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Abstract

We study the separation of positive and negative data exam-
ples in terms of description logic concepts in the presence of
an ontology. In contrast to previous work, we add a signa-
ture that specifies a subset of the symbols that can be used for
separation, and we admit individual names in that signature.
We consider weak and strong versions of the resulting prob-
lem that differ in how the negative examples are treated and
we distinguish between separation with and without helper
symbols. Within this framework, we compare the separating
power of different languages and investigate the complexity
of deciding separability. While weak separability is shown to
be closely related to conservative extensions, strongly sepa-
rating concepts coincide with Craig interpolants, for suitably
defined encodings of the data and ontology. This enables us to
transfer known results from those fields to separability. Con-
versely, we obtain original results on separability that can be
transferred backward. For example, rather surprisingly, con-
servative extensions and weak separability in ALCO are both
3EXPTIME-complete.

1 Introduction
There are several applications that fall under the broad term
of supervised learning and seek to compute a logical expres-
sion that separates positive from negative examples given in
the form of labeled data items in a knowledge base (KB).
A prominent example is concept learning for description
logics (DLs) where inductive logic programming methods
are applied to construct separating concepts that can then
be used, for instance, in ontology engineering (Lehmann
and Hitzler 2010). Another example is reverse engineer-
ing of database queries (or query by example, QBE) (Mar-
tins 2019) which has also been studied in the presence of a
DL ontology (Gutiérrez-Basulto, Jung, and Sabellek 2018;
Ortiz 2019). A closed world semantics is adopted for QBE
in databases while an open world semantics is required in
the presence of ontologies; the latter is the case also in re-
verse engineering of SPARQL queries (Arenas, Diaz, and
Kostylev 2016). Further applications are entity comparison
in RDF graphs, where one aims to find meaningful descrip-
tions that separate one entity from another (Petrova et al.
2017; Petrova et al. 2019) and generating referring expres-
sions (GRE) where the aim is to describe a single data item
by a logical expression such as a DL concept, separating it

from all other data items (Krahmer and van Deemter 2012;
Borgida, Toman, and Weddell 2016).

A fundamental problem common to all these applications
is to decide whether a separating formula exists at all. There
are several degrees of freedom in defining this problem.
The first concerns the negative examples: is it enough that
they do not entail the separating formula (weak separabil-
ity) or are they required to entail its negation (strong sepa-
rability)? Another one concerns the question whether addi-
tional helper symbols are admitted in the separating formula
(projective separability) or not (non-projective separability).
The emerging family of problems has recently been investi-
gated in (Funk et al. 2019; Jung et al. 2020), concentrating
on the case where the separating expression is a DL con-
cept or a formula from a fragment of first-order logic (FO)
such as the guarded fragment (GF) and unions of conjunc-
tive queries (UCQs).

In this paper, we add a signature Σ (set of concept, role,
and individual names) that is given as an additional input
and require separating expressions to be formulated in Σ.
This makes it possible to ‘direct’ separation towards expres-
sions based on desired features and accordingly to exclude
features that are not supposed to be used for separation. For
example, consider an online book store where a user has la-
beled some books with likes (positive examples) or dislikes
(negative examples). A “good” separating expression might
include relevant features of books like genre or language,
but exclude information about the author’s age or gender.

The aim of this paper is to investigate the effect of adding
a signature to the framework, and in particular to compare
the separating power of different languages and determine
the computational complexity of deciding separability. We
focus on the case in which both the knowledge base and the
separating expressions are formulated in DLs betweenALC
and its extension ALCIO with inverse roles and nominals.
DLs with nominals are of particular interest to us as sepa-
rating expressions formulated in such DLs may refer to in-
dividual names in the signature Σ. Returning to the book
store example, one can use the standard DL representation of
specific authors (‘Hemingway’) and languages (‘English’)
as individuals in separating expressions. To understand the
robustness of our results, we also discuss in how far they
extend to the guarded fragment (GF) and the two-variable
fragment (FO2) of FO.
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We start with weak projective separability. We first ob-
serve that helper symbols, which must be ‘fresh’ in that they
do not occur in the given knowledge base, increase the abil-
ity to separate and lead to more succinct separating expres-
sions. We concentrate on the case where helper symbols
are concept names because admitting individual names leads
to undecidability of the separability problem while admit-
ting roles names either does not make a difference (in ALC
andALCI) or makes a difference but is polynomial time re-
ducible to separation without role names as helper symbols
(in ALCO and ALCIO). To investigate further the rela-
tionship between non-projective and projective weak sepa-
rability, we then introduce the extension of UCQs in which
compound DL concepts are admitted in atoms and show that
in some important cases, non-projective weak separability in
that language coincides with projective weak separability in
the original description logic. In thise sense, helper concept
names are thus ‘captured’ by UCQs.

We next investigate the complexity of projective weak
separability with signature for the DLs above. A fundamen-
tal observation is that, due to the presence of the signature,
the problem to decide projective conservative extensions at
the ontology level is polynomial time reducible to the com-
plement of projective weak separability. Here, ‘projective’
refers to the fact that conservativity is also required for ex-
pressions using fresh concept names. Conservative exten-
sions have been studied in detail in the context of modular
ontologies (Grau et al. 2008; Botoeva et al. 2016). The pro-
jective version is motivated by the requirement of robustness
under vocabulary extensions in applications with frequent
changes in the ontology (Konev et al. 2009). It coincides
with the non-projective one for DLs with the Craig Interpo-
lation property (CIP) such as ALC and ALCI (Jung et al.
2017), but not for DLs with nominals, such as ALCO.

The reduction from conservative extensions yields a 2EX-
PTIME lower bound for weak projective separability inALC
and ALCI (Ghilardi, Lutz, and Wolter 2006; Lutz, Walther,
and Wolter 2007). We prove a matching upper bound by pro-
viding a bisimulation-based characterization of weak projec-
tive separability which is then decided by a reduction to the
emptiness problem of suitable tree automata.

For ALCO, we show the unexpected result that both pro-
jective conservative extensions and projective weak separa-
bility are 3EXPTIME-complete. The lower bound is a sub-
stantial extension of the 2EXPTIME-lower bound for conser-
vative extensions in ALC from (Ghilardi, Lutz, and Wolter
2006), and it holds for non-projective conservative exten-
sions and non-projective weak separability as well. The up-
per bound is again by an encoding into tree automata.

We then turn to strong separability where we observe that
the projective and non-projective case coincide. We further
observe that separating expressions are identical to Craig
interpolants between formulas that encode the KBs with
the positive and negative examples, respectively. Since FO
enjoys the CIP, the existence of FO separating formulas is
equivalent to the entailment between the encoding formulas.
This entailment question is EXPTIME-complete if the KBs
are given in a DL between ALC and ALCIO. Moreover,
any FO-theorem prover that computes interpolants can be

used to compute separating expressions (Hoder et al. 2012).
Interestingly, while DL concepts alone have a strictly

weaker separating power than FO, a version of the afore-
mentioned extension of UCQs with DL concepts is expres-
sive enough to capture the separating power of FO. Regard-
ing the decision problem, we use recent results on the com-
plexity of Craig interpolant existence (Artale et al. 2021) to
show that for any DL between ALC and ALCIO, strong
separability is 2EXPTIME-complete if one separates using
concepts from the same DL.

We finally consider weak and strong inseparability in the
case where both the ontology and the separating formulas
are in GF or FO2. For GF, we prove that weak (projective)
separability with signature is undecidable which is in con-
trast to decidability of weak separability when no signature
restriction can be imposed on the separating formula (Jung
et al. 2020). For FO2, already weak separability without
signature is undecidable (Jung et al. 2020). In the case of
strong separability, the link between Craig interpolants and
strongly separating formulas generalizes to GF and FO2.
Both logics fail to have the CIP (Hoogland and Marx 2002;
Comer 1969; Pigozzi 1971), but recent results on the exis-
tence of Craig interpolants can be used to prove that strong
separability in GF is 3EXPTIME-complete and in FO2 is in
N2EXPTIME and 2EXPTIME-hard (Jung and Wolter 2021).

An appendix with full proofs is available at https://arxiv.
org/abs/2107.05285.

2 Preliminaries
Let NC, NR, and NI be countably infinite sets of concept,
role, and individual names. A role is a role name r or an
inverse role r−, with r a role name and (r−)− = r. A nom-
inal takes the form {c} with c ∈ NI. AnALCIO-concept is
defined according to the syntax rule

C,D ::= > | ⊥ | A | {c} | ¬C | C uD | ∃R.C
where A ranges over concept names, c over individual
names, and R over roles. We use C t D as abbreviation
for ¬(¬C u ¬D), ∀R.C for ¬∃R.(¬C), and C → D for
¬C t D. An ALCI-concept is an ALCIO-concept with-
out nominals, anALCO-concept anALCIO-concept with-
out inverse roles, and anALC-concept is anALCO-concept
without nominals. Let DLni denote the set of languages just
introduced, where ni stands for nominals and inverses. For
L ∈ DLni, an L-ontology is a finite set of concept inclusion
(CIs) C v D with C and D L-concepts.

A database D is a finite set of facts of the form A(a)
or r(a, b) where A ∈ NC, r ∈ NR, and a, b ∈ NI. An
L-knowledge base (L-KB) takes the form K = (O,D),
where O is an L-ontology and D a database. We assume
w.l.o.g. that any nominal used in O also occurs in D.

A signature Σ is a set of concept, role, and individual
names, uniformly referred to as symbols. Σ is called rela-
tional if it does not contain individual names. We use sig(X)
to denote the set of symbols used in any syntactic object X
such as a concept or an ontology. For a database D we de-
note by ind(D) the set of individual names in D.

Description logics are interpreted in structures

A = (dom(A), (AA)A∈NC
, (rA)r∈NR

, (cA)c∈NI
)
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with AA ⊆ dom(A), rA ⊆ dom(A)2, and cA ∈ dom(A).
The extension CA of ALCIO-concepts C is then defined
as usual (Baader et al. 2017). For D ⊆ dom(A), we use
A|D to denote the restriction of A to D. A pointed structure
takes the form A, a with A a structure and a ∈ dom(A). A
structure A satisfies CI C v D if CA ⊆ DA, fact A(a) if
aA ∈ AA, and fact r(a, b) if (aA, bA) ∈ rA. A is a model of
an ontology, database, or KB if it satisfies all CIs and facts
in it. A KB is satisfiable if it has a model, and a concept C
is satisfiable w.r.t. a KB K if K has a model A with CA 6= ∅.

We use standard notation for first-order logic (FO), and
consider formulas constructed using concept names as unary
relation symbols, role names as binary relation symbols, and
individual names as constants. Equality is admitted. It is
well-known that every DL concept C is equivalent to an FO-
formula ϕC(x) with a single free variable x. For a KBK, an
FO-formula ϕ(x) with a single free variable x, and a con-
stant a, we write K |= ϕ(a) if A |= ϕ(a) in all models A
of K.

We associate with every structure A a directed graph
Gd

A = (dom(A),
⋃

r∈NR
rA). Let Gu

A = (dom(A), E′) be
the undirected version of Gd

A obtained by forgetting edge
directions. We can thus apply graph theoretic terminol-
ogy to structures. The directed graph Gd

A is relevant for
the DLs ALC and ALCO that do not support inverse roles
while the undirected graph Gu

A is relevant for ALCI and
ALCIO. To simplify notation, we often prefix a prop-
erty of structures with the language for which it is rele-
vant. For example, if L ∈ {ALC,ALCO} then we say
that A has finite L-outdegree if Gd

A has and we call A L-
rooted in a if every node in A is reachable from a in Gd

A.
For L ∈ {ALCI,ALCIO}, the two notions are defined
in the same way, but based on Gu

A in place of Gd
A. For

L ∈ {ALCI,ALCIO}, A is an L-tree if Gu
A is acyclic

(also excluding self loops) and there are no multi-edges in
the sense that RA

1 and RA
2 are disjoint for all distinct roles

R1, R2. For L ∈ {ALC,ALCO}, A is an L-tree if, in addi-
tion, every node in Gd

A has at most one incoming edge.
Let L ∈ {ALC,ALCI}. A model A of an L-KB K =

(O,D) is an L-forest model of K if A with all r(aA, bA),
a, b ∈ ind(D), removed is the disjoint union of L-trees
rooted at aA, a ∈ ind(D). A is anALCO-forest model of an
ALCO-KBK = (O,D) if A with all r(a, bA), a ∈ dom(A),
b ∈ ind(D), removed is the disjoint union of ALCO-trees
rooted at aA, a ∈ ind(D). The following completeness re-
sult is well-known (Baader et al. 2017).

Lemma 1 Let L ∈ {ALC,ALCI,ALCO}, K an L-KB,
and C an L-concept. If K 6|= C(a), then there exists an
L-forest model A for K of finite L-outdegree with a 6∈ CA.

Note that Lemma 1 does not hold for ALCIO, a counterex-
ample is given in the appendix.

Besides DL-concepts, we use FO-formulas with a single
free variable as separating formulas. Of particular impor-
tance are the following FO-fragments which combine the ex-
pressive power of (unions of) conjunctive queries with DLs.
Let L ∈ DLni. Then CQL denotes the language of all FO-
formulas ϕ(x) = ∃~y ψ where ψ is a conjunction of atoms
C(t), C an L-concept, or r(t1, t2) with t, t1, t2 variables or

constants, and x is the single free variable of ϕ(x). UCQL
contains all formulas ϕ(x) = ϕ1(x) ∨ · · · ∨ ϕn(x) with
ϕi(x) ∈ CQL. Clearly, CQL and UCQL contain all unary
conjunctive queries (CQ) and unions of unary conjunctive
queries (UCQ), respectively. Note that UCQALCI is a frag-
ment of the unary negation fragment (UNFO), a decidable
fragment of FO that generalizes many modal and descrip-
tion logics (Segoufin and ten Cate 2013). We next define
rooted versions of these languages. We may view formulas
in CQL as structures, in the obvious way by ignoring atoms
C(t). For L ∈ DLni, CQLr denotes the formulas ϕ(x) in
CQL that are L-rooted in x and similar for UCQLr . Finally
note that, although the languages UCQLr and UCQL are not
syntactically closed under conjunction, every conjunction is
again equivalent to a formula in the respective language.

For any L ∈ DLni and signature Σ the definition of an
L(Σ)-bisimulation S between structures A and B is stan-
dard, for details we refer to (Lutz, Piro, and Wolter 2011;
Goranko and Otto 2007). We write A, d ∼L,Σ B, e and
call pointed structures A, d and B, e L(Σ)-bisimilar if there
exists an L(Σ)-bisimulation S such that (d, e) ∈ S. We
say that A, d and B, e are L(Σ)-equivalent, in symbols
A, d ≡ALCI,Σ B, e if d ∈ CA iff e ∈ CB for all C ∈ L(Σ);
ω-saturated structures are defined and discussed in (Chang
and Keisler 1998).

Lemma 2 Let L ∈ DLni. Let A, d and B, e be pointed
structures of finite L-outdegree or ω-saturated and Σ a sig-
nature. Then

A, d ≡L,Σ B, e iff A, d ∼L,Σ B, e.

For the “if” direction, the condition “finite outdegree or ω-
saturated” can be dropped.

The definition of a Σ-homomorphism h from a structure A
to a structure B is standard. Every databaseD gives rise to a
finite structure AD in the obvious way. A Σ-homomorphism
from database D to structure A is a Σ-homomorphism from
AD to A.

We combine homomorphisms and bisimulations to char-
acterize the languages CQL and CQLr . Consider pointed
structures A, d and B, e, and a subset D of dom(A) such
that d ∈ D ⊆ dom(A). Let L ∈ DLni and Σ a signature.
Then a CQL(Σ)-homomorphism with domain D between
A, d and B, e is a Σ-homomorphism h : A|D → B such
that h(d) = e and A, c ∼L,Σ B, h(c) for all c ∈ D. In this
case we write A, d→D,L,Σ B, e.

We write A, d ⇒CQL
r ,Σ B, e if A |= ϕ(a) implies B |=

ϕ(b) for all ϕ(x) in CQLr (Σ), and we write A, d ⇒mod
CQL

r ,Σ

B, e if for all finite D ⊆ dom(A) such that the Σ-reduct
of A|D is L-rooted in d, we have A, d →D,L,Σ B, e. The
definitions for CQL are analogous except that the Σ-reduct
of A|D need not be L-rooted in d.

Lemma 3 Let L ∈ DLni and let A, d and B, e be pointed
structures of finite L-outdegree or ω-saturated, and Σ a sig-
nature. Then

A, d⇒CQL
r ,Σ B, e iff A, d⇒mod

CQL
r ,Σ B, e.
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This equivalence holds for CQL if A and B are ω-saturated.
In both cases, for the “if”-direction, the condition “finite
outdegree or ω-saturated” can be dropped.

3 Weak Separability with Signature
We start with introducing the problem of (weak) separability
with signature, in its projective and non-projective version.
Let L ∈ DLni. A labeled L-KB takes the form (K, P,N)
with K = (O,D) an L-KB and P,N ⊆ ind(D) non-empty
sets of positive and negative examples.

Definition 1 Let L ∈ DLni, (K, P,N) be a labeled L-KB,
and let Σ ⊆ sig(K) be a signature. An FO-formula ϕ(x)
Σ-separates (K, P,N) if sig(ϕ) ⊆ Σ ∪ Σhelp for some set
Σhelp of concept names disjoint from sig(K) and

1. K |= ϕ(a) for all a ∈ P and
2. K 6|= ϕ(a) for all a ∈ N .
Let LS be a fragment of FO. We say that (K, P,N) is pro-
jectively LS(Σ)-separable if there is an LS-formula ϕ(x)
that Σ-separates (K, P,N) and non-projectively LS(Σ)-
separable if there is such a ϕ(x) with sig(ϕ) ⊆ Σ.1

In Σ-separating formulas, concept names from Σhelp should
be thought of as helper symbols. Their availability some-
times makes inseparable KBs separable, examples are pro-
vided below where we also discuss the effect of admitting
role or individual names as helper symbols. We only con-
sider FO-fragments LS that are closed under conjunction.
In this case, a labeled KB (K, P,N) is LS(Σ)-separable if
and only if all (K, P, {b}), b ∈ N , are LS(Σ)-separable,
and likewise for projective LS(Σ)-separability (Jung et al.
2020). In what follows, we thus mostly consider labeled
KBs with singleton sets N of negative examples.

Each choice of an ontology language L and a separation
language LS give rise to a projective and to a non-projective
separability problem.

PROBLEM: (Projective) (L,LS)-separability w. signature
INPUT: A labeled L-KB (K, P,N)

and signature Σ ⊆ sig(K)
QUESTION: Is (K, P,N) (projectively) LS(Σ)-separable?

If L = LS , then we simply speak of (projective) L-
separability. We study the complexity of L-separability with
signature where the KBK and sets of examples P andN are
all taken to be part of the input. All lower bounds proved in
this paper still hold if P and N are singleton sets.

We next provide an example that illustrates the im-
portance of the distinction between projective and non-
projective separability.
Example 1 Let D contain r(a1, a2), . . . , r(an−1, an),
r(an, a1) and r(b, b1), where n > 1. Thus, the individual
a1 is part of an r-cycle of length n but b is not. Let

1It is worth clarifying the interplay between nominals in the
separating language and individual names in Σ: If Σ does not con-
tain individual names, then ALCO(Σ)-separability coincides with
ALC(Σ)-separability; conversely, if LS does not allow for nomi-
nals, LS(Σ)-separability coincides with LS(Σ \ NI)-separability.

O = {> v ∃r.> u ∃r−.>}, K = (O,D), P = {a1},
N = {b}, and Σ = {r}. Then (K, P,N) is non-projectively
CQ(Σ)-separable (take the CQ that states that x par-
ticipates in a cycle of length n), but (K, P,N) is not
non-projectively ALCI(Σ)-separable because for any
ALCI(Σ)-concept C either O |= > v C or O |= C v ⊥.
If, however, a helper symbol A is allowed, then A→ ∃rn.A
Σ-separates (K, P,N).

We discuss the effect of also admitting individual names as
helper symbols. Then already for ALC-KBs, projective in-
separability becomes undecidable. The proof is inspired by
reductions of undecidable tiling problems in the context of
conservative extensions and modularity (Lutz, Walther, and
Wolter 2007; Grau et al. 2008).

Theorem 1 Projective (ALC,ALCO)-separability with
signature becomes undecidable when additionally individ-
ual names are admitted as helper symbols.

Admitting role names as helper symbols has a less dra-
matic impact. For ALC and ALCI-separability they do not
make any difference at all and forALCO andALCIO their
effect can be captured by a single additional role name which
enables a straightforward polynomial reduction to separabil-
ity without role names as helper symbols.

Theorem 2 (1) Let L ∈ {ALC,ALCI}. Then projective
L-separability coincides with projective L-separability with
concept and role names as helper symbols.

(2) Let L ∈ {ALCO,ALCIO} and (K, P,N) be a la-
beled L-KB and Σ ⊆ sig(K) a signature. Let rI be a fresh
role name and let K′ be the extension of K by the ‘dummy’
inclusion ∃rI .> v ∃rI .>. Then the following conditions
are equivalent:

• (K, P,N) is projectively L(Σ)-separable with concept
and role names as helper symbols;

• (K′, P,N) is projectively L(Σ ∪ {rI})-separable.

The proof uses the model-theoretic characterization of
separability given in Theorem 4 below. The next example
illustrates the use of a helper role name in ALCO.

Example 2 Let K = (O,D), where O = {A0 u ∃r.> v
⊥, B v ∀r.A} and D = {r(c, a), A0(a), A0(b)}. Let
Σ = {c, B,A}. Then (K, {a}, {b}) is not projec-
tively ALCIO(Σ)-separable, but the ALCO(Σ)-concept
∃rI .({c}uB)→ A separates (K, {a}, {b}) using the helper
symbol rI .

We next make first observations regarding the separating
power of several relevant separating languages. In (Funk
et al. 2019; Jung et al. 2020), projective and non-projective
separability are studied without signature restrictions, that
is, all symbols used in the KB except individual names can
appear in separating formulas. We call this the full rela-
tional signature. Surprisingly, it turned out that in this case
many different separation languages have exactly the same
separating power. In particular, a labeled ALCI-KB is FO-
separable iff it is UCQ-separable, and projective and non-
projective separability coincide. No such result can be ex-
pected for separability with signature restrictions, as illus-
trated by the next example.
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Example 3 Let K = (O,D), where O = {A v ∃r.B u
∃r.¬B} and D = {A(a), r(b, c)}. Let P = {a}, N = {b},
and Σ = {r}. Clearly, the formula

∃y∃y′(r(x, y) ∧ r(x, y′) ∧ ¬(y = y′))

Σ-separates (K, P,N), but (K, P,N) is not UCQ(Σ)-
separable.

It is also shown in (Funk et al. 2019; Jung et al. 2020) that
for labeled ALCI-KBs and with the full relational signa-
ture, UCQ-separability (projectively or not) coincides with
projective ALCI-separability. The next example shows
that with restricted signatures, it is not even true that non-
projective ALCI-separability implies UCQ-separability.

Example 4 Let O = {A v ∀r.B} and D = {A(a), C(b)}.
Let P = {a},N = {b}, and Σ = {r,B}. Clearly, theALC-
concept ∀r.B Σ-separates (O,D, P,N), but (O,D, P,N)
is not UCQ(Σ)-separable.

Conversely, it follows from Example 1 that UCQ-
separability does not imply non-projective ALCI-
separability, even with the full relational signature.
Interestingly, in the projective case, this implication holds
even with restricted signatures: every UCQ(Σ)-separable la-
beled ALCI-KB is also projectively ALCI(Σ)-separable.
This follows from more powerful equivalences proved
below (Theorem 5).

In this paper, we mainly focus on projective separabil-
ity. In fact, it emerges from (Funk et al. 2019; Jung et al.
2020) that insisting on non-projective separability is a source
of significant technical difficulties while not always deliver-
ing more natural separating concepts. As our main aim is
to study the impact of signature restrictions on separability,
which is another source of significant technical challenges,
we prefer to leave out the first such source and stick with
projective separability.

We close this introduction with the observation that
in contrast to the case of full relational signatures, FO-
separability with signature is undecidable for labeled ALC-
KBs. We prove this using the same technique as for Theo-
rem 1. Undecidability applies even when one separates in
the decidable extensionALCFIO ofALCIO with unqual-
ified number restrictions of the form (≤ 1 r).

Theorem 3 (ALC,LS)-separability with signature is un-
decidable for any fragment LS of FO that contains
ALCFIO, both in the projective and non-projective case.

4 Model-Theoretic Criteria and Equivalence
Results

We provide powerful model-theoretic criteria that underly
the decision procedures given later on. Moreover, we use
these criteria to establish equivalences between projective
separability and non-projective separability in more expres-
sive languages that shed light on the role of helper symbols.

We start with the model-theoretic criteria using functional
bisimulations. For L ∈ DLni we write A, a ∼f

L,Σ B, b if
there exists an L(Σ)-bisimulation S between A and B that
contains (a, b) and is functional, that is, (d, d1), (d, d2) ∈ S

implies d1 = d2. Note that A, a ∼f
L,Σ B, b implies that

there is a homomorphism from A, a to B, b if A is connected
and L = ALCI , but not otherwise.

Theorem 4 Let L ∈ {ALC,ALCI,ALCO}. Assume that
(K, P, {b}) is a labeled L-KB with K = (O,D) and Σ ⊆
sig(K). Then the following conditions are equivalent:

1. (K, P, {b}) is projectively L(Σ)-separable.
2. there exists anL-forest model A ofK of finiteL-outdegree

and a set Σhelp of concept names disjoint from sig(K)
such that for all models B of K and all a ∈ P :
B, aB 6∼L,Σ∪Σhelp A, b

A.
3. there exists anL-forest model A ofK of finiteL-outdegree

such that for all models B of K and all a ∈ P :
B, aB 6∼f

L,Σ A, bA.

The equivalence between Points 1 and 2 of Theorem 4 is
a direct consequence of the following characterization in the
non-projective case (which can be proved using Lemmas 1
and 2): a labeled L-KB (K, P, {b}) is non-projectively
L(Σ)-separable iff there exists an L-forest model A of K
of finite L-outdegree such that for all models B of K and all
a ∈ P : B, aA 6∼L,Σ A, bA. Due to cycles in the databases
the general bisimulations used in this criterion and in Point 2
of Theorem 4 are hard to encode in an automata based de-
cision procedure. Moreover, in Point 2 one has to “guess”
the number of helper symbols needed. The criterion given
in Point 3, in contrast, is much better suited for this purpose
and does not speak about helper symbols.

The equivalence of 2. and 3. is surprisingly straightfor-
ward to show as one can work with the same model A. As
Lemma 1 fails to hold for L = ALCIO, Theorem 4 also
does not hold for this choice of L. An example that illus-
trates the situation is given in the appendix.

As a first important application of Theorem 4, we
show that projective ALCI-separability is equivalent to
non-projective separability in UCQALCIr and that pro-
jective (ALC,ALCO)-separability is equivalent to non-
projective (ALC,UCQALCOr )-separability. The following
example illustrates why the languages UCQLr can non-
projectively separate labeled KBs that cannot be separated
non-projectively in a natural way in languages from DLni.

Example 5 Let K = (O,D), where O = {B v ∀t.A} and
D is depicted below:

a c b1 d b2
e

f

B

B
B

r r
r

s s s

Let P = {a}, N = {b1, b2}, and Σ = {r, s, t, A}. Then

∃y r(x, y) ∧ s(x, y) ∧ (∀t.A)(y) ∈ CQALCr

Σ-separates (K, P,N). The ‘simplest’ ALC-concept Σ-
separating (K, P,N) is (∃r.∀t.A)u(∀r.X → ∃s.X), where
X is fresh.

We next state the announced equivalences. Informally
spoken, they show that admitting helper concept names cor-
responds to ‘adding rooted UCQs’.
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Theorem 5 Let (L,LS) be either (ALCI,ALCI) or
(ALC,ALCO) and let (K, P, {b}}) be a labeled L-KB and
Σ ⊆ sig(K) a signature. Then the following conditions are
equivalent:

1. (K, P, {b}) is projectively LS(Σ)-separable;
2. (K, P, {b}) is non-projectively UCQLS

r (Σ)-separable.

Proof. The proof has two main steps. First, using
Lemma 3, one can characterize non-projective UCQLS

r (Σ)-
separability in terms of CQLS (Σ)-homomorphisms.
Namely, (K, P, {b}) is non-projectively UCQLS

r (Σ)-
separable iff there exist an LS-forest model A of K of
finite LS-outdegree and n > 0 such that for all models B
of K and all a ∈ P , B, aB 6→D,LS ,Σ A, bA, for some D
with |D| ≤ n such that the Σ-reduct of B|D is LS-rooted
in aB. Secondly, one can prove that this characterization
is equivalent to Condition 3 of Theorem 4. Observe, for
example, that functional Σ-bisimulations give rise to the
combination of Σ-homomorphisms and Σ-bisimulations
given in the characterization above. o

We observe that the equivalences of Theorem 5 do not hold
when the ontology contains nominals.

Example 6 Let K = (O,D), where O = {{a} v
∀r.{a},> v ∃r.>}, and D = {A(a), r(b, b)}. Let Σ =
{r}. Then (K, {a}, {b}) is projectively separated by the
ALC(Σ)-concept X → ∀r.X with X a fresh concept name,
but it is not non-projectively UCQALCOr (Σ)-separable.

It remains open whether there is any natural fragment of FO
such that a labeled ALCO-KBs is non-projectively separa-
ble in the fragment if and only if it is projectively separable
in ALCO.

5 The Complexity of Weak Separability
We study the decidability and computational complexity of
projective L-separability for L ∈ {ALC,ALCI,ALCO}.
The results established in this section are closely related to
conservative extensions of ontologies and we also observe
new results for that problem. ForL-ontologiesO andO′, we
say that O ∪O′ is a conservative extension of O in L if, for
all concept inclusionsC v D withC,D L-concepts that use
only symbols from sig(O): ifO∪O′ entails C v D then al-
ready O entails C v D. Projective conservative extensions
in L are defined in the same way except that C and D may
additionally use fresh concept names, that is, concept names
that are not in sig(O ∪ O′). If O ∪ O′ is not a conservative
extension of O in L, then there exists an L-concept C that
uses only symbols from sig(O) and is satisfiable w.r.t. O,
but not w.r.t. O ∪ O′. We call such a concept C a witness
concept for O and O′.
Lemma 4 Let L ∈ DLni. Then deciding conservative ex-
tensions in L can be reduced in polynomial time to the com-
plement of L-separability, both in the projective and non-
projective case.

Proof. The proof uses relativizations. Intuitively, givenO
and O′ one computes a new ontology O1 which contains O
and the relativization ofO′ to a fresh concept nameA. Then,

a concept C is a witness concept for O and O′ iff ¬C sep-
arates (w.r.t. O1) an individual that satisfies A from an in-
dividual that does not satisfy A. If L contains nominals the
proof is slightly more involved. o

We start our analysis with the DLs ALC and ALCI .

Theorem 6 Projective L-separability with signature is
2EXPTIME-complete, for L ∈ {ALC,ALCI}.
The lower bound follows from Lemma 4 and also holds
for non-projective separability. In fact, it is known that
deciding (non-projective) conservative extensions in L ∈
{ALC,ALCI} is 2EXPTIME-hard (Ghilardi, Lutz, and
Wolter 2006; Lutz, Walther, and Wolter 2007) and that con-
servative extensions and projective conservative extensions
coincide in logics that enjoy Craig interpolation (Jung et al.
2017), which ALC and ALCI do.

For the upper bound, we concentrate on ALCI; the case
of ALC is very similar, but simpler. The idea is to use
two-way alternating tree automata (2ATA) (Vardi 1998) to
decide Condition 3 of Theorem 4. More precisely, given
(K, P, {b}),Σ with K = (O,D), we construct a 2ATA A
such that the language recognized by A is non-empty if and
only if there is a forest model A of K as described in Con-
dition 3 of Theorem 4. The use of tree automata is enabled
by the fact that Condition 3 refers to forest models of K. In-
deed, forest structures can be encoded in labeled trees using
an appropriate alphabet. Intuitively, each node in the tree
corresponds to an element in the forest structure and the la-
bel contains its type, the connection to its predecessor, and
connections to individuals from D.

It is not difficult to devise a 2ATA B (of polynomial size)
that recognizes the finite outdegree forest models of K, see
e.g. (Jung et al. 2017). Observe next that it suffices to con-
struct, for each a ∈ P , a 2ATA Aa such that Aa accepts A
iff

(∗a) there is a model B of K with B, aB ∼f
ALCI,Σ A, bA.

Indeed, a 2ATA that recognizes the following language is as
required:

L(B) ∩
⋂

a∈P L(Aa)

where L denotes the complement of L. As complementa-
tion and intersection of 2ATAs involve only a polynomial
blowup, we obtain the desired 2ATA A from B and the Aa.

In principle, the existence of a (not necessarily function-
ally) bisimilar model B can be checked using alternating au-
tomata as follows. We assume w.l.o.g. that the model B is a
forest model, because we can always consider an appropriate
unraveling. Then, the alternating automaton ‘virtually’ tra-
verses B element-by-element, storing at each moment only
the type of the current element in its state and visiting a
bisimilar element in A. Alternation is crucial as the automa-
ton has to extend the bisimulation for all successors of the
current element in B and symmetrically for all successors
of the currently visited element in A. Functionality of the
bisimulation poses a challenge: different parts of the run of
the automaton can visit the same individual from D in B,
and functionality requires that the automaton visits the same
element in A. In order to solve that (and get tight bounds),
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we replace (∗a) with an equivalent condition in which func-
tional bisimulations are carefully ‘compiled away’.

We introduce some additional notation. An extended
database is a database that additionally may contain ‘atoms’
of the form C(a) with C an ALCI-concept. The semantics
of extended databases is defined in the expected way. Let
sub(K) denote the set of concepts that occur in K, closed
under single negation and under subconcepts. The K-type
realized in a pointed structure A, a is defined as

tpK(A, a) = {C ∈ sub(K) | a ∈ CA}.

A K-type is any set t ⊆ sub(K) of the form tpK(A, a). For
a pointed database D, a, we write Dcon(a), a →Σ

c A, bA if
there is a Σ-homomorphism h from the maximal connected
component Dcon(a) of a in D to A such that h(a) = bA and
there is a K-type td for each d ∈ ind(Dcon(a)) such that:

(i) there exists a model Bd of O with tpK(Bd, d) = td and
Bd, d ∼ALCI,Σ A, h(d);

(ii) (O,D′) is satisfiable, for the extended databaseD′ = D∪
{C(d) | C ∈ td, d ∈ ind(Dcon(a))}.

Lemma 5 For all forest models A ofK and all a ∈ P , Con-
dition (∗a) is equivalent to Dcon(a), a→Σ

c A, bA.

Intuitively, the homomorphism h fixes the image of the
bisimulation of the individuals from D, and a 2ATA can
decide Dcon(a), a →Σ

c A, bA as follows. It first non-
deterministically guesses types td, d ∈ ind(Dcon(a)) that
satisfy Item (ii) above and stores them in its states. Then
it gradually guesses a Σ-homomorphism from Dcon(a) to A.
Whenever, it guesses a new image h(d) for some d, it veri-
fies the bisimulation condition in Item (i) as described above.
Overall, Aa (and thus A) uses exponentially many states.
The 2EXPTIME upper bound follows as non-emptiness can
be decided in exponential time (Vardi 1998).

ForALCO, we show the surprising result that separability
becomes harder than in ALC and ALCI , by one exponent.
We establish the same result also for the more basic problem
of conservative extensions.
Theorem 7 Projective ALCO-separability with signature
and projective conservative extensions in ALCO are
3EXPTIME-complete.
We show in the appendix that the lower bound also applies to
non-projective conservative extensions and, by Lemma 5, to
non-projectiveALCO-separability with signature. An upper
bound for that case remains open. The upper bound easily
extends to the variant of projective conservative extensions
where we are interested only in the entailment of concept
inclusions C v D formulated in a given subsignature Σ ⊆
sig(O), c.f. (Ghilardi, Lutz, and Wolter 2006).

By Lemma 4, it suffices to show the lower bound in The-
orem 7 for conservative extensions and the upper bound for
separability. We start with the former, which is proved by re-
duction of the word problem of double exponentially space
bounded ATMs. The reduction strategy follows and extends
the one used in (Ghilardi, Lutz, and Wolter 2006) to prove
that deciding conservative extensions of ALC-ontologies is
2EXPTIME-complete. The reduction proceeds in two steps.

First, for every n ≥ 1 one crafts ontologies On and O′n of
size polynomial in n such that On ∪ O′n is not a conserva-
tive extension of On, but all witness concepts for On and
O′n are of size quadruple exponential in n. More precisely,
On and O′n implement a binary counter that is able to count
the length of role paths up to 222n

and witness concepts need
to enforce a binary tree of that depth. The triple exponential
counter is implemented by building on a double exponential
counter which in turn builds on a single exponential counter.
The two latter counters are implemented exactly as in (Ghi-
lardi, Lutz, and Wolter 2006) and the implementation of the
triple exponential counter crucially uses a nominal. In fact,
On does not use any nominals and a single nominal in O′n
suffices. The implementation of the counters is quite sub-
tle. For the third counter, we independently send multiple
O′n-types down a path in the binary tree generated by a wit-
ness concept and use the nominal to ‘re-synchronize’ them
again later. In the second step of the reduction, we simulate
the computation of a fixed ATM on a given input in the bi-
nary trees of triple exponential depth generated by witness
concepts for On and O′n.

For the upper bound in Theorem 7, we again pursue an
automata-based approach. As for ALCI , we encode forest
structures as inputs to 2ATAs and the goal is to construct
a 2ATA Aa that accepts an input A if and only if Condi-
tion (∗a) is true, with ALCI replaced by ALCO. However,
instead of going via an intermediate characterization such as
Lemma 5, we directly use (∗a) (at the cost of one exponent).

The problem of synchronizing different visits of the in-
dividuals in D during the (virtual) construction of B is ad-
dressed as follows. We first construct a 2ATA A′a over an
extended alphabet. A labeled tree over that alphabet does
not only contain the structure A, but also marks a possible
choice of the elements in A that are bisimilar to the individu-
als in D. Now, when the automaton is in a state representing
an individual d ∈ ind(D) during the construction of B, it en-
sures that the currently visited element of A is marked with
d in the input. The desired automaton Aa is then obtained
by projecting A′a to the original input alphabet.

The 2ATA A′a can be constructed in exponential time and
has at most exponentially many states. Since projection of
alternating automata involves an exponential blow-up,Aa is
of double exponential size. Together with the exponential
non-emptiness test, we obtain the 3EXPTIME-upper bound.

6 Strong Separability with Signature
We discuss strong separability of labeled KBs. The crucial
difference to weak separability is that the negation of the
separating formula must be entailed at all negative examples.

Definition 2 Let L ∈ DLni, (K, P,N) be a labeled L-KB,
and let Σ ⊆ sig(K) be a signature. An FO-formula ϕ(x)
strongly Σ-separates (K, P,N) if sig(ϕ) ⊆ Σ and

1. K |= ϕ(a) for all a ∈ P and
2. K |= ¬ϕ(a) for all a ∈ N .
Let LS be a fragment of FO. We say that (K, P,N) is
strongly LS(Σ)-separable if there exists an LS-formula
ϕ(x) that strongly Σ-separates (K, P,N).
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In contrast to weak separability, we do not consider a pro-
jective version of strong separability as any formula ϕ that
strongly Σ-separates a labeled KB (K, P,N) and uses helper
symbols can easily be transformed into a strongly separat-
ing formula that uses only symbols from Σ: simply replace
any occurrence of such a formula A(x), A 6∈ Σ, by x = x
(or a concept name A by >). Then, if ϕ strongly separates
(K, P,N), so does the resulting formula ϕ′.

Note that for languages LS closed under conjunction
and disjunction a labeled KB (K, P,N) is strongly LS(Σ)-
separable iff every (K, {a}, {b}) with a ∈ P and b ∈ N is
strongly LS(Σ)-separable. In fact, if ϕa,b strongly separates
(K, {a}, {b}) for a ∈ P and b ∈ N , then

∨
a∈P

∧
b∈N ϕa,b

strongly separates (K, P,N). Without loss of generality, we
may thus work with labeled KBs with singleton sets of pos-
itive and negative examples.

Each choice of an ontology language L and a separation
language LS thus gives rise to a (single) strong separabil-
ity problem that we refer to as strong (L,LS)-separability,
defined in the expected way:

PROBLEM : Strong (L,LS) separability with signature
INPUT : Labeled L-KB (K, P,N) and

signature Σ ⊆ sig(K)
QUESTION : Is (K, P,N) strongly LS(Σ)-separable?

If L = LS , then we simply speak of strong L-separability.
The study of strong separability is very closely linked to
the study of interpolants and the Craig interpolation prop-
erty (CIP). Given FO-formulas ϕ(x), ψ(x) and a fragment
L of FO, we say that an L-formula χ(x) is an L-interpolant
of ϕ,ψ if ϕ(x) |= χ(x), χ(x) |= ψ(x), and sig(χ) ⊆
sig(ϕ) ∩ sig(ψ). We say that L has the CIP if for all L-
formulas ϕ(x), ψ(x) such that ϕ(x) |= ψ(x), there exists an
L-interpolant of ϕ,ψ. FO and many of its fragments have
the CIP (Craig 1957; ten Cate, Franconi, and Seylan 2013;
Maksimova and Gabbay 2005). The link between inter-
polants and strongly separating formulas is easy to see: as-
sume a labeled L-KB (K, {a}, {b}) and a signature Σ ⊆
sig(K) are given. Obtain KΣ,a (and KΣ,b) from K by taking
the standard translation of K into FO and then
• replacing all concept and role names X 6∈ Σ by fresh

symbols Xa (Xb, respectively);
• replacing all individual names c 6∈ Σ ∪ {a} by fresh vari-

ables xc (all c 6∈ Σ ∪ {b} by variables yc, respectively);
• replacing a by x (and b by x, respectively) for a single

fresh variable x;
• adding x = a if a ∈ Σ (x = b if b ∈ Σ, respectively).
Let ϕK,Σ,a(x) = ∃~z(

∧
KΣ,a), where ~z is the sequence of

free variables inKΣ,a without the variable x and (
∧
KΣ,a) is

the conjunction of all formulas inKΣ,a. ϕK,Σ,b(x) is defined
in the same way, with a replaced by b. The following lemma
is a direct consequence of the construction.

Lemma 6 Let (K, {a}, {b}) be a labeled L-KB, Σ ⊆
sig(K) a signature, and LS a fragment of FO. The following
conditions are equivalent for any formula ϕ(x) in LS:

1. ϕ strongly Σ-separates (K, {a}, {b});

2. ϕ is an LS-interpolant for ϕK,Σ,a(x),¬ϕK,Σ,b(x).
Example 7 To illustrate Lemma 6, let Σ = {r} and K =
(O,D), with O = {A v ∀r.¬A} and D = {A(a), r(b, b)}.
Then, ¬r(x, x) strongly Σ-separates (K, {a}, {b}) and is an
interpolant for ϕK,Σ,a, ¬ϕK,Σ,b where ϕK,Σ,a, ϕK,Σ,b are
the following two formulas:
∃xb r(xb, xb) ∧Aa(x) ∧ ∀yz(r(y, z) ∧Aa(y)→ ¬Aa(z)),

∃yaAb(ya) ∧ r(x, x) ∧ ∀yz (r(y, z) ∧Ab(y)→ ¬Ab(z)).

Thus, the problem whether a labeled KB (K, P,N) is
strongly LS(Σ)-separable and the computation of a strongly
Σ-separating formula can be equivalently formulated as an
interpolant existence problem. As FO has the CIP, we obtain
the following characterization and complexity result for the
existence of strongly FO(Σ)-separating formulas.
Theorem 8 Let L ∈ DLni. The following conditions are
equivalent for any L-KB (K, {a}, {b}) and signature Σ ⊆
sig(K):

1. (K, {a}, {b}) is strongly FO(Σ)-separable;
2. ϕK,Σ,a(x) |= ¬ϕK,Σ,b(x).
Strong (L,FO)-separability with signature is EXPTIME-
complete.

The EXPTIME upper bound follows from the fact that
the complement of the problem to decide ϕK,Σ,a(x) |=
¬ϕK,Σ,b(x) can be equivalently formulated as a concept sat-
isfiability problem in the extension ALCIOu of ALCIO
with the universal role u. The lower bound can be proved by
reduction of ALC-KB satisfiability.

It follows from Theorem 8 that one can use FO theorem
provers such as Vampire to compute strongly separating for-
mulas (Hoder et al. 2012). FO is arguably too powerful,
however, to serve as a useful separation language for labeled
description logic KBs. Thus, two important questions arise:
(1) which fragment of FO is needed to obtain a strongly sep-
arating formula in case that there is a strongly separating
formula in FO? (2) What happens if the languages L ∈ DLni
are used as separation languages? For (1), one can show
that none of the languages in UCQL, L ∈ DLni, is suffi-
cient to separate a and b in Example 7. We next show that
the need for the negation of a CQ in that example is no ac-
cident. Indeed, by taking the closure BoCQALCIO(Σ) of
CQALCIO(Σ) under negation, conjunction, and disjunction
one obtains a sufficiently powerful language for (1), at least
if the KB does not admit nominals.
Theorem 9 The following conditions are equivalent for any
labeled ALCI-KB (K, P,N) and signature Σ ⊆ sig(K).

1. (K, P,N) is strongly FO(Σ)-separable;
2. (K, P,N) is strongly BoCQALCIO(Σ)-separable.

The proof of Theorem 9 uses the model-theoretic charac-
terization given in Lemma 3 and techniques introduced in
(Segoufin and ten Cate 2013). Problem (2) can be solved
by using recent results about the complexity of deciding the
existence of interpolants in DLs with nominals (Artale et al.
2021). Rather surprisingly, strong separability becomes one
exponential harder than for FO. While the upper bounds are
direct consequences of the results in (Artale et al. 2021), for
the lower bounds one has to adapt the proofs.
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Theorem 10 Let L ∈ DLni. Then strong L-separability
with signature is 2EXPTIME-complete.

7 Separability with Signature in GF and FO2

In the guarded fragment GF of FO quantification takes the
form

∀~y(α(~x, ~y)→ ϕ(~x, ~y)) and ∃~y(α(~x, ~y) ∧ ϕ(~x, ~y))

where α(~x, ~y) is an atomic formula or an equality x = y
that contains all variables in ~x, ~y (Andréka, Németi, and van
Benthem 1998; Hernich et al. 2020). The two-variable frag-
ment, FO2, is the fragment of FO with only two individual
variables. For GF we admit relation symbols of arbitrary ar-
ity and equality, but no constant symbols. For FO2 we make
the same assumptions except that we admit relation symbols
of arity one and two only. The definitions of weak projective
and non-projective separability and of strong separability are
the obvious extensions of the definitions given for descrip-
tion logics. Our results do not depend on whether one admits
examples that are sets of tuples of constants of fixed but ar-
bitary length or still only considers sets of constants.

Weak FO2-separability is undecidable already with full
relational signature, in both the projective and the non-
projective case (Jung et al. 2020). For GF the situation is
different: in both cases weak GF-separability is 2EXPTIME-
complete, thus not harder than satisfiability. This result does
not generalize to restricted signatures. In fact, by adapting
the undecidability proof for conservative extensions given
in (Jung et al. 2017), one can show the following.

Theorem 11 Projective and non-projective (L,LS)-
separability with signature are undecidable for all (L,LS)
such that L contains GF3 and LS contains ALC.

We now consider strong separability. For both FO2

and GF the complexity of deciding strong separabil-
ity with full relational signature is the same as valid-
ity, thus CONEXPTIME-complete and, respectively, 2EX-
PTIME-complete (Jung et al. 2020). With restricted signa-
tures, the situation is different, and can again be analyzed in
terms of interpolant existence. The formula ϕK,Σ,a(x) con-
structed in Section 6 is not guaranteed to be in GF or FO2

even if K is a GF or, respectively, FO2-KB. It is, however,
straightforward to construct formulas in the respective frag-
ments that can serve the same purpose (either by using con-
stants or by introducing a fresh relation symbol as a guard
for D (for GF) and re-using variables (for FO2)). Thus,
strong separability in GF and FO2-KBs is again equivalent
to interpolant existence. Points 1 and 2 of the following the-
orem then follow from the CIP of FO and the complexity
of GF and FO2 (Grädel 1999; Grädel, Kolaitis, and Vardi
1997). Neither FO2 nor GF have the CIP (Comer 1969;
Pigozzi 1971; Hoogland and Marx 2002), thus separating
in FO2 and GF is less powerful than separating using FO.
The complexity of interpolant existence for GF and FO2 has
recently been studied in (Jung and Wolter 2021) and the up-
per bounds in Points 3 and 4 follow directly from the com-
plexity upper bounds for interpolant existence. The lower
bounds are obtained by adapting the proofs.

Theorem 12 1. Strong (GF,FO)-separability with signature
is 2EXPTIME-complete;

2. Strong (FO2,FO)-separability with signature is
CONEXPTIME-complete;

3. Strong GF-separability is 3EXPTIME-complete, for rela-
tional signatures;

4. Strong FO2-separability with signature is in
CON2EXPTIME and 2EXPTIME-hard, for relational
signatures.

8 Discussion
We have started investigating separability of data examples
under signature restrictions. Our main contributions are an
analysis of the separating power of several important lan-
guages and the computational complexity of deciding sepa-
rability. The following table gives an overview of the com-
plexity of separability for expressive fragments of FO with
and without signature restrictions. For Horn-DLs we refer
the reader to (Funk et al. 2019; Jung, Lutz, and Wolter 2020).
The results in the gray columns (weak, projective, with sig-
nature restriction and strong with signature restriction, re-
spectively) are shown here, the results of the first (weak,
projective, full signature), second (weak, non-projective, full
signature), and fourth (strong and full signature) column are
from (Funk et al. 2019; Jung et al. 2020).

Weak Separability Strong Separability
L prj+full full prj+rstr full rstr
ALC NEXP ? 2EXP EXP 2EXP
ALCI NEXP NEXP 2EXP EXP 2EXP
ALCO ? ? 3EXP ? 2EXP

GF 2EXP 2EXP Undec 2EXP 3EXP

FO2 Undec Undec Undec NEXP
≤CON2EXP
≥2EXP

The missing entries for ALCO are due to the fact that nom-
inals are considered for the first time in this article in the
context of separability. We conjecture that the complexity is
the same as forALC; note, however, that one has to be care-
ful when defining separability problems inALCO under the
full signature as the individuals in the positive and negative
examples should not be allowed in separating concepts.

Further interesting theoretical problems include: what is
the complexity of weak projective separability with signa-
ture for ALCIO, where the bisimulation characterization
given in Theorem 4 does not hold? What is the complexity
of non-projective weak separability with signature (and con-
servative extensions) for the DLs in DLni? From a practical
viewpoint, it would be of interest to investigate systemati-
cally the size of separating concepts and to develop algo-
rithms for computing them, if they exist. Recall that such an
algorithm is already provided (by the relation of separating
formulas to Craig interpolants) in the case of strong separa-
bility and it would be of interest to evaluate empirically the
shape and size of Craig interpolants in FO in that case.

Acknowledgements
Carsten Lutz was supported by DFG CRC 1320 Ease. Frank
Wolter was supported by EPSRC grant EP/S032207/1.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

398



References
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