formalizes and checks the requirement for
statistical methods to be used appropriately.

• We define an epistemic logic to express statistical beliefs
obtained by hypothesis tests on datasets. Specifically,
we formalize a statistical belief on a hypothesis ϕ as the
knowledge that either ϕ holds or the sampled dataset is
unluckily far from the population. Then we introduce a
Kripke semantics to define the interpretation of the logic.

• Using this epistemic logic, we construct belief Hoare
logic (BHL) for formalizing and reasoning about the sta-
tistical inference based on hypothesis testing. Specifi-
cally, we define axiom schemas and rules for hypothesis
tests that can be instantiated to a variety of concrete tests.
In particular, BHL does not rely on a specific philosophy
of statistics but can deal with both the frequentist and the
Bayesian statistics by introducing corresponding axioms.

• We show that BHL is useful to reason about practical is-
sues concerning statistical inference, such as the multiple
comparison problem and p-value hacking.

• We provide a whole picture of the justification of statisti-
cal belief acquired via hypothesis tests inside and outside
BHL. For instance, we discuss the empirical conditions
and the epistemic aspects of statistical inference.
To the best of our knowledge, this is the first attempt to

introduce a program logic that can specify the preconditions
for hypothesis tests to be applied appropriately.
Related Work. The Hoare logic (Winskel 1993) is one of
the program logic for an imperative programming language.
This program logic is then extended and adapted so that it
can handle various types of programs and assertions, in-
cluding heap-manipulating programs (Reynolds 2002), hy-
brid systems (Suenaga and Hasuo 2011), and probabilistic
programs (den Hartog and de Vink 2002). Atkinson and
Carbin propose an extension of Hoare logic with epistemic
assertions (Atkinson and Carbin 2020). In their work, an

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

411



epistemic assertion is used to reason about the belief of a
program about a partially observable environment, whereas
their logic does not deal with a statistical belief arising from
statistical tests conducted in a program. To the best of our
knowledge, ours is the first program logic that formalizes the
concept of statistical beliefs in hypothesis testing.

Epistemic logic (von Wright 1951) is a branch of logic for
reasoning about knowledge and belief (Fagin et al. 1995a;
Halpern 2003), and is used to specify and verify a variety of
knowledge properties in systems, e.g., authentication (Bur-
rows, Abadi, and Needham 1990) and anonymity (Syverson
and Stubblebine 1999; Garcia et al. 2005). Many previous
works incorporate certain notions of degrees of belief and
confidence (Huber and Schmidt-Petri 2008), but not in the
sense of the statistical significance in hypothesis testing.

The first attempt to express statistical properties using
modal logic is the work on statistical epistemic logic (Sta-
tEL) (Kawamoto 2019; Kawamoto 2020). They introduce a
belief modality weaker than S5, and interpret it in a Kripke
model with an accessibility relation defined in terms of a sta-
tistical distance between possible worlds. Unlike this work,
however, StatEL cannot describe the procedures of statistical
methods or reason about the appropriateness of inference.

From a broader perspective, many studies formalize and
reason about programs based on knowledge (Fagin et al.
1995b) and beliefs (Laverny and Lang 2005), including be-
lief updates in programs. For example, the situation calculus
is extended to deal with the probabilistic degrees of beliefs in
programs with noisy acting and sensing (Belle and Levesque
2015). However, no prior work has studied belief-based pro-
grams involving statistical hypothesis testing.

2 Preliminaries
In this section, we introduce notations used in this paper and
recall background on statistical hypothesis testing.

Let N, R, R≥0 be the sets of non-negative integers, real
numbers, and non-negative real numbers, respectively. Let
[0, 1] be the set of non-negative real numbers not greater than
1. We denote the dimension of a vector x by size(x), and the
set of all probability distributions over a set S by DS .
Statistical Hypothesis Testing. Statistical hypothesis test-
ing is a method of statistical inference about an unknown
population x (the collection of items of interest) on the basis
of a dataset y sampled from x. In a hypothesis test, an alter-
native hypothesis ϕ1 is a proposition that we wish to prove
about the population x, and a null hypothesis ϕ0 is a proposi-
tion that contradicts ϕ1. The goal of the hypothesis test is to
determine whether we accept the alternative hypothesis ϕ1

by rejecting the null hypothesis ϕ0.
In a hypothesis test, we calculate a test statistic t(y) from

a dataset y, and see whether the t(y) value contradicts the
assumption that the null hypothesis ϕ0 is true. Specifically,
we calculate the p-value, showing the degree of likeliness of
obtaining t(y) when the null hypothesis ϕ0 is true. If the
p-value is smaller than a threshold (e.g., 0.05), we regard
the dataset y is unlikely to be sampled from the population
satisfying the null hypothesis ϕ0, hence we reject ϕ0 and
accept the alternative hypothesis ϕ1.

A hypothesis test is based on a statistical model P(ξ, θ)
with unknown true parameters ξ, known parameters θ, and
(assumed) probability distributions of the parameters in ξ.
Example 1 (Z-test for two population means). As an illus-
trating example, we present the two-tailed Z-test for means
of two populations with a known and equal variance. We
introduce its statistical model as two normal distributions
N (µppl1, σ

2) and N (µppl2, σ
2) with a known variance σ2

and unknown true means µppl1, µppl2. Let y1 and y2 be two
given datasets where each data value was sampled indepen-
dently from N (µppl1, σ

2) and N (µppl2, σ
2), respectively.

In the Z-test, we set the alternative hypothesis ϕ1
def
=

(µppl1 6= µppl2) and the null hypothesis ϕ0
def
= (µppl1 =

µppl2). We calculate the Z-test statistic t(y1, y2) =
mean(y1)−mean(y2)

σ
√

1/size(y1)+1/size(y2)
where for b = 1, 2, size(yb) is the

sample size of yb and mean(yb) is the mean of all data in yb.
Then the p-value is defined by:

Pr
(d1,d2)∼N (µppl1,σ2)×N (µppl1,σ2)

[|t(d1, d2)| > |t(y1, y2)|]

under the null hypothesis ϕ0. When the p-value is small
enough, the datasets y1, y2 are unlikely to be sampled from
the same distribution, i.e., the null hypothesis µppl1 = µppl2

is unlikely to hold. Hence, in the Z-test, if the p-value is
smaller than a certain threshold (e.g., 0.05), we reject the
null hypothesis ϕ0 and accept the alternative hypothesis ϕ1.

When we have prior knowledge of µppl1 ≥ µppl2 (resp.
µppl1 ≤ µppl2), then we apply the upper-tailed (resp. lower-
tailed) Z-test with the alternative hypothesis µppl1 > µppl2

(resp. µppl1 < µppl2), and with the p-value Pr[t(d1, d2) >
t(y1, y2)] (resp. Pr[t(d1, d2) < t(y1, y2)]).

3 Illustrating Example
Throughout the paper, we use the following simple illustrat-
ing example to explain the basic ideas on our framework.
Example 2 (Comparison tests on drugs). Let us consider
three drugs 1, 2, 3 that may decrease blood pressure. To
compare the efficacy of these drugs, we perform experiments
and obtain a set yi of the reduced values of blood pressure
after taking drug i. Then we apply hypothesis tests on the
dataset y = (y1, y2, y3). Let xi be the true population from
which the data values in yi are sampled.

Suppose that drug 1 is composed of drugs 2 and 3, and we
want to know whether drug 1 has better efficacy than both
drugs 2 and 3. Then we take the following procedure:
• We first compare drugs 1 and 2 concerning the av-

erage decreases in blood pressure. We apply a two-
tailed Z-test to see whether the means of the true pop-
ulations x1 and x2 are different, i.e., mean(x1) 6=
mean(x2). In this test, the alternative hypothesis is

ϕ12
def
= (mean(x1) 6= mean(x2)), and the null hypoth-

esis is ¬ϕ12 ≡ (mean(x1) = mean(x2)).
• Let αij be the p-value when only comparing drugs i and j.
• If α12 ≥ 0.05, the Z-test does not reject the null hypoth-

esis ¬ϕ12 and concludes that the efficacy of drugs 1 and
2 may be the same. Then we are not interested in drug 1
any more, and skip the comparison with drug 3.
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• If α12 < 0.05, the Z-test rejects the null hypothesis ¬ϕ12

and concludes that the alternative hypothesis ϕ12 is true.
Then we apply another Z-test to check whether the alter-
native hypothesis ϕ13

def
= (mean(x1) 6=mean(x3)) is true.

• Finally, we calculate the p-value of the combined tests,
with the conjunctive alternative hypothesis ϕ12 ∧ ϕ13.

Note that these Z-tests assume that the distribution of each
population xi is a normal distribution with a variance σ2.

Overview of the Framework. In our framework, we de-
scribe a procedure of statistical tests as a program using a
programming language (Section 6); in Example 2, we de-
note the Z-test program comparing drugs i with j by Cij ,
and the whole procedure by:

Cdrug
def
= C12; if α12 < 0.05 then C13 else skip (1)

Then we use an assertion logic (Section 5) to describe the
requirement for the hypothesis tests as a precondition for-
mula. In Example 2, the precondition is given by:

ψpre
def
=

∧
i=1,2,3

ψi ∧
∧

(i,j)=(1,2),(1,3),
(2,1),(3,1)

P(mean(xi) < mean(xj))

where ψi
def
=
(
xi ≈ N (µi, σ) ∧ yi  ni xi

)
.

In this formula, ψi represents that the true population xi fol-
lows a normal distribution N (µi, σ) (with an unknown true
mean µi), and that a set yi of ni data is sampled from xi.
P(mean(x1) < mean(x2)) and P(mean(x1) > mean(x2))
represent that both the lower-tail and upper-tail are possible,
hence the test C12 should be two-tailed. Remark that our
assertion logic never deals with quantifiers over variables.

The statistical belief we want to acquire is specified as a
postcondition formula. In Example 2, the postcondition is:

ϕpost
def
=
(
K≤0.05
y ϕ12→K≤min(α12,α13)

y (ϕ12 ∧ ϕ13)
)
. (2)

Intuitively, by testing on a dataset y, when we believe ϕ12

with a p-value α ≤ 0.05, we believe the combined hypothe-
sis ϕ12 ∧ ϕ13 with a p-value at most min(α12, α13).

Finally, we combine all the above and describe the whole
statistical inference as a judgment. In Example 2, we write:

Γ ` {ψpre} Cdrug {ϕpost} (3)

By proving this judgment using rules in BHL (Section 7),
we conclude that the statistical inference is appropriate.

We remark that the p-value can be larger for a different
purpose of testing. Suppose that in Example 2, drug 1 was
a new drug and we wanted to find out it had better efficacy
than at least one of drugs 2 and 3. Then the procedure is:

Cmulti
def
= C12 ‖C13, (4)

and the alternative hypothesis is ϕ12 ∨ ϕ13 with a p-value
larger than α12 and α13 (at most α12 + α13). This is the
multiple comparisons problem (Bretz, Hothorn, and Westfall
2010), arising when the combined alternative hypothesis is
in disjunctive form. We explain more details in Section 7.

4 Model
In this section, we introduce a Kripke model for describing
statistical properties and formally define hypothesis tests.

4.1 Variables, Data, and Actions
We introduce a set Var of variables comprised of two dis-
joint sets of invisible variables and of observable variables:
Var = Varinv∪Varobs. We can directly observe the values of
the latter, but not those of the former. We use x as an invis-
ible variable denoting a population, and y as an observable
variable denoting a dataset sampled from the population.

We write O for the set of all data values we deal with,
including the Boolean values, integers, real numbers, and
lists of data. A dataset is a list of lists of data. In particular,
we deal with a list of real vectors as a dataset. Then the
vectors range over X = Rl for an l ∈ N, a distribution over
the population has type DX , and a dataset has type listX .

We write d ∼ Dn for the sampling of a set d of n data
from a population D where all these data are independent
and identically distributed (i.i.d.). Let Smpl be a set of
i.i.d. samplings of datasets from populations (e.g., d ∼ Dn),
and Cmd be a set of program commands1 (e.g., v := e and
skip). Then we define an action as a sampling of a dataset
or a program command; i.e., Act = Smpl ∪ Cmd.

4.2 States and Possible Worlds
A state is a pair (m, a) consisting of the current assignment
m : Var → O of data values to variables, and the action
a ∈ Act that has been executed in the last transition.

A possible world w is a sequence of the states (w[0],
w[1], . . . , w[k−1]) where w[i] represents the i-th state. The
length k is denoted by len(w). w[0] and w[k − 1] are called
the initial state and the current state, respectively. Since a
possible world records all updates of data values, it can be
used to model the updates of knowledge and beliefs as with
previous works on epistemic logic (Fagin et al. 1995a).

The observation of a state w[i] = (m, a) is defined by
obs(w[i]) = (mo, a) with an assignment mo : Varobs → O
such that mo(v) = m(v) for all v ∈ Varobs. The ob-
servation of a possible world w is defined by obs(w) =
(obs(w[0]), . . . , obs(w[k − 1])). We abuse notations and
denote by w : Var → O the assignment of data values to
variables in the current state of a possible world w.

4.3 Kripke Model
We introduce a Kripke model with labeled transitions where
two kinds of relations a−→ andR may relate possible worlds.

A transition relation w a−→ w′ represents a transition from
a world w to another w′ by performing an action a . An
observability relation wRw′ represents that two possible
worlds w and w′ have the same observation, i.e., obs(w) =
obs(w′). In Section 5, this relation is used to model the
knowledge in the conventional Hintikka-style.
Definition 1 (Kripke model). We define a Kripke model as
a tuple M = (W, (

a−→)a∈Act,R, (Vw)w∈W) consisting of:

1In Section 6, we instantiate Cmd with a concrete example of
commands used in a simple programming language.
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• a non-empty setW of possible worlds;
• for each a ∈ Act, a transition relation a−→⊆ W ×W ;
• an observability relation R = {(w,w′) ∈ W × W |
obs(w) = obs(w′)};
• for each w ∈ W , a valuation Vw : Pred → P(Ok) that

maps a k-ary predicate to a set of k-tuples of data;

We assume w
a−→w′ implies w′[len(w′) − 1]=(m, a) for

some m. We also assume that each world in a model has
the same sets Varinv and Varobs of variables.

4.4 Formulation of Hypothesis Testing
Next, we formalize hypothesis tests. We consider a basic
test type s ∈ {L,U,T} each representing a lower-tailed,
upper-tailed, and two-tailed test. A hypothesis test is a tuple
A

(s)
ϕ0 = (ϕ0, t ,Dt,ϕ0

,4(s),P(ξ, θ)) consisting of:
• ϕ0 is an assertion, called a null hypothesis;
• t is a function that maps a dataset d ∈ listX to its test

statistic t(d), usually with range(t) = Rk for a k ≥ 1;
• Dt,ϕ0

∈ D(range(t)) is a probability distribution of the
test statistic when the null hypothesis ϕ0 is true;

• 4(s)
t ∈ range(t) × range(t) is a likeliness relation where

for a test type s and for values d and d′ of the test statistic,
d 4(s) d′ represents that d is at most as likely as d′. For
brevity, we often omit t and (s) to write 4(s) and 4.

• P(ξ, θ) is a statistical model with unknown parameters ξ
and known parameters θ that characterizes the population.

Then we define a hypothesis testing over a set Φ of possi-
ble hypotheses by A(s) = (A

(s)
ϕ )ϕ∈Φ. We denote by A a

finite set of hypothesis testings we consider. For brevity, we
sometimes omit (s) to write Aϕ and A. We also often omit
the statistical model P(ξ, θ) from the description of A(s)

ϕ0 .
Example 3 (The likeliness relation for Z-test). The two-
tailed Z-test for two populations (Example 1) is denoted by
Aϕ0 = (ϕ0, t ,N (0, 1),4(T),N (µppl1, σ

2)× N (µppl2, σ
2)).

The likeliness relation d4(T)d′ expresses |d| ≥ |d′|. When
the null hypothesis ϕ0 is true, the test statistic t(y1, y2) fol-
lows the standard normal distribution N (0, 1), hence

Pr[t(y1, y2) 4(T) 1.96] = Pr[|t(y1, y2)| ≥ 1.96] = 0.05.

In contrast, for the upper-tailed (lower-tailed) test, with al-
ternative hypothesis ϕU

def
= (µppl1 > µppl2) (resp. ϕL

def
=

(µppl1 < µppl2)), the likeliness relation d 4(U) d′ (resp.
d 4(L) d′) is defined by d ≥ d′ (resp. d ≤ d′).

Next we define the disjunctive combination of two hy-
pothesis tests Aϕb = (ϕb, tb,Dtb,ϕb ,4

(sb)
tb
,Pb) for b = 1, 2

by Aϕ1∨ϕ2
= (ϕ1∨ϕ2, t ,Dt,(ϕ1,ϕ2),4

(s1,s2)
t ,P) where

t(y1, y2) = (t1(y1), t2(y2)), Dt,(ϕ1,ϕ2) = Dt1,ϕ1×Dt2,ϕ2 ,
(d1, d2)4(s1,s2)

t (d′1, d
′
2) iff either d14

(s1)
t1 d′1 or d24

(s2)
t2 d′2,

and P = P1×P2. Similarly, we define the conjunctive com-
bination by Aϕ1∧ϕ2

= (ϕ1∧ϕ2, t ,Dt,(ϕ1,ϕ2),4
(s1,s2)
t ,P)

where (d1, d2)4(s1,s2)
t (d′1, d

′
2) iff d14

(s1)
t1 d′1 and

d24
(s2)
t2 d′2.

5 Assertion Language
Next we define an assertion logic that can express epistemic
properties including knowledge and statistical beliefs.

5.1 Syntax of the Assertion Logic
We introduce two kinds of epistemic modality K and K<ε

y,A.
Intuitively, a knowledge Kϕ expresses that we know ϕ, and
this has been studied in a lot of previous work on epistemic
logic. In contrast, a statistical belief K<ε

y,A ϕ expresses that
we believe a hypothesis ϕ based on a statistical test A on
an observed dataset y with a certain error level (p-value) at
most ε. We formalize this as the knowledge that either the
hypothesis ϕ holds or the observed dataset y is unluckily far
from the population (from which y is sampled).

Formally, for a set Var of variables and a set Pred of pred-
icates, the set Fml of formulas are defined by:

ϕ ::= η(x1, . . . , xn) | ¬ϕ |ϕ ∨ ϕ |Kϕ

where η ∈ Pred and x1, . . . , xn ∈ Var. The formulas have
no quantifiers over variables. We denote the set of all ob-
servable (resp. invisible) variables occurring in a formula ϕ
by fvobs(ϕ) (resp. fvinv(ϕ)). Let fv(ϕ) = fvobs(ϕ)∪fvinv(ϕ).

As syntax sugar, we use conjunction ∧, implication →,
and epistemic possibility P, defined as usual by: ϕ0∧ϕ1

def
=

¬(¬ϕ0∨¬ϕ1), ϕ0 → ϕ1
def
= ¬ϕ0∨ϕ1, and Pϕ

def
= ¬K¬ϕ.

We introduce three predicates for statistical inference:

• x ≈ P represents that a population x follows a probability
distribution that we assume in a statistical model P .

• For x = (x1, . . . , xk) and n = (n1, . . . , nk), y  nx repre-
sents that for each i = 1, 2, . . . , k, a dataset yi is obtained
by sampling ni data from the population xi.

• For ./∈ {=,≤,≥, <,>} and ε ∈ [0, 1], τ./εA (y) repre-
sents that the observation of a dataset y is unlikely to oc-
cur (with exception ./ ε) according to a hypothesis test A,
and the dataset y is used in no other hypothesis tests.

We introduce a set PredG of global predicate, whose inter-
pretations are identical in every possible worlds. We assume
≈ ∈ PredG and Pred = PredG ∪ {τ./εA ,  }.

As syntax sugar, we introduce the statistical belief modal-
ity K./ε

y,A such that for a formula ϕ representing a hypothesis,

K./ε
y,A ϕ

def
= K(ϕ ∨ τ./εA¬ϕ(y))

where A¬ϕ is a test with a null hypothesis ¬ϕ. Then

we define the statistical possibility P./εy,A by P./εy,A ϕ
def
=

¬K./ε
y,A ¬ϕ. For brevity, we write Kε

y,A instead of K=ε
y,A.

For a finite set A of hypothesis testings, we write K./ε
y ϕ

def
=
∨
A∈AK./ε

y,A ϕ and P./εy ϕ
def
=
∨
A∈AP./εy,A ϕ. A formula ψ

is τ./-free if τ./εA , K./ε
y,A, P./εy,A, K./ε

y , P./εy do not occur in ψ.

5.2 Semantics of the Assertion Logic
In this section, we define semantics for the assertion logic.
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We define the interpretation of formulas in a world w in a
Kripke model M (Definition 1) by:

M, w |= η(x1, . . . , xk) iff (w(x1), . . . , w(xk)) ∈ Vw(η)

M, w |= ¬ϕ iff M, w 6|= ϕ

M, w |= ϕ ∨ ϕ′ iff either M, w |= ϕ or M, w |= ϕ′

M, w |= Kϕ iff for all w′ ∈ W , (w,w′) ∈ R
implies M, w′ |= ϕ.

M is sometimes omitted when it is clear from the context.
Next we define the interpretation of predicates. Each

global predicate has the same interpretation in all worlds;
i.e., for any η ∈ PredG and w,w′ ∈ W , Vw(η) = Vw′(η).
Let Aϕ = (ϕ, t ,Dt,ϕ,4(s)) be a hypothesis test. Recall that
the distribution over the population has type DX , and that
4(s) is the likeliness relation (Section 4.4). In a world w,
we interpret the predicates by:

Vw(≈)=
{

(X,D) ∈ DX × DX | X = D
}

Vw(  )=
{
(d,D, n)∈(listX )×DX×N

∣∣∣ There is an i ∈ N
s.t.w[i]

d∼Dn−−−→w[i+1]

}
Vw(τ<εAϕ

)=
{
o ∈ O

∣∣∣Prd∼Dt,ϕ [ d 4(s) t(o) ] < ε and
w has no transition where o is used
in other hypothesis tests than Aϕ.

}
.

Intuitively, Vw(τ<εAϕ
)2 is the set of all dataset that re-

ject a null hypothesis ϕ. More specifically, the p-value
Prd∼Dt,ϕ [ d 4(s) t(o) ] is the probability that a data d
is at most as likely as the test statistic t(o) when it is
sampled from the distribution Dt,ϕ in the world w; e.g.,
Prd∼N (0,1)[ d 4(T) 1.96 ] = Prd∼N (0,1)[ |d | ≥ 1.96 ] =
0.05. By definition, we have:

M, w |= τ<εAϕ
(y) iff Pr

d∼Dt,ϕ

[ d 4(s) t(w(y)) ] < ε and

w(y) is not used in other tests than Aϕ.

This represents that in the possible world w, the observation
of a dataset y is unlikely to occur (except with probability ε)
according to the hypothesis test Aϕ where the test statistic
follows the distribution Dt,ϕ in the world w.

Then the statistical belief modality K<ε
y,A is interpreted as:

M, w |= K<ε
y,A ϕ

iff M, w |= K(ϕ ∨ τ<εA¬ϕ
(y))

iff for all w′, (w,w′)∈R implies M, w′ |= ¬ϕ→ τ<εA¬ϕ
(y).

Intuitively, K<ε
y,A ϕ represents a belief that an alternative

hypothesis ϕ on the population is true. More specifically,
w′ |= ¬ϕ → τ<εA¬ϕ

(y) means that if we consider a possi-
ble world w′ where the null hypothesis ¬ϕ is true, then a
hypothesis test A¬ϕ would conclude that the observation of
a dataset y is unlikely to occur (with exceptions at most ε),
i.e., τ<εA¬ϕ

(y) holds in w′. We discuss the implication of our
formalization of K<ε

y,A in Section 5.3.
Although the modality K expresses the knowledge in

terms of S5, the syntax sugar K<ε
y,A ϕ represents belief in-

stead of knowledge. This is because ϕ can be false when
2We also define the interpretation of τ./εAϕ (y) analogously.

τ<εA¬ϕ
(y) holds (i.e., we may have a false belief on ϕ when

the sampled dataset y is unluckily far from the population).

Example 4 (Statistical belief in Z-tests). Recall again the
two-tailed Z-test for two population means in Example 1.
The alternative hypothesis is ϕ1

def
= (µppl1 6= µppl2), and the

null hypothesis is ϕ0
def
= (µppl1 = µppl2). We denote this

Z-test by Aϕ0
= (ϕ0, t ,N (0, 1),4(T)).

Suppose that in a world w, we sample two datasets w(y1)
and w(y2) respectively from two populations w(x1) and
w(x2), and calculate the Z-test statistic t(w(y1), w(y2))
defined in Example 1. When the null hypothesis ϕ0 is true,
t(w(y1), w(y2)) follows the distribution N (0, 1).

If t(w(y1), w(y2))=3, Prd∼N(0,1)[d4(T)t(w(y1), w(y2))]
< 0.05. Then the null hypothesis ϕ0 is rejected, and we ob-
tain the statistical belief that the alternative hypothesis ϕ1 is
true with the significance level 0.05, i.e.,w |= K<0.05

y,A ϕ1. In
contrast, if t(w(y1), w(y2)) = 1.8, then w |= ¬K<0.05

y,A ϕ1

because Prd∼N (0,1)[ d 4(T) t(w(y1), w(y2)) ] > 0.05.

5.3 Remarks on the Formalization
Implication The universeW of the model M is assumed
to include all possible worlds we can imagine. If there exists
no possible world satisfying the null hypothesis ¬ϕ in the
model M, then ϕ is satisfied in all worlds in M, hence so
are Kϕ and K<ε

y,A ϕ. This reflects the fact that if we cannot
imagine a possible world where ¬ϕ is true, then we already
know that ϕ is true without executing hypothesis tests.

Type II error The type II error rate is the probability that
the hypothesis test A does not reject the null hypothesis ϕnull

when ϕnull is false. Assume that the true population satisfies
a hypothesis ξ in the world w. Let y′ be a dataset such that
the p-value (type I error rate) α of the test A is 0.05; i.e.,
w |= K0.05

y′,A ¬ϕnull. Then the type II error rate β when α =

0.05 is given by w |= Kβ
y′,A ¬ξ.

5.4 Properties of Statistical Beliefs
The statistical possibility P<εy,A ϕ means that we think a null
hypothesis ϕ may be true after a hypothesis test A did not
reject ϕ with a significance level ε. Formally, we have:

M, w |= P<εy,A ϕ

iff there is a w′ s.t. (w,w′) ∈ R and M, w′ 6|= ¬ϕ ∨ τ<εAϕ
(y)

iff M, w |= P(ϕ ∧ ¬τ<εAϕ
(y)).

Now we show basic properties of statistical beliefs.

Proposition 1 (Properties of K<ε
y,A). Let ϕ be a formula, A

be a hypothesis test, y ∈ Varobs, and ε ∈ R≥0.

1. Knowledge is also regarded as belief: |= Kϕ→ K<ε
y,A ϕ.

2. If we believe ϕ based on a test A, then we know this sta-
tistical belief; i.e., |= K<ε

y,A ϕ→ KK<ε
y,A ϕ.

3. If we failed to reject ϕ and think it possible, then we know
this possibility; i.e., |= P<εy,A ϕ→ KP<εy,A ϕ.

4. If ε≤ε′, |= K<ε
y,A ϕ→ K<ε′

y,A ϕ and |= P<ε
′

y,A ϕ→ P<εy,A ϕ.
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5. K<ε
y,A ϕ may represent a false belief. The alternative hy-

pothesis ϕ we believe may be false, i.e., the rejected null
hypothesis ¬ϕ may be true: ε > 0 iff 6|= K<ε

y,A ϕ→ ϕ.

6. |= K<ε
y,A ϕ→ K<ε

y ϕ.

The proofs are straightforward from definitions. See the
full version of this paper for the proofs.

6 A Simple Programming Language
We introduce an imperative programming language Prog.

6.1 Syntax of Prog
We define the syntax of Prog by the following BNF:

T ::= bool | int | real | T × T | list(T ) (Types)
e ::= v | f(e1, . . . , ek) (Terms)
c ::= skip | v := e (Commands)
C ::= c | C;C | C‖C | if e then C else C | loop e do C

(Programs)

where v is an element of Varobs, f is a (built-in) function
symbol, and constants are dealt as functions with arity 0.
Notice that a program can handle only observable variables.
T represents types. A type is either bool for Boolean

values, int for integers, real for real numbers, T1 × T2 for
pairs consisting of a value of type T1 and a value of type
T2, or list(T ) for lists of values of type T . e represents
expressions that evaluate to values. An expression is either
a variable v or a function call f(e1, . . . , ek); the latter is
typically a call to a function that computes a test statistic. c
and C represent commands and programs respectively. We
give their intuitive explanation as follows.
• skip does nothing.
• v := e updates v with the result of an evaluation of e.
• C1;C2 executes C1 and then C2.
• C1‖C2 executes C1 and C2 in parallel that may share

some data.
• if e thenC1 elseC2 executesC1 if e evaluates to true;

executes C2 if e evaluates to false.
• loop e do C iteratively executes C as long as e evaluates

to true.
For instance, the example program in Section 7.5 con-

forms to the programming language Prog.
Hereafter we assume that all programs are well-typed al-

though we do not explicitly mention the types. Checking
this condition for our language can be done by adapting a
standard type-checking algorithm to our setting.

We write upd(C) for the set of variables that may be
updated by executing C: upd(skip)=∅, upd(v:=e) = {v},
upd(C1;C2)=upd(C1‖C2)=upd(if e thenC1 elseC2) =
upd(C1) ∪ upd(C2), and upd(loop e do C) = upd(C).

Then we impose the following restriction to every oc-
currence of C1‖C2: upd(C1) ∩ Var(C2) = upd(C2) ∩
Var(C1) = ∅. This restriction is to ensure that an execu-
tion of C1 does not interfere with that of C2.

6.2 Semantics of Prog
We define the semantics of Prog over a Kripke model M
with labeled transitions given in Section 4.3. The seman-
tics is based on the standard structural operational semantics
(e.g. (Nielson and Nielson 2007)).

For a possible world w ∈ W and n = len(w), we write

w = w[0], w[1], . . . , w[n− 2], (m, a)

where (m, a) is the current statew[n−1] with an assignment
m : Var→ O and an action a in the last transition in M.

For the assignment m of the current state of w, we de-
fine the evaluation [[e]]m of a term e inductively by [[v]]m =
m(v) and [[f(e1, . . . , ek)]] = [[f ]]( [[e1]]m, . . . , [[ek]]).

As in Figure 1, we define a binary relation

−→ ⊆ (Prog ×W)× ((Prog ×W) ∪W)

that relates a pair 〈C,w〉 consisting of a program C and a
possible world w to its next step of execution. If C is termi-
nated, the next step will be a possible world w′, otherwise
the execution continues to the 〈C ′, w′〉.

〈skip, w〉 −→ w; (m, skip),

〈v := e, w〉 −→ w; (m[v 7→ [[e]]m], v := e),

〈C1, w〉 −→ w′

〈C1;C2, w〉 −→ 〈C2, w
′〉

〈C1, w〉 −→ 〈C ′1, w′〉
〈C1;C2, w〉 −→ 〈C ′1;C2, w

′〉

〈if e then C1 else C2, w〉 −→
{
〈C1, w〉 [[e]]m = >
〈C2, w〉 [[e]]m = ⊥

〈loop e do C,w〉 −→
{
〈C; loop e do C,w〉 [[e]]m = >
w [[e]]m = ⊥

〈C1, w〉 −→ 〈C ′1, w′〉
〈C1‖C2, w〉 −→ 〈C ′1‖C2, w

′〉
〈C1, w〉 −→ w′

〈C1‖C2, w〉 −→ 〈C2, w
′〉

〈C2, w〉 −→ 〈C ′2, w′〉
〈C1‖C2, w〉 −→ 〈C1‖C ′2, w′〉

〈C2, w〉 −→ w′

〈C1‖C2, w〉 −→ 〈C1, w
′〉

Figure 1: Rules of execution of programs.

Remark that the semantics of a program contains the trace
of commands executed in it. Hence, even if programs finally
have the same result, their semantics may be different.

〈v := v + 1, ([v 7→1], a)〉−→([v 7→1], a), ([v 7→2], v := 1 + 1)

〈v := 2 ∗ v, ([v 7→1], a)〉−→([v 7→1], a), ([v 7→2], v := 2 ∗ v)

We define the semantic relation [[C]] ⊆ W ×W by

[[C]](w) = {w′ | 〈C,w〉 −→∗ w′}

where −→∗ is the transitive closure of −→.
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Remark on Parallel Compositions Since parallel com-
positions are nondeterministic, w′ ∈ [[C]](w) may not be
unique. However, the resulting world w′ are essentially the
same, because for parallel composition C1‖C2, the world
w′ ∈ [[C1‖C2]](w) is convertible to a pair ofw1 ∈ [[C1]](w)
and w2 ∈ [[C1]](w) and vise versa.

If we have 〈Cb, w〉 −→∗ w;ub for b = 1, 2, then by
upd(Cb) ∩ Var(C3−b) = ∅, we obtain a sequence u′ such
that 〈C1‖C2, w〉 −→∗ w;u′ by combining u1 and u2.

Conversely, if 〈C1‖C2, w〉 −→∗ w;u′, we can decom-
pose u′ into u1 and u2 such that 〈Cb, w〉 −→∗ w;ub for
b = 1, 2 (for detail, see the full version of this paper).

Then, for any pair of τ./-free assertions ϕ1 and ϕ2 satis-
fying upd(Cb) ∩ fv(ϕ3−b) = ∅ for b = 1, 2, for any pos-
sible world w′ ∈ [[C1‖C2]](w), we can write w′ = w;u′,
and decompose u′ into u1 and u2 as above. We then obtain
w′ |= ϕ1 ∧ ϕ2 iff w;u1 |= ϕ1 and w;u2 |= ϕ2.

Procedures of Hypothesis Testing Finally, we present
the interpretation of a program f

A
(s)
ϕ0

for a hypothesis test

A
(s)
ϕ0 = (ϕ0, t ,Dt,ϕ0

,4(s)) with a null hypothesis ϕ0, a test
statistic t , and a test type s . For a dataset y and an assign-
ment m, [[f

A
(s)
ϕ0

(y)]]m represents the p-value:

[[f
A

(s)
ϕ0

(y)]]m = Pr
d∼Dt,ϕ0

[ d 4(s) t(m(y)) ], (5)

which is the probability that a data d is at most as likely as
the test statistic t(m(y)) when it is sampled from Dt,ϕ0

in
the world where the null hypothesis ϕ0 is true.

7 Belief Hoare Logic for Hypothesis Testing
We introduce belief Hoare logic (BHL) for formalizing and
reasoning about statistical inference using hypothesis tests.
Then we describe the reasoning about the multiple compar-
ison problem and p-value hacking using BHL.

7.1 Hoare Triples
An environment is defined as a pair Γ = (Γinv,Γobs) con-
sisting of an invisible environment Γinv and an observable
environment Γobs that assign types to invisible variables and
to observable variables, respectively. We denote by Var(Γ)
the set of all variables occurring in an environment Γ, and
by Env the set of all possible environments.

A judgment is of the form Γ ` {ψ} C {ϕ} where
Γ ∈ Env, ψ,ϕ ∈ Fml, and C ∈ Prog. Intuitively, this rep-
resents that when the precondition ψ is satisfied, executing
the program C results in satisfying the postcondition ϕ.

We say that a judgment Γ ` {ψ} C {ϕ} is valid iff for
any model M and any possible world w, if M, w |= ψ, then
M, w′ |= ϕ for all w′ ∈ [[C]](w).

We write Γ |= ϕ if M, w |= ϕ for any model M and any
worldw that respects the type information in Γ (i.e., the type
of w(v) being Γ(v) for any variable v ∈ Var).

7.2 Inference Rules
Next, we present the inference rules for belief Hoare logic
(BHL). The rules are classified into those for basic command
constructs (Figure 2) and for hypothesis testing constructs

Γ ` {ψ} skip {ψ} (SKIP)

Γ(x) = Γ(y)

Γ ` {ϕ[x 7→ y]} x := y {ϕ} (UPDVAR)

Γ ` {ψ} C1 {ψ′} Γ ` {ψ′} C2 {ϕ}
Γ ` {ψ} C1;C2 {ϕ}

(SEQ)

Γ ` {ψ} C {ϕ}
Γ ` {ψ} skip ‖C {ϕ} (PAR-SKIPADDL)

Γ ` {ψ} C {ϕ}
Γ ` {ψ} C ‖ skip {ϕ} (PAR-SKIPADDR)

Γ ` {ψ} skip ‖C {ϕ}
Γ ` {ψ} C {ϕ} (PAR-SKIPRML)

Γ ` {ψ} C ‖ skip {ϕ}
Γ ` {ψ} C {ϕ} (PAR-SKIPRMR)

Γ ` {ψ ∧ e} C1 {ϕ} Γ ` {ψ ∧ ¬e} C2 {ϕ}
Γ ` {ψ} if e then C1 else C2 {ϕ}

(IF)

Γ ` {ψ ∧ e} C {ψ}
Γ ` {ψ} loop e do C {ψ ∧ ¬e} (LOOP)

Γ |=ψ→ψ′ Γ `{ψ′}C{ϕ′} Γ |=ϕ′→ϕ

Γ `{ψ}C{ϕ} (CONSEQ)

Figure 2: Rules for basic constructs for commands.

(Figure 3). The latter includes axiom schemas that can be
instantiated to a variety of concrete hypothesis test methods;
we present such instantiation in Section 7.3.

The rules for basic constructs in Figure 2 are standard;
the readers are referred to a standard textbook on Hoare
logic (Winskel 1993) for details. We remark the features:
• In the rules IF and LOOP, the guard condition e is a

Boolean expression implicitly used as a logical predicate
in the preconditions and the postconditions as usual.

• The rule CONSEQ is used to weaken the precondition and
strengthen the postcondition of a triple. The relation Γ |=
ϕ defined above is used in this rule.

Schemas for Single Hypothesis Testing In Figure 3 the
axiom schemas TWO-T, LOW-T, and UP-T correspond to
two-tailed, lower-tailed, and upper-tailed tests, respectively.

In these schemas, a dataset y is sampled from a population
x, which follows a statistical model P(ξ; θ) with unknown
true parameters ξ ∈ Φ and known parameters θ ∈ Θ.

To reason about the unknown parameter ξ, we perform a
hypothesis test Aϕ0

with a null hypothesis ϕ0. Let ϕL, ϕU,

and ϕT(
def
= ϕL ∨ ϕU) be the alternative hypotheses for the

lower-tailed, upper-tailed, and two-tailed tests, respectively.
When we consider both the lower-tail ϕL and upper-tail

ϕU are possible before performing the test, we express them
by PϕL and by PϕU in the precondition. Then we apply the
schema TWO-T. When the two-tailed test f

A
(T)
ϕ0

(y) returns

the p-value α ∈ [0, 1], we obtain a statistical belief on the
alternative hypothesis ϕT, namely, Kα

y,A ϕT. When we con-
sider only the lower-tail ϕL (resp. upper tail ϕU) possible,
we apply LOW-T (resp. UP-T) and obtain a statistical belief
on ϕL (resp. ϕU), namely, Kα

y,A ϕL (resp. Kα
y,A ϕU).
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Γinv = {ξ : Ξ, x : DX} ∪ Varinv({ψ′, ϕL, ϕU}), Γobs = {θ : Θ, n : N, y : listX , α : [0, 1]} ∪ Varobs({ψ′, ϕL, ϕU}),
α 6∈ fv({ϕL, ϕU}), ψ′ : τ./-free, ψ def

= (x≈P(ξ, θ) ∧ y  n x ∧ ψ
′)

(Γinv,Γobs) ` {ψ[α 7→ f
A

(T)
ϕ0

(y)] ∧PϕL ∧PϕU} α := f
A

(T)
ϕ0

(y) {ψ ∧Kα
y,A ϕT}

(TWO-T)

Γinv = {ξ : Ξ, x : DX} ∪ Varinv({ψ′, ϕL, ϕU}), Γobs = {θ : Θ, n : N, y : listX , α : [0, 1]} ∪ Varobs({ψ′, ϕL, ϕU}),
α 6∈ fv({ϕL, ϕU}), ψ′ : τ./-free, ψ def

= (x≈P(ξ, θ) ∧ y  n x ∧ ψ
′)

(Γinv,Γobs) ` {ψ[α 7→ f
A

(L)
ϕ0

(y)] ∧PϕL ∧ ¬PϕU} α := f
A

(L)
ϕ0

(y) {ψ ∧Kα
y,A ϕL}

(LOW-T)

Γinv = {ξ : Ξ, x : DX} ∪ Varinv({ψ′, ϕL, ϕU}), Γobs = {θ : Θ, n : N, y : listX , α : [0, 1]} ∪ Varobs({ψ′, ϕL, ϕU}),
α 6∈ fv({ϕL, ϕU}), ψ′ : τ./-free, ψ def

= (x≈P(ξ, θ) ∧ y  n x ∧ ψ
′)

(Γinv,Γobs) ` {ψ[α 7→ f
A

(U)
ϕ0

(y)] ∧ ¬PϕL ∧PϕU} α := f
A

(U)
ϕ0

(y) {ψ ∧Kα
y,A ϕU}

(UP-T)

For b = 1, 2, Γinv
b = fvinv({ψb, ψ′b, ϕb}), Γobs

b = {yb : listX , αb : [0, 1]} ∪ fvobs({ψb, ψ′b, ϕb}) ∪ upd(Cb),

upd(Cb) ∩ (fv({ψ′3−b, ϕ3−b}) ∪ {y1, y2}) = ∅, ψ′b : τ./-free, α1, α2 6∈ fv({ϕ1, ϕ2})
(Γinv

1 ,Γobs
1 ) ` {ψ1} C1 {ψ′1 ∧Kα1

y1 ϕ1} (Γinv
2 ,Γobs

2 ) ` {ψ2} C2 {ψ′2 ∧Kα2
y2 ϕ2}

(Γinv
1 ∪ Γinv

2 , Γobs
1 ∪ Γobs

2 ) ` {ψ1 ∧ ψ2} C1 ‖C2 {ψ′1 ∧ ψ′2 ∧K≤α1+α2
(y1,y2)

(ϕ1 ∨ ϕ2)}
(MULT-∨)

For b = 1, 2, Γinv
b = fvinv({ψb, ψ′b, ϕb}), Γobs

b = {yb : listX , αb : [0, 1]} ∪ fvobs({ψb, ψ′b, ϕb}) ∪ upd(Cb),

upd(Cb) ∩ (fv({ψ′3−b, ϕ3−b}) ∪ {y1, y2}) = ∅, ψ′b : τ./-free, α1, α2 6∈ fv({ϕ1, ϕ2})
(Γinv

1 ,Γobs
1 ) ` {ψ1} C1 {ψ′1 ∧Kα1

y1 ϕ1} (Γinv
2 ,Γobs

2 ) ` {ψ2} C2 {ψ′2 ∧Kα2
y2 ϕ2}

(Γinv
1 ∪ Γinv

2 , Γobs
2 ∪ Γobs

2 ) ` {ψ1 ∧ ψ2} C1 ‖C2 {ψ′1 ∧ ψ′2 ∧K
≤min(α1,α2)

(y1,y2)
(ϕ1 ∧ ϕ2)}

(MULT-∧)

Figure 3: Axiom schemas and rules for hypothesis tests. TWO-T, LOW-T, and UP-T are schemas for two-tailed, lower-tailed, and upper-tailed
tests, respectively. MULT-∨ is the rule for the Bonferroni’s method, and MULT-∧ is for the simultaneous tests without correction of α.

Rules for Multiple Tests The rule MULT-∨ corresponds
to the multiple tests by the Bonferroni’s method. As illus-
trated in Section 3, a typical example is to test whether a
drug has better efficacy than at least one of multiple drugs.

In the rule MULT-∨, we have two datasets y1 and y2 re-
spectively obtained by sampling from two populations x1

and x2 (that may have statistical relevance). Then we ap-
ply two separate hypothesis tests on y1 in C1 and on y2 in
C2 to derive the disjunctive alternative hypothesis ϕ1 ∨ ϕ2.
We denote by α1 and α2 the p-values of these two tests when
performed separately; i.e., Kα1

y1 ϕ1 and Kα2
y2 ϕ2 are satisfied.

However, the p-value when performing both the tests si-
multaneously (in C1‖C2) is larger than α1 and α2. This is
the so-called multiple comparison problem. By applying the
Bonferroni’s method, the p-value in total is bounded above
by α1 + α2, namely, K≤α1+α2

(y1,y2) (ϕ1 ∨ ϕ2) is satisfied. This
reflects that BHL does not derive elementary mistakes (e.g.,
Kα1

(y1,y2) ϕ1) where the reported p-value α1 is lower than the
actual p-value in multiple comparison.

In contrast, the rule MULTI-∧ formalizes the tests for the
conjunctive alternative hypothesis ϕ1 ∧ ϕ2, e.g., the pro-
gram Cdrug in Example 2, which tests whether a drug has
better efficacy than both drugs. According to statistics, this
does not make the p-value higher, i.e., the p-value is at most
min(α1, α2). See the full version of this paper for details.

Finally, we obtain the soundness of BHL from the validity
of the rules. See the full version for the proof.

Theorem 1 (Soundness). Every derivable judgment is valid.

7.3 Instantiation to Concrete Test Methods
The axiom schemas for hypothesis tests in Figure 3 are in-
stantiated with concrete examples of tests as follows. We
first show the case of the two-tailed Z-test (Example 1).

Example 5 (Z-test). The axiom for the Z-test comparing
means of two populations with datasets y1, y2 of sample
sizes size(y1), size(y2) and a known variance σ2 is given by
instantiating TWO-T with the following parameters:

Pb(µppl b, σ
2)

def
= N(µppl b, σ

2) for b = 1, 2

ϕ0
def
= (µppl1=µppl2) ϕT

def
= (µppl1 6=µppl2)

4(T) = {(r1, r2) ∈ R× R | |r1| > |r2|}
t(y1, y2) = mean(y1)−mean(y2)

σ
√

1/size(y1)+1/size(y2)

Dtθ,ϕ0
= N (0, 1) (the standard normal distribution).

Next we show the instantiation to the classical likelihood
ratio test with a simple null hypothesis ξ = ξ0 and a simple
alternative hypothesis ξ = ξ1, namely, in the setting of the
Neyman-Pearson lemma.

Example 6 (Likelihood ratio test). The goal of (the simplest
version of) the likelihood ratio test is to determine which of
two candidate distributions Dp, Dq ∈ DR is better to fit a
dataset y = (y1, . . . , yn) of sample size n. The test can be
reformulated with the statistical model x ≈ P (ξ) defined by

P (ξ) =

{
Dq if ξ = ξ0
Dp if ξ = ξ1

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

418



and the following null and alternative hypotheses:

ϕ0
def
= (ξ = ξ0) ϕL

def
= (ξ = ξ1).

The the likelihood function L for this test is given by

L(y|ξ0) =
∏n
i=1 q(yi) L(y|ξ1) =

∏n
i=1 p(yi).

Then, the likelihood ratio t(y) is given by

t(y) =
L(y|ξ0)

L(y|ξ1)
=

∏n
i=1 q(yi)∏n
i=1 p(yi)

where p and q are the density functions ofDp andDq respec-
tively. In the likelihood ratio test, for a given α and a thresh-
old k such that Prd1,...,dn∼Dq [t((d1, . . . , dn)) ≤ k] ≤ α,
if we have t(y) ≤ k, the likelihood L(y|ξ0) is too small to
accept the distribution Dq . We then conclude that the other
candidate Dp is better to fit y (thus this test is lower-tailed).

Conversely, the p-value of this test is defined by

Pr
d1,...,dn∼Dq

[t((d1, . . . , dn)) ≤ t(y)]. (6)

The axiom for the likelihood ratio test is given by instan-
tiating LOW-T with the above P (ξ), ϕ0, ϕL, t(y) and

4(L) = {(r1, r2) ∈ R× R | r1 ≤ r2}

Dtθ,ϕ0 =

∏n
i=1 q(Dq)∏n
i=1 p(Dq)

where p(Dq) and q(Dq) are the probability distributions

respectively defined by p(Dq)(A)
def
= Dq(p

−1(A)) and

q(Dq)(A)
def
=Dq(q

−1(A)) for any measurable subset A⊆R.
Intuitively, p(Dq) and q(Dq) represent the probability dis-
tributions of p(y) and q(y) when y is sampled from Dq . By
instantiating the p-value [[f

A
(s)
ϕ0

(y)]] in (5), we obtain (6).

Bayesian hypothesis test is given in an analogous way.
Example 7 (Bayesian hypothesis test). Consider the
Bayesian likelihood ratio test with a dataset y of sample size
n, prior distributions Dp′ , Dq′ ∈ DR with density functions
p′ and q′, and posterior distributions Dp(z), Dq(z) ∈ DR
with density functions p(−|z) and q(−|z).

The goal of this test is to determine whether the dataset
y is sampled from Dq(z) when z follows Dq′ . The null hy-
pothesis is that y is sampled fromDp(z) when z followsDp′ .

A statistical model x ≈ P (ξ) of this test is defined as
follows: First, we introduce the statistical models z ≈ P0(ξ)
and x ≈ P1(ξ, z) of prior and posterior distributions by

P0(ξ) =

{
Dq′ if ξ = ξ0
Dp′ if ξ = ξ1

P1(ξ, z) =

{
Dq(z) if ξ = ξ0
Dp(z) if ξ = ξ1

.

Next, for each ξ = ξ0, ξ1, we define the probability measure
P (ξ) ∈ DR by for any measurable subset A ⊆ R,

(P (ξ))(A)
def
=

∫
R
hξ,A dµξ

where µξ = P0(ξ) and hξ,A : R → R is a measurable func-
tion defined by hξ,A(z) = (P1(ξ, z))(A).

The axiom for this test is given by instantiating LOW-T
with the above model P and the following parameters:

ϕ0
def
= (ξ = ξ0) ϕL

def
= (ξ = ξ1)

4(L) = {(r1, r2) ∈ R× R | r1 ≤ r2}

t(y) =

∫
q′(z)

∏n
i=1 q(yi|z)dz∫

p′(z)
∏n
i=1 p(yi|z)dz

Dtθ,ϕ0
=

∫
q′(z)

∏n
i=1 q(Dq(z)|z)dz∫

p′(z)
∏n
i=1 p(Dq(z)|z)dz

.

Unlike the (classical) likelihood ratio test, the Bayes factor
t(y) is the ratio of the following marginal likelihoods:

L(y|ξ0) =
∫
q′(z)

∏n
i=1 q(yi|z)dz

L(y|ξ1) =
∫
p′(z)

∏n
i=1 p(yi|z)dz.

7.4 Reasoning About Multiple Comparison
We illustrate how BHL reasons about the multiple compar-
ison in Example 2, where the derivation of (3) guarantees
that the hypothesis tests are applied appropriately in Cdrug

in (1). (Details are shown in the Supplementary Material.)
In the derivation, we obtain the following judgments:

Γ ` {ψpre} C12 {ψpre ∧Kα12
y ϕ12}

Γ ` {ψpre ∧Kα12
y ϕ12 ∧ α12≤0.05} C13 {ϕbel

12→ϕbel}
Γ ` {ψpre ∧Kα12

y ϕ12 ∧ α12>0.05} skip {ϕbel
12→ ϕbel}

where ϕbel
12

def
= K≤0.05

y ϕ12 and ϕbel def
= K≤αy (ϕ12 ∧ ϕ13).

The second judgment is derived by the two-tailed test ax-
iom, MULT-∧, and CONSEQ. The last judgment is de-
rived from Γ |= (ψpre ∧ Kα12

y ϕ12 ∧ α12>0.05) → ¬ϕbel
12

and Γ |= ¬ϕbel
12 → (ϕbel

12 → ϕbel) and CONSEQ. Apply-
ing IF to the last two judgments, we have Γ ` {ψpre ∧
Kα12
y ϕ12} if α12≤0.05 then C13 else skip {ϕbel

12 →
ϕbel}; composing it with the first judgment by applying SEQ,
we have the judgment in (3).

In contrast, the program C12 ‖C13 in (4) shows the mul-
tiple comparison problem. Since the alternative hypothesis
ϕ12 ∨ϕ13 is disjunctive, we apply the rule MULT-∨ to drive
the belief K≤α12+α13

(y,y) (ϕ12∨ϕ13), with a p-value (larger than
α12 and α13) at most α12 + α13.

7.5 Reasoning About p-Value Hacking
We informally describe how our framework can be applied
to reason about a program for p-value hacking, i.e., a scien-
tifically malignant technique to obtain a low p-value. The
following program cpHack is an example of p-value hacking
that conducts a hypothesis test on different datasets y1 and
y2, and ignores the experiment showing a higher p-value to
report only a lower p-value:

(α1 := f
A

(T)
ϕ0

(y1)‖α2 := f
A

(T)
ϕ0

(y2));

if α1 < α2 then α := α1 else α := α2

We write ϕalt for the alternative hypothesis of this test.
For the reported p-value α to be an actual p-value,

K≤α(y1,y2)ϕalt needs to hold as a postcondition of cpHack. Then
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(α1 < α2 → K≤α1

(y1,y2) ϕalt) ∧ (α1 ≥ α2 → K≤α2

(y1,y2) ϕalt)

must hold at the end of the first line of cpHack due to the rules
UPDVAR and IF. However, this is not implied by the post-
conditions of MULT-∨ or MULT-∧. Since K<α1+α2

(y1,y2) (ϕ1 ∨
ϕ2) is a postcondition of cpHack, the total p-value α1 + α2

should be reported without ignoring any experiments.

8 Discussion
In this section, we provide a whole picture of the justification
of statistical belief inside and outside BHL.

A statistical belief derived in a program relies on the fol-
lowing three issues: (i) the validity of hypothesis test meth-
ods themselves, (ii) the satisfaction of the empirical condi-
tions required for the hypothesis tests, and (iii) the appropri-
ate usage of hypothesis tests in the program. In our frame-
work, these are respectively addressed by (a) the validity of
axioms and rules, (b) the (manual) confirmation of the pre-
conditions in a judgment, and (c) the proof for the judgment.

8.1 Validity of Hypothesis Test Methods
The validity of hypothesis test methods is not ensured by
mathematics alone. The philosophy of statistics has a long
history of argument on the proper interpretation of hypoth-
esis testing. One of the most notable examples is the ar-
gument between the frequentist and the Bayesian statistics,
which still has many issues to be discussed (Sober 2008).

We also remark that statistical methods occasionally in-
volve some approximation of numerical values. However,
we may not always confirm the validity of approximation
rigorously, i.e., whether the approximation is valid to the
specific situation we apply the statistical methods.

For these reasons, we do not attempt to formalize the “jus-
tification” for hypothesis test methods within BHL, and left
them for future work. Instead, we define axiom schemas
for hypothesis tests that are commonly used in practice and
explained in textbooks, e.g., (Kanji 2006). Then we focus
on the logical aspects of the appropriate usage of hypothesis
tests, which has been a long-standing, practical concern but
has not been formalized using a symbolic logic before.

One of the advantages of this approach is that we do not
adhere to a specific philosophy of statistics, but can model
both the frequentist and the Bayesian statistics by introduc-
ing an axiom/rule corresponding to each hypothesis test.

8.2 Clarification of Empirical Conditions
The hypothesis test methods usually assume some empiri-
cal conditions on the unknown population from which the
dataset is sampled. Typically, many parametric tests require
that the population follows a normal distribution. For in-
stance, the Z-test in Example 5 assumes that the population
follows a normal distribution with known variance, but this
cannot be rigorously confirmed or justified in general.

In some cases, such conditions on the unknown popula-
tion may be confirmed approximately or partially by some
exploratory observations on the sampled data and by prior
knowledge of some properties on the population (outside the
statistical inference). As far as we know, there has been no

general method for justifying such empirical conditions rig-
orously. Thus, the formal justification of those conditions
themselves would require further research in statistics.

In the present paper, the empirical conditions on the un-
known population remain to be assumptions from the view-
point of formal logic. Hence, we describe empirical condi-
tions as the preconditions of a judgment in BHL.

Explicit specification of the preconditions would be use-
ful for non-experts to prevent errors in the choice of statis-
tical methods. Furthermore, when we formalize empirical
science in future work, it would be crucial to clarify the em-
pirical conditions that justify scientific conclusions.

8.3 Epistemic Aspects of Statistical Inference
One of our contributions is to show that epistemic logic is
useful to formalize statistical inference. Although the out-
come of a hypothesis test is a knowledge determined by the
test action, it may form a false belief ; i.e., a rejected null
hypothesis may be true, and a retained one may be false.
Hence the formalization of statistical inference deals with
both truth and beliefs, for which epistemic logic is suitable.

The key to formalizing statistical beliefs is to introduce
a Kripke semantics with a possible world w0 where a null
hypothesis is true (Section 5.2). This possible worldw0 may
not be the real world where we actually apply the hypothesis
test on an observed dataset.

In the Kripke model, a transition between states is used to
model the update of statistical beliefs by a hypothesis test.
Since the world records the executions of all tests, BHL does
not allow for hiding some tests to manipulate the statistics
(e.g., p-value in multiple comparison and p-value hacking).

Furthermore, the choice of two-tailed or one-tailed tests
requires describing a prior belief using the possibility
modality P. Without this modality, we cannot express the
belief that both lower-tail and upper-tail are possible before
applying the test, since this belief may not be true.

Without this Kripke semantics, the formalization of hy-
pothesis testing would deal with only the purely mathemat-
ical propositions satisfied in the possible world w0 where
a null hypothesis is true, hence could not reason about the
appropriate usage of hypothesis tests in the real world.

9 Conclusion
In this work, we proposed a new approach to formaliz-
ing and reasoning about statistical inference in programs.
Specifically, we introduced belief Hoare logic (BHL) for for-
malizing and checking the requirement for hypothesis tests
to be employed appropriately. Then we showed that BHL
is useful to reason about practical issues in statistics. We
also discussed a whole picture of the justification of statisti-
cal inference. We emphasize that this is the first attempt to
introduce a program logic for the appropriate application of
hypothesis tests.

In ongoing and future work, we are extending our frame-
work to other kinds of statistical methods. We plan to in-
vestigate the relative completeness of BHL and to develop a
verification tool based on this framework. Another possible
research would be to study justification logic for statistics.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

420



Acknowledgments
The authors are supported by ERATO HASUO Metamathe-
matics for Systems Design Project (No. JPMJER1603), JST.
In particular, we thank Ichiro Hasuo for providing the oppor-
tunity for us to meet and collaborate in that project. Yusuke
Kawamoto is supported by JST, PRESTO Grant Number JP-
MJPR2022, Japan, and by JSPS KAKENHI Grant Number
21K12028, Japan. Tetsuya Sato is supported by JSPS KAK-
ENHI Grant Number 20K19775, Japan. Kohei Suenaga
is supported by JST CREST Grant Number JPMJCR2012,
Japan.

References
Atkinson, E., and Carbin, M. 2020. Programming and
reasoning with partial observability. Proc. ACM Program.
Lang. 4(OOPSLA):200:1–200:28.
Belle, V., and Levesque, H. J. 2015. ALLEGRO: belief-
based programming in stochastic dynamical domains. In
Proc. IJCAI 2015, 2762–2769. AAAI Press.
Bretz, F.; Hothorn, T.; and Westfall, P. 2010. Multiple Com-
parisons Using R. Chapman and Hall/CRC.
Burrows, M.; Abadi, M.; and Needham, R. M. 1990. A logic
of authentication. ACM Trans. Comput. Syst. 8(1):18–36.
den Hartog, J., and de Vink, E. P. 2002. Verifying prob-
abilistic programs using a Hoare like logic. Int. J. Found.
Comput. Sci. 13(3):315–340.
Fagin, R.; Halpern, J.; Moses, Y.; and Vardi, M. 1995a.
Reasoning about Knowledge. The MIT Press.
Fagin, R.; Halpern, J. Y.; Moses, Y.; and Vardi, M. Y. 1995b.
Knowledge-based programs. In Proc. PODC 1995, 153–
163. ACM.
Garcia, F. D.; Hasuo, I.; Pieters, W.; and van Rossum, P.
2005. Provable anonymity. In Proc. of FMSE, 63–72.
Halpern, J. Y. 2003. Reasoning about uncertainty. The MIT
press.
Huber, F., and Schmidt-Petri, C. 2008. Degrees of belief,
volume 342. Springer Science & Business Media.
Kanji, G. K. 2006. 100 statistical tests. Sage.
Kawamoto, Y. 2019. Statistical epistemic logic. In The Art
of Modelling Computational Systems: A Journey from Logic
and Concurrency to Security and Privacy, volume 11760 of
LNCS, 344–362. Springer.
Kawamoto, Y. 2020. An epistemic approach to the formal
specification of statistical machine learning. Software and
Systems Modeling 20(2):293–310.
Lang, T. A., and Altman, D. G. 2014. Statistical Analy-
ses and Methods in the Published Literature: The SAMPL
Guidelines. John Wiley & Sons, Ltd. chapter 25, 264–274.
Laverny, N., and Lang, J. 2005. From knowledge-based
programs to graded belief-based programs, part I: on-line
reasoning*. Synth. 147(2):277–321.
Nielson, H. R., and Nielson, F. 2007. Semantics with Appli-
cations: An Appetizer (Undergraduate Topics in Computer
Science). Berlin, Heidelberg: Springer-Verlag.

Reynolds, J. C. 2002. Separation logic: A logic for shared
mutable data structures. In Proc. LICS 2002, 55–74. IEEE
Computer Society.
Sober, E. 2008. Evidence and evolution: The logic behind
the science. Cambridge University Press.
Suenaga, K., and Hasuo, I. 2011. Programming with in-
finitesimals: A while-language for hybrid system modeling.
In Proc. ICALP 2011, Part II, volume 6756 of LNCS, 392–
403. Springer.
Syverson, P. F., and Stubblebine, S. G. 1999. Group princi-
pals and the formalization of anonymity. In World Congress
on Formal Methods (1), 814–833.
von Wright, G. H. 1951. An Essay in Modal Logic. Amster-
dam: North-Holland Pub. Co.
Wasserstein, R. L., and Lazar, N. A. 2016. The ASA state-
ment on p-values: Context, process, and purpose. The Amer-
ican Statistician 70(2):129–133.
Winskel, G. 1993. The Formal Semantics of Programming
Languages—An Introduction. The MIT Press.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

421


	Introduction
	Preliminaries
	Illustrating Example
	Model
	Variables, Data, and Actions
	States and Possible Worlds
	Kripke Model
	Formulation of Hypothesis Testing

	Assertion Language
	Syntax of the Assertion Logic
	Semantics of the Assertion Logic
	Remarks on the Formalization
	Properties of Statistical Beliefs

	A Simple Programming Language
	Syntax of Prog
	Semantics of Prog

	Belief Hoare Logic for Hypothesis Testing
	Hoare Triples
	Inference Rules
	Instantiation to Concrete Test Methods
	Reasoning About Multiple Comparison
	Reasoning About p-Value Hacking

	Discussion
	Validity of Hypothesis Test Methods
	Clarification of Empirical Conditions
	Epistemic Aspects of Statistical Inference

	Conclusion

