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Abstract

In this paper, we introduce a new method of the satisfiabil-
ity (SAT) checking for Simple-Goal Strategy Logic (SL[SG]),
using symbolic Boolean model encoding and the SAT Mod-
ulo Monotonic Theories techniques, which was implemented
into the tool SGSAT. To the best of our knowledge, this is
the only tool solving the SAT problem for SL[SG]. Its appli-
cations include process synthesis, developing controllers as
well as automatic planners in multi-agent scenarios.

1 Introduction
An important area of research in artificial intelligence sys-
tems is the development of techniques for reasoning on
strategies, especially in open-systems, where the interaction
between the system and the environment is viewed as a strat-
egy game. Recently, a lot of work in the field of verification
of multi-agent system (MAS) has been devoted to establish-
ing what strategic properties in the system agents have (Jam-
roga and van der Hoek 2004; Ågotnes, Goranko, and Jam-
roga 2007; Walther, van der Hoek, and Wooldridge 2007;
Pauly 2002; Kacprzak and Penczek 2005). The two main
lines of research involve specifications in the formalisms of
Alternating-time Temporal Logic (ATL and ATL?) (Alur,
Henzinger, and Kupferman 2002) supported by the tools
like MOCHA (Alur et al. 2001) or MCMAS (Lomuscio and
Raimondi 2006) and its generalization, Strategy Logic (SL)
(Mogavero, Murano, and Vardi 2010) supported by the tools
like MCMAS-SLK (Cermák et al. 2014).

SL was originally defined over perfect recall and com-
plete information semantics. It extends Linear-time Tempo-
ral Logic (LTL) (Pnueli 1977) by strategy quantifiers and
agent bindings. The syntactic separation of these concepts
makes it possible to construct complex formulae in which
different temporal goals referring to the same strategies can
be combined and nested, as well as different players can
share the same strategy. Strategies are treated as a first or-
der concept over strategy and agent variables, which allows
for expressing interesting properties like strategic plans over
temporal goals, Nash equilibria or Stackelberg equilibria.

High expressivity of SL has its price, namely the high
computational complexity. The model checking problem
(MC) for SL is non-elementarily decidable - k-EXPSPACE-

HARD in the alternation number k of quantifications in the

specification (Mogavero et al. 2014). The satisfiability prob-
lem (SAT) for SL is highly undecidable - Σ1

1-HARD. More-
over, the logic does not have the bounded-tree model prop-
erty (Mogavero et al. 2017). Since this makes SL quite lim-
ited in its practical application, restrictions of SL are of inter-
est. These include One-Goal Strategy Logic (SL[1G]) hav-
ing the SAT problem in 2EXPTIME (Mogavero et al. 2014) and
its sublogic Simple-Goal Strategy Logic (SL[SG]) for which
MC is P-complete (Belardinelli et al. 2019).

This paper offers a new method of SAT checking for
SL[SG] extending the one for ATL (Kacprzak, Niewiadom-
ski, and Penczek 2020) and uses symbolic Boolean
model encoding and the SAT Modulo Monotonic Theories
(SMMT) techniques (Bayless et al. 2015). The method was
implemented into the tool SGSAT, which, to our best knowl-
edge, is the only one solving the SAT problem for SL[SG].
Applications of SL[SG] include specification of Stackel-
berg equilibria, coercion-resistance, and module checking
for strategic abilities (Belardinelli et al. 2019; Tabatabaei,
Jamroga, and Ryan 2016; Jamroga and Murano 2014).

Typically, given a SAT method for a logic, one can solve
the MC problem using the automata approach. In this pa-
per we show that it is possible to solve the SAT problem,
given a MC method. We develop an efficient method for
generating candidate models for an SL[SG] formula, and
then use an existing MC method for checking whether the
formula holds in some of these models. The best analogy
to our approach is how SAT-solvers check satisfiability of a
propositional formula. Clearly, only some candidate valu-
ations are generated thanks to sophisticated SAT-algorithms
like CDCL (Silva and Sakallah 2003). Similarly, in our case,
only some candidate models are generated thanks to the al-
gorithms for SMMT. This is where monotonicity of our the-
ory is exploited, which allows for a substantial reduction in
the number of generated model candidates. Therefore, our
SAT method for SL[SG] at the stage of finding candidate
models can be as efficient as a SAT-solver is in finding can-
didate valuations for a propositional formula.

Our paper is not the first one adopting that approach. Here
we build on the results for CTL (Klenze, Bayless, and Hu
2016) and ATL (Niewiadomski et al. 2020). The main con-
tributions for SL[SG] consist in: a new encoding method
for SL[SG] models, new proofs of monotonicity of the rela-
tion |= for SL[SG] in some cases, new definitions of over-
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and under-approximations for SL[SG] partial models, new
proofs of the correctness of the method for the formulae
prefixed with strategy quantifiers and bindings, and a new
implementation and the tool.
It is worth mentioning that with some technical difficulties
our approach for SL[SG] can be extended to SL[1G] and SL.

Outline. The related work is discussed in Sec. 2. Next,
the necessary definitions are given in Sec. 3. In Sec. 4 the
Boolean encoding of MAS and its model is introduced. The
proof of the monotonicity property for SL[SG] is in Sec. 5,
followed by the construction of the monotonic approxima-
tion for a given class of models, in Sec. 6. Sec. 7 and 8
describe the satisfiability procedure, its implementation, ex-
perimental results, and provide conclusions.

2 Related Work
To overcome the problem of high computational complex-
ity, several restrictions of SL are considered. The fol-
lowing logics have been defined over the original seman-
tics: Nested-Goal Strategy Logic (SL[NG]), Boolean Goal
Strategy Logic (SL[BG]), Conjunctive-Goal Strategy Logic
(SL[CG]), Disjunctive-Goal Strategy Logic (SL[DG]), and
the already mentioned One-Goal Strategy Logic (SL[1G])
(Mogavero et al. 2014; Mogavero, Murano, and Sauro
2013). The SAT problem for SL[NG] and SL[BG] is unde-
cidable and strategies are non-behavioural. SAT for SL[CG]
and SL[DG] is an open problem while the strategies are
behavioural. SL[1G], unlike the previous logics, enjoys
both desired properties: the decidable SAT problem and be-
havioural strategies which is fundamental for proving de-
cidability (Mogavero et al. 2014). The SAT procedure for
SL[1G] is given in (Mogavero et al. 2017).

In (Acar, Benerecetti, and Mogavero 2019) a fragment
of SL is considered, which prevents strategic quantifica-
tion within the scope of temporal operators, called Flat
Conjunctive-Goal Strategy Logic (FSL[CG]). This logic still
allows for expressing the existence of Nash and immune
equilibria, but its SAT problem is PSPACE-complete while the
MC problem is 2EXPTIME-HARD.

A model checker for Strategy Logic with Knowledge for
systems with memoryless strategies and incomplete infor-
mation is introduced in (Cermák et al. 2018). This tool is
an extension of the model checker MCMAS, which has also
been enhanced with verification of SL[1G] defined for sys-
tems with perfect recall and complete information (Cermák,
Lomuscio, and Murano 2015). An epistemic extension of
SL with incomplete information and uniform and coherent
strategies is also defined in (Belardinelli et al. 2017).

3 Strategy Logic with Simple Goals
We deal with a fragment of SL, restricted to “simple” goals
(Belardinelli et al. 2019). However, the semantics is defined
over interpreted systems (IS) (Fagin et al. 1995; Lomuscio
and Raimondi 2006) instead of concurrent game structures.

3.1 Multi-agent System and Interpreted System
We start with a definition of multi-agent systems.

Definition 1 (MAS). A multi-agent system (MAS) con-
sists of n agents A = {1, . . . , n}1, where each
agent i ∈ A is associated with a 7-tuple AGi =
(Li, ιi, Acti, Pi, Ti,PVi, Vi) including:
(1) a finite non-empty set of local states Li =
{l1i , l2i , . . . , l

ni
i }; (2) an initial local state ιi ∈ Li; (3) a finite

non-empty set of local actionsActi={a1
i , a

2
i , . . . , a

mi
i }; (4)

a local protocol Pi : Li → 2Acti \ {∅} selecting the actions
available at each local state; (5) a (partial) local transition
function Ti : Li × Act → Li such that Ti(li, α) is defined
iff αi ∈ Pi(li), where Act ,

∏
i∈AActi is the set of joint

(global) actions of all agents; αi is the action of agent i ∈ A
in the joint action α ∈ Act; (6) a finite non-empty set of
local propositions PVi = {p1

i , p
2
i , . . . , p

ri
i }; (7) a local val-

uation function Vi : Li → 2PVi .

For every non-empty set Γ ⊆ A, the set of shared ac-
tions of agents Γ is determined ActΓ , ∩i∈ΓActi. Such a
set must be non-empty if we want to ensure the existence
of a non-empty set of shared strategies for Γ (i.e. a set of
strategies that can be used by every i ∈ Γ).

Notice that we consider synchronous multi-agent systems,
where each global action is a n-tuple 〈ai〉i∈A with ai ∈
Acti, i.e., each agent performs one local action. To describe
the behavior of a MAS, its model is defined.

Definition 2 (Model). Let PV =
⋃n
i=1 PVi be the union

of the local propositions. The model for MAS is a 4-tuple
M = (St, ι, T, V ), where
1) St = L1 × · · · × Ln is a set of the global states,
2) ι = (ι1, . . . , ιn) ∈ St is the initial global state,
3) T : St × Act → St is the partial global transition func-
tion, such that T (g, α) = g′ iff Ti(gi, α) = g′i for all i ∈ A,
where for a global state g = (l1, . . . , ln), by gi = li we de-
note the local component of agent i,
4) V : St → 2PV is the valuation function such that
V ((l1, . . . , ln)) =

⋃n
i=1 Vi(li).

We say that action α ∈ Act is enabled at g ∈ St if
T (g, α) = g′ for some g′ ∈ St. We assume that at each
g ∈ St there exists at least one enabled action, i.e., for each
g ∈ St there are α ∈ Act and g′ ∈ St s.t. T (g, α) = g′.
A path is a (finite or infinite) sequence of global states
π ∈ St∗ ∪ Stω such that for each j ≥ 1, πj+1 = T (πj , αj)
for some joint action αj ∈ Act, where πj denotes the j-th
state of π. We distinguish between finite paths, or histories
of St∗, and infinite paths, or computations of Stω . For a
path π and j ≥ 1, π≤j denotes the initial history of length j,
and last(h) is last element in history h.

Example 1. Consider the following MAS:

• A = {1, 2}; L1 = {1, 2, 3}, ι1 = 1, L2 = {1, 2}, ι2 = 1,
• Act1 = {1, 2}, P1 = {(1, {1}), (2, {1}), (3, {1, 2}},
• Act2 = {1, 2}, P2 = {(1, {1, 2}), (2, {2})},
• T1 = {(1, (1, 1), 2), (1, (1, 2), 3), (2, (1, 1), 3), (2, (1, 2), 3),

(3, (1, 1), 2), (3, (1, 2), 2), (3, (2, 2), 2), (3, (2, 1), 1)},
T2 = {(1, (1, 1), 1), (1, (2, 1), 1), (1, (1, 2), 2), (1, (2, 2), 2),

1The environment component may be added here with no tech-
nical difficulty.
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Figure 1: Example MAS and induced model.

(2, (1, 2), 2), (2, (2, 2), 2)}; PV1 = {p},PV2 = {q},
V1 = {(1, ∅), (2, {p}), (3, ∅)}, V2 = {(1, ∅), (2, {q})},

depicted in Fig. 1 (left), while at the right hand side of the
figure its induced model is presented. For a better read-
ability each joint action is represented by the integer cor-
responding to the action’s position sorted lexicographically.
That is, 1 states for (1, 1), 2 represents (1, 2), and so on.

3.2 Syntax and Semantics of SL[SG]
The following definitions, needed for defining the syntax of
SL[SG], are adopted from (Belardinelli et al. 2019). Let Var
be an infinite set of variables x0, x1, . . . for referring to the
strategies. A binding prefix over a set Γ ⊆ A of agents and a
set V ⊆ Var of variables is a finite sequence [ ∈ {(x, i) | i ∈
Γ and x ∈ V}|Γ| of length |[| = |Γ|, such that every agent
i ∈ Γ occurs exactly once in [. However, the same variable
x ∈ V can occur several times in [, i.e., intuitively, the same
strategy denoted by x can be used by several agents in Γ.
The binding operator (x, i) means that strategy x is used by
agent i. A quantification prefix over a set V ⊆ Var is a fi-
nite sequence ℘ ∈ {∃x, ∀x | x ∈ V}|V| of length |℘| = |V|
such that each variable x ∈ V occurs in ℘ exactly once. The
strategy quantifier ∃x (resp. ∀x) reads as “for some (resp.
every) strategy x, . . . ”. Let Qnt(V) ⊂ {∃x, ∀x | x ∈ V}|V|
and Bnd(Γ) ⊂ {(x, i) | i ∈ Γ and x ∈ Var}|Γ| denote the
sets of all quantification and binding prefixes over variables
in V and agents in Γ. For a given ℘[, let E(℘[) (resp.
A(℘[)) be the set of all agents i such that (x, i) and ∃x
(resp. ∀x) appear in ℘[ (i.e. the set of agents assigned
to strategies under existential (resp. universal) quantifica-
tion). For example, ℘ = ∀x∃y∀z ∈ Qnt({x, y, z}), [ =
(x, 1)(x, 2)(y, 3)(z, 4) ∈ Bnd({1, 2, 3, 4}) with {x, y, z} ⊆
Var, and for ℘[ = ∀x∃y∀z(x, 1)(x, 2)(y, 3)(z, 4), E(℘[) =
{3} and A(℘[) = {1, 2, 4}.

For a given formula ϕ, the set free(ϕ) of free
agents/variables was defined in (Mogavero et al. 2014) as
the subset of A ∪ Var containing (i) all agents for which
there is no binding after the occurrence of a temporal oper-
ator and (ii) all variables for which there is a binding but
no quantifications. Formally, free : SL[SG] → 2A∪Var

is a function defined as follows: (i) free(p) , ∅, where
p ∈ PV ; (ii) free(¬ϕ) , free(ϕ); (iii) free(ϕ1 ∧ ϕ2) ,
free(ϕ1) ∪ free(ϕ2); (iv) free(Xϕ) , A ∪ free(ϕ);
(v) free(ϕ1Uϕ2) , A ∪ free(ϕ1) ∪ free(ϕ2); (vi)

free(Qnϕ) , free(ϕ) \ {x}, where Qn ∈ {∃x, ∀x : x ∈
Var}; (vii) free((x, i)ϕ) , free(ϕ), if i 6∈ free(ϕ), where
i ∈ A and x ∈ Var; (viii) free((x, i)ϕ) , (free(ϕ)\{i})∪
{x}, if i ∈ free(ϕ), where i ∈ A and x ∈ Var.

Definition 3 (SL[SG]). The formulae of Strategy Logic
with Simple Goals are defined inductively from the set of
atomic propositions PV , strategy variables Var, agents A,
[ ∈ Bnd(A), ℘ ∈ Qnt(free([ϕ)):

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ℘[Xϕ | ℘[(ϕUϕ),

According to the syntax rule, the SL[SG] formulae ℘[Xϕ
and ℘[(ϕUϕ) consist of a quantification prefix ℘, a bind-
ing prefix [, the temporal operator next X or until U, and
the well-formed (sub)formula ϕ. Standard abbreviations
are used for other temporal operators like globally G and
eventually F. For a given set of all agents A of MAS,
each binding prefix [ contains every agent of A, and every
agent is bound to exactly one variable which is quantified
in ℘. Therefore, the length of every [ is |A|. The condi-
tions on [ and ℘ ensure that every SL[SG] formula ψ is a
sentence, i.e., free(ψ) = ∅. Unlike in ATL, the quanti-
fiers over variables referring to strategies can be of different
types and can appear in any order. Moreover, two or more
agents can be assigned to the same strategy, which is also
not expressible in ATL, e.g., ∃x(i, x)(j, x)X p. SL[SG] is
less expressive than SL, but still allows to express inter-
esting properties. In particular, one can specify and ver-
ify distributed systems in which knowledge explicitly rep-
resented is the basis for decision making, strategy selection,
and implementation. An example of the above is coopera-
tion of autonomous vehicles with the environment in order
to avoid collisions. Thus, for each possible environment (e)
strategy there must be a vehicle (v) strategy such that no
collision occurs for any behavior of other road users (u):
∀xe∃xv∀xu(xe, e)(xv, v)(xu, u)G(¬collision). An-
other example is the verification of correctness and fairness
of voting protocols, in particular ensuring that coercion in
voting, which has a Stackelberg structure, can be avoided.
That is to ensure that for every strategy of the coercer (c),
there is a strategy of the voter (v) such that no matter what
the environment (e) is doing, the voter will vote accord-
ing to its belief and knowledge without being penalized:
∀xc∃xv∀xe(xc, c)(xv, v)(xe, e)F(voted ∧ ¬punished)
(Belardinelli et al. 2019).

Strategies. Formally, a memoryfull strategy for an agent
i ∈ A, or i-strategy, is a function σ : St+ → Acti

2. The
set of all strategies, for all agents, in model M , is denoted
as Σ(M). A joint strategy σA assigns a strategy to every
agent i ∈ A. Given a strategy σ for an agent i, if a different
agent j is such that the range of strategy σ is a subset of
Actj (i.e. ran(σ) ⊆ Actj), then intuitively also agent j can
use the strategy σ. We say that such a strategy is shared
by agents i and j and denote by shr(x, ϕ) the set of agents
bounded to the variable x within the formula ϕ. The set
of all strategies shared by agents from shr(x, ϕ) is denoted

2St+ is the set of non-empty finite sequences of states
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Σ(M)shr(x,ϕ). Finally, an assignment is a function χ : Var∪
A → Σ(M) such that for every agent i ∈ A, χ(i) is a
strategy for i. For z ∈ Var ∪ A and σ ∈ Σ(M), the variant
χzσ is the assignment that maps z to σ and coincides with χ
on all other variables and agents. Given a history h ∈ St+,
an assignment χ defines a unique computation λ(h, χ) =

h
〈χ(i)(h)〉i∈A−−−−−−−−→ g1

〈χ(i)(h·g1)〉i∈A−−−−−−−−−−→ g2 . . . starting with h and
being consistent with χ.

Semantics. Given a model (an interpreted system) M , we
inductively define the satisfaction relation (M,h, χ) |= ϕ
where h is a history, ϕ is a formula, and χ is an assign-
ment. To give interpretation of formulae in a model, we
need to distinguish sub-formulae that are not SL[SG] for-
mulae by themselves and give semantics also for them. Let
TF = {Xϕ,ϕ1 Uϕ2 : ϕ,ϕ1, ϕ2 ∈ SL[SG] } - be a set of
the temporal subformulas of the formulas of SL[SG].
(M,h, χ) |= p iff p ∈ V (last(h)), for p ∈ PV
(M,h, χ) |= ¬ϕ iff (M,h, χ) 6|= ϕ
(M,h, χ) |= ϕ1 ∧ ϕ2 iff (M,h, χ) |= ϕ1 and (M,h, χ) |= ϕ2

(M,h, χ) |= ∃xψ iff there is a strategy σ ∈ Σ(M)shr(x,ψ),
(M,h, χxσ) |= ψ, for ψ ∈ {℘′[φ, [φ | [ ∈ Bnd(A),
φ ∈ TF, ℘′ ∈

⋃
V⊆free([φ) Qnt(V)}

(M,h, χ) |= ∀xψ, iff for every strategy σ ∈ Σ(M)shr(x,ψ),
(M,h, χxσ) |= ψ, for ψ ∈ {℘′[φ, [φ | [ ∈ Bnd(A),
φ ∈ TF, ℘′ ∈

⋃
V⊆free([φ) Qnt(V)}

(M,h, χ) |= (x, i)ψ iff (M,h, χiχ(x)) |= ψ,
for ψ ∈ {[′φ, φ | φ ∈ TF, [′ ∈

⋃
Γ⊆A\{i} Bnd(Γ)}

(M,h, χ) |= Xϕ iff (M,λ(h, χ)≤|h|+1, χ) |= ϕ,
(M,h, χ) |= ϕ1 Uϕ2 iff ∃k ≥ |h| s.t. (M,λ(h, χ)≤k, χ) |= ϕ2

and (M,λ(h, χ)≤l, χ) |= ϕ1, ∀l: |h| ≤ l < k.

Definition 4 (Model, satisfiability). We write (M,h) |= ϕ
iff (M,h, χ) |= ϕ for every assignment χ and say that in-
terpreted system M is a model of an SL[SG] formula ϕ, in
symbols M |= ϕ, iff M, ι |= ϕ, i.e., ϕ is true at the initial
state (the history of length 1) of the model M . An SL[SG]
formula ϕ is satisfiable iff there is a model for it.

We consider the problem of deciding whether a SL[SG]
formula is satisfiable under some fixed initial restrictions on
MAS, concerning the number of agents, local actions, local
states, and local propositions of every agent. Therefore, we
deal with the bounded satisfiability problem. Since SL[1G]
has the Bounded Model Property (Mogavero et al. 2017), so
SL[SG] (a sublogic of SL[1G]), inherits this property. We
call this decision problem SL[SG] SAT.

4 Boolean Representation of SL[SG] Models
In this section we show how to encode a MAS and its mod-
els using a set of fresh propositional variables. For a given
model, the number of variables is fixed. A function is deter-
mined that assigns Boolean values to the variables and thus
encodes all elements of the model. Then, to find this model,
it is enough to determine the valuation function. The pro-
cedure looking for this function assigns values to variables
step by step. Thus, until the model is found, we are deal-
ing with an incomplete (partial) model. In what follows, we
show how we define and encode partial models, and extend
them to total models that are an input for a model checker.

4.1 Encoding a MAS
Consider a MAS as defined in Section 1. We assume that
for each agent i ∈ A the i-local states are numbered from
1 to |Li|, and the joint actions are numbered from 1 to
|Act|. Below, we define sets of fresh propositional vari-
ables: PBi, TBi, V Bi for i ∈ A, and let V B =

⋃
i∈A V Bi

and PVB =
⋃
i∈A(TBi ∪ PBi ∪ V Bi). The seman-

tics of these variables is defined by the valuation function:
vM : PVB → {0, 1}, described after the definition of each
set of the propositional variables of PVB. Next, we allocate
the above mentioned fresh variables:

• For the i-local protocols for i ∈ A:
PBi = {pbi(k, t) | 1 ≤ k ≤ |Li|, 1 ≤ t ≤ |Acti|}.
C1) vM (pbi(k, t)) = 1 iff the action ati of agent i ∈ A is
enabled at location lki , i.e., ati ∈ Pi(lki ).

• For the i-local transition functions for i ∈ A:
TBi = {tbi(k, j, k′) | 1 ≤ k, k′ ≤ |Li|, 1 ≤ j ≤ |Act|}:
C2) vM (tbi(k, j, k

′)) = 1 iff we have Ti(lki , αj) = lk
′

i .

• For the i-local valuation functions for i ∈ A:
V Bi = {vbi(k, j) | 1 ≤ k ≤ |Li|, 1 ≤ j ≤ |PV i|}.
C3) vM (vbi(k, j)) = 1 iff the i-local proposition pji ∈
PVi is true at the local state lki ∈ Li, i.e., pji ∈ Vi(lki ).

Next, we encode the properties satisfied by the components
of a MAS.
A1 For each i ∈ A and li ∈ Li: Pi(li) 6= ∅. This is encoded
by the following formula ϕ1 =

∧
i≤n;k≤ni

∨
t≤mi pbi(k, t).

A2 Let gli : {1, . . . , |Acti|} 7→ 2{1,...,|Act|}, for i ∈ A, be a
function that a given local action number t assigns a set of
numbers of the joint actions s.t. t is the number of their i-th
components. That is: gli(t) = {1 ≤ j ≤ |Act| | αij = ati}.
For each agent i ∈ A, Ti(li, α) is defined iff αi ∈ Pi(li).
This is encoded by the following formula ϕ2 =∧
i≤n;t≤mi;k≤ni;j∈gli(t)

(( ∨
k′≤ni

tbi(k, j, k
′)
)
↔ pbi(k, t)

)
A3 For each agent i ∈ A, Ti is a function. This is encoded
by the following formula ϕ3 =∧
i≤n;k,k′≤ni;j≤|Act|

(
tbi(k, j, k

′)→
∧

k′′≤ni,k′′ 6=k′
¬tbi(k, j, k′′)

)
.

4.2 Encoding Models
A valuation function vM which satisfies the conditions C1-
C3 and the formula ϕ1 ∧ ϕ2 ∧ ϕ3, determine the model M
of MAS without an initial state specified. Therefore, vM
actually encodes a family of the models that differ only in
the initial state. The set of global states is a product of the
local state sets. Then, given some vM , we can reconstruct
the (partial) global transition function T using the following
fact: T (g, a) = g′ iff ∀i≤nvM (tbi(gi, a, g

′
i)) = 1. Finally,

the valuation function V can be easily reconstructed using
the observation: pji ∈ V

(
g
)

iff vM (vbi(gi, j)) = 1. Thus,
searching for a model for any formula ψ can be then reduced
to searching for a valuation function vM .
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4.3 Partial MAS and Partial Models
Notice that the i-local components of each agent i ∈ A can
be rewritten as follows. Let B = {0, 1}.
• Pi : Li ×Acti → B s.t. ∀l∈Li∃a∈Acti Pi(l, a) = 1;
• Ti : Li × Act × Li → B s.t. ∀l∈Li,α∈Act (Pi(l, α

i) = 1
iff ∃l′∈LiTi(l, α, l′) = 1) and if Ti(l, α, l′) = 1, then
∀l′′∈Li:l′′ 6=l′Ti(l, α, l′′) = 0.

• Vi : Li × PVi → B.

The above conditions are the same as of A1-A3. The partial
versions PPi, PTi, PVi of the i-local components of each
agent i ∈ A, are defined by extending the set of values B of
the functions Pi, Ti, Vi to the set Bu = {0, 1, u}, where u
stands for undefined. Formally:
• a partial protocol function PPi : Li ×Acti → Bu,
• a partial transition function PTi : Li ×Act× Li → Bu,
• a partial valuation function PVi : Li × PVi → Bu.
By a partial MAS, denoted MASP , we mean a MAS in
which each agent i is associated with the i-local partial com-
ponents.

A partial MASP induces the partial model MP , which
differs from a model M for a MAS in the global transi-
tion function and the global valuation function, called par-
tial, and defined as follows:
• PT : St×Act× St→ Bu such that
PT (g, α, g′) = 1 iff PTi(gi, α, g′i) = 1 for all i ∈ A,
PT (g, α, g′) = u iff PTi(gi, α, g′i) = u for some i ∈ A,
PT (g, α, g′) = 0 otherwise,

• PV : St × PV → Bu such that PV ((l1, . . . , ln), p) =
PVi(li, p), where p ∈ PVi for i ∈ A.

Each partial model MP can be represented by the partial
valuation function vMP

: PVB → Bu. The goal of our sat-
isfiability algorithm is to find values of B for the undefined
variables and to extend vMP

to a total function satisfying the
conditions C1-C3 and the formulae A1-A3.

4.4 Construction of MΓ
over and MΓ

under

We construct under and over approximations of partial
models. For each partial model M satisfying A1-A3 and
Γ ⊆ A, (total) models MΓ

under and MΓ
over are constructed.

First, for every agent i ∈ A we define a necessary local
protocol: Pi : Li × Acti → B, a necessary local transition
function Ti : Li × Act × Li → B, and a necessary local
valuation function Vi : Li × PVi → B, a possible local
protocol Pi : Li × Acti → B, a possible local transition
function Ti : Li×Act×Li → B, a possible local valuation
function Vi : Li × PVi → B, where:
• if PPi(l, a) 6= u, then Pi(l, a) = Pi(l, a) = PPi(l, a),
• if PTi(l, α, l′) 6= u, then Ti(l, α, l

′) = Ti(l, α, l
′) =

PTi(l, α, l
′),

• if PVi(l, p) 6= u, then Vi(l, p) = Vi(l, p) = PVi(l, p),
• if PPi(l, a) = u, then Pi(l, a) = 0, Pi(l, a) = 1,
• if PTi(l, α, l′) = u, then Ti(l, α, l′) = 0, Ti(l, α, l′) = 1,
• if PVi(l, p) = u, then Vi(l, p) = 0, Vi(l, p) = 1.

Notice that the possible local protocol is an extension of
the necessary local protocol, i.e., ∀l∈Li;a∈Acti Pi(l, a) ≤
Pi(l, a) and the possible local transition function is an
extension of the necessary local transition function, i.e.,
∀l,l′∈Li;α∈Act Ti(l, α, l′) ≤ Ti(l, α, l′).

Similarly, total valuations of the propositional variables
are defined: a necessary valuation V : St × PV → B and
a possible valuation V : St× PV → B such that:
• if PV (g, p) 6= u, then V (g, p) = V (g, p) = PV (g, p),
• if PV (g, p) = u, then V (g, p) = 0, V (g, p) = 1.
Thus, for every g ∈ St, p ∈ PV we have V (g, p) ≤ V (g, p).

The (total) model MΓ
under is defined as in Def. 2 for the

MAS, which consists of n agents, where each agent i ∈ Γ
is associated with AGi = (Li, ιi, Acti, Pi, Ti,PVi, Vi),
and each agent j ∈ A \ Γ is associated with AGj =

(Lj , ιj , Actj , Pj , Tj ,PVj , Vj). The (total) model MΓ
over is

defined as in Def. 2 for the MAS, which consists of n
agents, where each agent i ∈ Γ is associated with AGi =
(Li, ιi, Acti, Pi, Ti,PVi, Vi), and each agent j ∈ A \ Γ is
associated with AGj = (Lj , ιj , Actj , Pj , Tj ,PVj , Vj).

Definition 5. Let M = (St, ι, PT, PV ) and
M ′ = (St, ι, PT ′, PV ′) be two (partial) mod-
els for the partial MAS and MAS’, consisting of
n agents, where each agent i ∈ A is associated
with AGi = (Li, ιi, Acti, PPi, PTi,PVi, PVi) and
AG′i = (Li, ιi, Acti, PP

′
i , PT

′
i ,PVi, PV ′i ), resp. We say

that M extends M ′ iff the following conditions hold:

• if PP ′i (l, a) 6= u, then PPi(l, a) = PP ′i (l, a),
• if PT ′i (l, α, l

′) 6= u, then PTi(l, α, l′) = PT ′i (l, α, l
′),

• if PV ′(g, p) 6= u, then PV (g, p) = PV ′(g, p).

Notice that for a given partial model M and Γ ⊆ A, both
total models MΓ

under and MΓ
over extend M .

Theorem 1. Consider two partial modelsM andM ′ s.t. M
extends M ′, and let Γ ⊆ A. The following conditions hold:
• v(M ′)Γ

under
(bi) ≤ vMΓ

under
(bi) ≤ vMΓ

over
(bi) ≤

v(M ′)Γ
over

(bi) for bi ∈ TBi ∪ PBi with i ∈ Γ,
• v(M ′)Γ

under
(bi) ≥ vMΓ

under
(bi) ≥ vMΓ

over
(bi) ≥

v(M ′)Γ
over

(bi) for bi ∈ TBi ∪ PBi with i ∈ A \ Γ,
• v(M ′)Γ

under
(vb) ≤ vMΓ

under
(vb) ≤ vMΓ

over
(vb) ≤

v(M ′)Γ
over

(vb) for vb ∈ V B.

Proof. From the definitions of over and under models.

5 Monotonic Theory for SL[SG]
Our satisfiability algorithm for SL[SG] applies the technique
used earlier for monotonic theories for checking both CTL
satifiability (Bayless et al. 2015; Klenze, Bayless, and Hu
2016) and ATL satisfiablity (Kacprzak, Niewiadomski, and
Penczek 2020). Although SL[SG] is not a monotone the-
ory, we show how the same technique can be applied in this
case. In what follows, specific cases of positive or nega-
tive monotonicity are described. These properties are used
to determine the class of models to which the model of a
given formula belongs. This makes it possible to substan-
tially limit the set of all potential models, only to models
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belonging to this class and significantly reduce the search
space for optimizing the satisfiability procedure.

5.1 Boolean Monotonic Theory
Consider a predicate P : Bn 7→ B.
We say that P is Boolean positive mono-
tonic iff P (s1, . . . , si−1, 0, si+1, . . . , sn) ≤
P (s1, . . . , si−1, 1, si+1, . . . , sn), for 1≤ i≤ n.
P is Boolean negative monotonic
iff P (s1, . . . , si−1, 1, si+1, . . . , sn) ≤
P (s1, . . . , si−1, 0, si+1, . . . , sn), for 1≤ i≤ n.
The definition of (positive and negative Boolean)
monotonicity for a function F : Bn 7→ 2S (for
some set S) is analogous. F is Boolean positive
monotonic iff F (s1, . . . , si−1, 0, si+1, . . . , sn) ⊆
F (s1, . . . , si−1, 1, si+1, . . . , sn), for 1 ≤ i ≤ n.
A function F is Boolean negative monotonic iff
F (s1, . . . , si−1, 1, si+1, . . . , sn) ⊆
F (s1, . . . , si−1, 0, si+1, . . . , sn), for 1≤ i ≤ n.

Definition 6 (Boolean Monotonic Theory). A theory T with
a signature Ω = (S, Sf , Sr, Ar), where S is a non-empty
set of elements called sorts, Sf is a set of function symbols,
Sr is a set of relation symbols, and Ar is the arity of the
relation and function symbols, is (Boolean) monotonic iff all
sorts in Ω are Boolean, and all predicates and functions in
Ω are monotonic.

5.2 Monotonicity Property
The satisfaction relation |= for SL[SG] is not monotonic, but
satisfies the condition of monotonicity in some special cases.

Theorem 2. Let M and M ′ be two models defined over the
same set of agentsA, for two MASes that share the same sets
Li, Acti,PVi for each i ∈ A. Then, we have (M,h, χ) |= φ
implies (M ′, h, χ) |= φ, for any h and χ, if the following
conditions hold:
(H1) φ ∈ {p, p1 ∧ p2} for p, p1, p2 ∈ PV and vM (vb) ≤
vM ′(vb) for each vb ∈ V B,

(H2) φ = ¬p for p ∈ PV and vM (vb) ≥ vM ′(vb) for each
vb ∈ V B,

(H3) φ ∈ {℘[X p, ℘[(p1 U p2)} for p, p1, p2 ∈ PV and
(H3.1) vM (vb) ≤ vM ′(vb) for each vb ∈ V B, and
(H3.2) vM (bi) ≤ vM ′(bi) for each bi ∈ TBi ∪ PBi and
i ∈ E(℘[), and
(H3.3) vM (bi) ≥ vM ′(bi) for each bi ∈ TBi ∪ PBi and
i ∈ A(℘[).

Proof. Let M and M ′ be two models defined over the same
set of agents A, for two multi-agent systems that share the
same sets Li, Acti,PVi for each i ∈ A.
1. Let φ = p1 ∧ p2, h be a history, χ be an as-
signment, and p1 ∈ PVi, p2 ∈ PVj for some
i, j ∈ A. Assume that (M,h, χ) |= p1 ∧ p2, i.e.
p1, p2 ∈ V (last(h)). Thus vM (vbi(last(h)i, p1)) =
vM (vbj(last(h)j , p2)) = 1. On the other hand, assume
that (M ′, h, χ) 6|= p1 ∧ p2, i.e. p1 6∈ V ′(last(h)) or
p2 6∈ V ′(last(h)). Thus vM ′(vbi(last(h)i, p1)) = 0
or vM ′(vbj(last(h)j , p2)) = 0. Therefore,

vM (vbi(last(h)i, p1)) > vM ′(vbj(last(h)j , p1)) or
vM (vbi(last(h)i, p2)) > vM ′(vbj(last(h)j , p2)), what
contradicts (H1). Finally, (M,h, χ) |= φ implies
(M ′, h, χ) |= φ. The proof for φ = p is analogous.
2. Let φ = ¬p, h be a history, χ be an assignment, and
p ∈ PVi for some i ∈ A. Assume that (M,h, χ) |= ¬p,
i.e. p 6∈ V (last(h)). Thus vM (vbi(last(h)i, p)) = 0.
On the other hand, assume that (M ′, h, χ) 6|= ¬p, i.e.
p ∈ V ′(last(h)). Thus vM ′(vbi(last(h)i, p)) = 1.
Therefore, vM (vbi(last(h)i, p)) < vM ′(vbi(last(h)i, p)),
what contradicts (H2). Finally, (M,h, χ) |= φ implies
(M ′, h, χ) |= φ.
3. Let φ = ℘[X p, h be a history, χ be an assignment,
and p ∈ PVi for some i ∈ A. Denote by EV (AV ) the
set of all variables that appear under existential (universal,
resp.) quantifier in φ. Assume that (M,h, χ) |= φ.
Thus for every x ∈ EV there exists a strategy σ, and for
every y ∈ AV for every strategy σ′, (M,h, χ′) |= X p
for χ′ being an assignment that maps x to σ, i to σ
for every agent i ∈ shr(x, φ), y to σ′, j to σ′ for ev-
ery agent j ∈ shr(y, φ), and coincides with χ on all
other variables. Thus (M,λ(h, χ′)≤|h|+1, χ

′) |= p, i.e.
p ∈ V (last(λ(h, χ′)≤|h|+1)).
On the other hand, assume that (M ′, h, χ) 6|= φ. Thus
(*) in both models M and M ′ there exist the same strategies
and last(λ(h, χ′)≤|h|+1) = last(λ′(h, χ′)≤|h|+1) = g, but
p ∈ V (g) and p 6∈ V ′(g), or
(**) in both models M and M ′ there exist the same strate-
gies, but last(λ(h, χ′)≤|h|+1) 6= last(λ′(h, χ′)≤|h|+1), or
(***) the set of strategies that can be assigned to agents
i ∈ E(℘[) in M (denoted Σ(E(℘[))(M)) is a subset of
the set strategies that can be assigned to these agents in
M ′ (denoted Σ(E(℘[))(M ′)), and the set of strategies
that can be assigned to agents j ∈ A(℘[) in M (denoted
Σ(A(℘[))(M)) is a subset of strategies that can be assigned
to these agents in M ′ (denoted Σ(A(℘[))(M ′) ) (notice
that if Σ(A(℘[))(M ′) ⊆ Σ(A(℘[))(M) the condition
(M ′, h, χ) |= φ holds), or
(****) Σ(E(℘[))(M ′) ⊂ Σ(E(℘[))(M), i.e., the set of
strategies that can be assigned to agents i ∈ E(℘[) in M ′ is
a proper subset of the set of strategies that can be assigned
to these agents in M . Let us consider all the above cases.
If (*) then vM (vbi((last(λ(h, χ′)≤|h|+1))i, p)) >
vM ′(vbi((last(λ

′(h, χ′)≤|h|+1))i, p)), what contr. (H3.1).
If (**) then
(a) for some i ∈ E(℘[), let li =
last(λ(h, χ′)≤|h|+1)i and l′i = last(λ′(h, χ′)≤|h|+1)i.
Then, vM (tbi(last(h)i, α, li)) = 1 and
vM ′(tbi(last(h)i, α, l

′
i)) = 1 for a global action α

s.t. αk for k ∈ A is determined by the strategy
assigned to k by χ′. Thus from A1-A3 (action de-
terminism) vM ′(tbi(last(h)i, α, li)) = 0. Therefore,
vM (tbi(last(h)i, α, li)) > vM ′(tbi(last(h)i, α, li)) what
contradicts (H3.2).
(b) for some j ∈ A(℘[), let lj =
last(λ(h, χ′)≤|h|+1)j and l′j = last(λ′(h, χ′)≤|h|+1)j .
Then, vM (tbj(last(h)j , α, lj)) = 1 and
vM ′(tbj(last(h)j , α, l

′
j)) = 1 for a global action α
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s.t. αk for k ∈ A is determined by the strategy
assigned to k by χ′. Thus from A1-A3 (action de-
terminism) vM (tbj(last(h)j , α, l

′
j)) = 0. Therefore,

vM (tbj(last(h)j , α, l
′
j)) < vM ′(tbj(last(h)j , α, l

′
j)) what

contradicts (H3.3).
If (***) then for some j ∈ A(℘[) there exists a
strategy σj in M ′ which does not exist in M . It
means that there exists an action αkj which is possi-
ble to execute in last(h)j in M ′ but not in M . Thus,
vM (pbj(last(h)j , k)) = 0 and vM ′(pbj(last(h)j , k)) = 1.
Therefore, vM (pbj(last(h)j , k)) < vM ′(pbj(last(h)j , k))
what contradicts (H3.3).
If (****) then for some i ∈ E(℘[) there exists a
strategy σi in M which does not exist in M ′. It
means that there exists an action αki which is possi-
ble to execute in last(h)i in M but not in M ′. Thus,
vM (pbi(last(h)i, k)) = 1 and vM ′(pbi(last(h)i, k)) = 0.
Therefore, vM (pbi(last(h)i, k)) > vM ′(pbi(last(h)i, k))
what contradicts (H3.2).
Finally, (M,h, χ) |= φ implies (M ′, h, χ) |= φ.
The proof for ℘[(p1 U p2) is analogous.

It follows from Thm 2 that the relation |= is pos-
itive monotonic wrt. V B for φ ∈ {p, p1 ∧ p2,
℘[X p, ℘[(p1 U p2)}, negative monotonic wrt. V B for φ ∈
{¬p}, positive monotonic wrt. TBi and PBi for φ ∈
{℘[X p, ℘[(p1 U p2)} and i ∈ E(℘[), negative monotonic
wrt. TBi and PBi for φ ∈ {℘[X p, ℘[(p1 U p2)} and i ∈
A(℘[).

5.3 Function MC: Model Checking
Let ‖φ‖M denote the set of all states of M (i.e., histories
of length 1), where φ holds. In order to compute ‖φ‖M, the
evaluation functionMC(op, Z1, Vm ) is defined for an unary
operator op, and MC(op, Z1, Z2, Vm ) for a binary operator
op, where Z1, Z2 ⊆ St, and Vm is a valuation encoding
a model. The function MC evaluates the operator op on
the sets of states Z1, Z2 rather than the formulae holding in
these states. If φ = p ∈ PV , then ‖p‖M returns the set of
states of M in which p holds, i.e., {g ∈ St | p ∈ V (g)}.
Otherwise, ‖φ‖M takes the top-most operator op of φ and
solves its argument(s) recursively using the function MC
and applying MC(op, Z1, vM ) or MC(op, Z1, Z2, vM ) to
the returned set(s) of states. Notice that MC(¬, Z, vM ) re-
turns St\Z. Similarly,MC(∧, Z1, Z2, vM ) returnsZ1∩Z2.
If op ∈ {℘[X, ℘[U}, then the model checking algorithm
of (Belardinelli et al. 2019) is used. The algorithm manip-
ulates sets of states in St that is inspired by the standard
model checking algorithm for ATL. It works bottom-up on
the structure of a formula. Its soundness and completeness
is guaranteed by the fixed-point characterisation of SL[SG].
Since this algorithm works on sets of states, our approxima-
tion procedure also works on sets of states. One can show
that for SL[SG] with complete information both semantics
(defined on states and histories) are equivalent.

Now, Thm 2 can be rewritten by replacing the proposi-
tional variables by the sets of states these variables hold at.
Theorem 3. The functions MC(op, Z1, Vm ) and
MC(op, Z1, Z2, Vm ) are:

1. negative monotonic w.r.t. V B and positive and negative
monotonic w.r.t. PBi and TBi for i ∈ A, for op = ¬,
2. positive monotonic w.r.t. V B and positive and negative
monotonic w.r.t. PBi and TBi for i ∈ A, for op = ∧,
3. positive monotonic w.r.t. V B, positive monotonic w.r.t.
PBi and TBi for i∈E(℘[), negative monotonic w.r.t. PBi
and TBi for i ∈ A(℘[), for op ∈ {℘[X, ℘[U}.

6 Approximations
Next we show a technique for constructing an approxima-
tion for a given incomplete model derived from the initial
requirements. This technique uses partial model extension
methods and monotonicity properties, described earlier. It
allows to determine the class of possible extensions of a par-
tial model including all models satisfying the given formula.

For a given partial modelM ′ and a formula φ two approx-
imations are computed:
• approximation of models - it is a set of models, de-

noted CLASSM ′(φ), such that if M is a total exten-
sion of M ′ and M, s |= φ for some s ∈ St, then
M ∈ CLASSM ′(φ);

• states - it is a set of states, denoted by ‖φ‖M ′ , con-
taining all the states satisfying φ for some model of
CLASSM ′(φ) i.e., {s ∈ St | ∃M ∈ CLASSM ′(φ)
s.t. M, s |= φ} ⊆ ‖φ‖M ′ .
Notice that the above notion ‖φ‖M ′ for partial modelsM ′
extends the same notion defined before for models.

Since CLASSM ′(φ) and ‖φ‖M ′ are only approximations,
models and states that do not satisfy the formula can also
be included. Furthermore, for a fixed partial model M ′, a
formula φ, and an initial state ι, it follows directly from the
definitions that ifM ′ can be extended to a total modelM s.t.
M, ι, χ |= φ, thenM ∈ CLASSM ′(φ) and ι ∈ ‖φ‖M ′ . The
approximations are used in the satisfiability procedure we
provide, for the early detection of conflicts and thus for find-
ing the model faster. If the fixed initial state does not belong
to the determined state approximation, then the model class
determined by this approximation can be rejected, which
greatly improves the efficiency of the procedure.

6.1 Algorithm Apx
The approximation of states is computed by the algorithm
Apx - see Algorithm 1. Its input contains: an SL[SG] for-
mula φ, the partial model M for a partial MAS, and a pa-
rameter λ, where λ ∈ {over, under}. The algorithm re-
turns the λ-approximation of a set of states satisfying φ. In
what follows, we use the following notation: λ = over for
λ = under, and λ = under for λ = over.

If φ = p is a propositional variable, then Apx(φ,M, λ)
returns a set of states satisfying p in the model MAλ . If
φ = ¬ϕ, then Apx(φ,M, λ) computes the compliment of
the approximation Apx(ϕ,M, λ) of ϕ. If φ = ℘[Xϕ, then
Apx(φ,M, λ) computes the approximation for ϕ perform-
ing Z = Apx(ϕ,M, λ) and the function MC determines
the set of states satisfying ℘[X(κZ) inME(℘[)

λ , where κZ is
a fresh propositional variable that holds in the states of Z. In
fact, MC has a set of states as its input, not a formula. This
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Algorithm 1 Algorithm Apx

Input: φ, λ,M for a partial MAS
Output: a set of states of M

1: if φ ∈ PV then
2: return {g ∈ St |MAλ , g |= φ}
3: else if φ = op(ψ) then
4: if op = ¬ then // negative monotonic
5: Z := Apx(ψ,M, λ)
6: return St \ Z
7: else // op = ℘[X
8: Z := Apx(ψ,M, λ)
9: return MC(op, Z, v

M
E(℘[)
λ

)

10: else if φ = op(ψ1, ψ2) for op ∈ {℘[U,∧} then
11: Z1 := Apx(ψ1,M, λ)
12: Z2 := Apx(ψ2,M, λ)
13: if op = ℘[U then
14: return MC(op, Z1, Z2, vME(℘[)

λ

)

15: else // op = ∧
16: return Z1 ∩ Z2

technique allows for computing approximations for nested
formulae, where the subformula ϕ is any SL[SG] formula,
not just a propositional formula. For the remaining opera-
tors, the algorithm works similarly. The Apx algorithm has
the following property.
Theorem 4. Let M,M ′ be two partial models such that M
extends M ′. Then, Apx(φ,M, over) ⊆ Apx(φ,M ′, over)
and Apx(φ,M ′, under) ⊆ Apx(φ,M, under).

Proof. By a structural induction on a formula φ.
The base case. For φ = p ∈ PV , from the algo-
rithm definition, Apx(p,M, over) returns the set of the
states satisfying p in MAover and Apx(p,M ′, over) re-
turns the set of the states satisfying p in (M ′)Aover. So,
Apx(φ,M, over) ⊆ Apx(φ,M ′, over) since vMA

over
(vb) ≤

v(M ′)Aover
(vb), for any vb ∈ V B, from Thm 1. Sim-

ilarly, Apx(φ,M ′, under) ⊆ Apx(φ,M, under) since
v(M ′)Aunder

(vb) ≤ vMA
under

(vb), for any vb ∈ V B, from
Thm 1.
The induction step. We show the proof for the unary oper-
ators ¬, ℘[X. The proofs for ℘[U and ∧ are similar.
Induction assumption (IA): the thesis holds for a formula ψ.
Induction hypothesis (IH): the thesis holds for φ = op(ψ).
• Let φ = ¬ψ. If Z = Apx(ψ,M, under) and Z ′ =
Apx(ψ,M ′, under), then Z ′ ⊆ Z from IA. Thus, Z ⊆ Z ′

and consequently Apx(φ,M, over) ⊆ Apx(φ,M ′, over)
from def. of Apx.
If Z = Apx(ψ,M, over) and Z ′ = Apx(ψ,M ′, over),
then Z ⊆ Z ′ from IA. Thus, Z

′ ⊆ Z and conse-
quentlyApx(φ,M ′, under)⊆Apx(φ,M, under), from def.
of Apx.
• If φ = op(ψ) with op = ℘[X . Let Γ = E(℘[).
If Z=Apx(ψ,M, over) and Z ′ = Apx(ψ,M ′, over), then
Z ⊆ Z ′ from IA. Observe that Apx(φ,M, over) =
MC(op, Z, vMΓ

over
) from def. of Apx. Simi-

larly, Apx(φ,M ′, over) = MC(op, Z ′, v(M ′)Γ
over

).

Since Z ⊆ Z ′ we have MC(op, Z, vMΓ
over

) ⊆
MC(op, Z ′, vMΓ

over
). Next, MC(op, Z ′, vMΓ

over
) ⊆

MC(op, Z ′, v(M ′)Γ
over

) from Thm 1 and Thm 3.3. Fi-
nally MC(op, Z, vMΓ

over
) ⊆ MC(op, Z ′, v(M ′)Γ

over
) and

Apx(φ,M, over)⊆Apx(φ,M ′, over), from def. of Apx.
If Z = Apx(ψ,M, under) and Z ′ = Apx(ψ,M ′, under),
then Z ′ ⊆ Z from IA. Observe that Apx(φ,M, under) =
MC(op, Z, vMΓ

under
). Similarly, Apx(φ,M ′, over) =

MC(op, Z ′, v(M ′)Γ
under

). Since Z ′ ⊆ Z we have
MC(op, Z ′, v(M ′)Γ

under
) ⊆ MC(op, Z, v(M ′)Γ

under
).

Next MC(op, Z, v(M ′)Γ
under

) ⊆ MC(op, Z, vMΓ
under

) from
Thm 1 and Thm 3.3. Finally MC(op, Z ′, v(M ′)Γ

under
) ⊆

MC(op, Z, vMΓ
under

) and Apx(φ,M ′, under) ⊆
Apx(φ,M, under) from def. of Apx.

6.2 Approximation of States
For a total model M extending a partial model M ′, the al-
gorithm Apx computes over and under-approximation of
‖φ‖M . More precisely, Apx(φ,M ′, over) returns a set
of states, which is an over-approximation of ‖φ‖M . This
means that if ι ∈ ‖φ‖M , then ι ∈ Apx(φ,M ′, over). So,
if ι 6∈ Apx(φ,M ′, over), then there is no model M ex-
tending M ′ s.t. M, ι |= φ. Similarly, Apx(φ,M ′, under)
computes an under-approximation of ‖φ‖M , i.e., if ι ∈
Apx(φ,M ′, under), then ι∈‖φ‖M .

Theorem 5. Let M ′ be a partial model and M be a to-
tal model extending M ′. Then, for a formula φ we have:
Apx(φ,M ′, under) ⊆ ‖φ‖M ⊆ Apx(φ,M ′, over).

Proof. Follows from Thm 4 and that for a total model M :
Apx(φ,M, under) = Apx(φ,M, over) = ‖φ‖M .

7 Satisfiability Procedure
The Axp algorithm and its property of Theorem 5 are used
below to provide a new method for testing the SAT of
SL[SG] formulae and constructing their models.

7.1 Satisfiability Algorithm
The goal of the algorithm is to build a model for a given
formula. Initially, the model requirements are established:
the number of agents, the number of local actions of every
agent, the number of local states of every agent, the number
of local propositions of every agent, other requirements such
as conditions A1-A3.

These requirements are given at the entry to the algorithm
along with the SL[SG] formula φ and the initial state ι.
Input: φ, ι, and model requirements determining partial
model M .
Output: total model M s.t. M, ι |= φ, meeting the model
requirements or the answer that such a model does not exist.
Steps of the algorithm: Let depth be an integer variable
tracking the decision depth of the solver.
1. depth := 0; set vM and check whether vM is consistent
with the conditions A1-A3, if yes, then go to step 2, if no,
then return UNSAT
2. compute Apx(φ,M, over)
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Figure 2: Possible MASes at the start of the algorithm (left), and
the final one at the end (right).

3. if ι ∈ Apx(φ,M, over), then
3.1 if M is total; SAT; return M
3.2 otherwise depth := depth + 1; assign value to an un-
signed variable (the assignment must be consistent with the
conditions A1-A3); a new partial model M is determined,
restricting the class of the considered models; go to step 2
4. if ι 6∈ Apx(φ,M, over), then
4.1 if depth > 0, analyse the conflict, undo decisions up
to the conflict depth c and assign the opposite value to the
conflicting variable; depth := c; a new partial model M is
determined; go to step 2
4.2 if depth = 0 return UNSAT.

The main idea behind the algorithm is to build a model
step by step. The models are encoded with Boolean vari-
ables, so finding a model consists in determining their val-
ues. Some of them are determined by the initial model re-
quirements and allow for establishing a certain class of mod-
els (model approximation). Using the monotonicity prop-
erty (see Thm 4), the algorithm verifies whether the model
in question may belong to this class. If so, the procedure nar-
rows down the class of models. If not, it designates a new
model class. The algorithm stops when either the model sat-
isfying φ is built or there is no model class to which it may
belong. If a model satisfying φ exists, then after the algo-
rithm stops, the model approximation contains only a model
satisfying φ and the state approximation contains all states
of this model that satisfy φ (see Thm 5).
Example 2. Consider a MAS consisting of 2 agents, 2 local
states and actions, and one local proposition per each agent.
When the algorithm starts, none of the variables encoding
local protocols, transitions, and propositions are assigned.
Thus, all transitions and proposition valuations are possible
at this step, as indicated by grey elements in Fig. 2 (left).
Fig. 2 (right) presents the result of our algorithm - a MAS
inducing a model for the formula ϕ1 from Sec. 7.3. In this
case all PB1 and PB2 variables has been assigned true
and thus, for every agent and local state, there is a transition
labelled by every possible local action.

7.2 SGSAT Tool
We have implemented our algorithm on the top of MonoSat
(Bayless et al. 2015) platform obtaining a prototype tool
SGSAT confirming our theoretical results. The core of the
system is a modified MiniSat solver (Eén and Sörensson
2003) extended to enable an implementation of monotonic

ϕ1 ϕ2

n ls la lp vars satT runT satT runT

2 2 2 2 48 0.05 1.69 0.05 1.14
2 2 5 2 228 0.43 6.08 0.4 6.26

3 2 3 2 354 3.88 29.9 3.83 29.6
3 2 5 2 1542 66.9 607 79.8 708

4 2 2 2 288 13.6 96.4 13.9 101
4 2 3 2 1336 257 1700 270 2462

5 2 2 2 680 501 4121 423 3397

Table 1: Preliminary experimental results. The column meaning,
from left, the number of: agents, local states, local actions, lo-
cal propositions, and variables encoding MAS. Next, the time con-
sumed by SAT-solver, and the total runtime (in seconds).

theories, which results in an application similar to lazy-SMT
solvers (Sebastiani 2007). In this case, we implemented the
SL[SG] theory solver which makes use of an external STV
model-checker (Kurpiewski, Jamroga, and Knapik 2019).
Our tool reads model requirements and allocates SAT-solver
variables (encoding a set of MASes) that are tracked by the
theory solver. The SAT core, according to the CDCL algo-
rithm, proposes assignments to the successive variables. The
obtained values are propagated by the theory solver, which
(using the STV tool) checks if the proposed valuation is con-
sistent. If so, we continue assigning values to the variables
until we have a complete model. If not, we get a conflict (a
partial model that cannot be extended to a satisfactory val-
uation) which is analysed, the incorrect decisions are back-
tracked, and the solver proposes another assignment.

7.3 Experimental Results
Table 1 shows the preliminary experimental results. These
are the very first results of testing satisfiability for
SL[SG] formulae. The experiments have been per-
formed on a PC with 16GB RAM and i7-1065G7 CPU
running Linux OS, and involved testing satisfiability of
two formulae within time limit of 70 minutes: ϕ1 =
∃x1...∃xn(x1, 1)...(xn, n)F(p1

1 ∧ ... ∧ p1
n), and ϕ2 =

∀x1∃x2...∃xn(x1, 1)...(xn, n)F(p1
1 ∧ ... ∧ p1

n). The differ-
ence between runtime and SAT-time is the time consumed
by the STV tool. Thus, the overall performance depends
primarily on the model checker. However, there is still some
space for optimizing the SGSAT.

8 Conclusions
A new method and the tool SGSAT for checking satisfiabil-
ity for SL[SG] have been defined and implemented. Since
this is the only tool for testing satisfiability of SL[SG] and
SL is general, we could not compare the experimental re-
sults with others. Our future plan is to extend our approach
to larger fragments of SL, in particular for SL with One Goal
and SL with epistemic operators and incomplete informa-
tion. As the technique we introduced involves an external
model-checker, its efficiency and applicability depends on
the capabilities of the model-checker applied.
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