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Abstract

Recently, we have proposed a framework for verification of
agents’ abilities in asynchronous multi-agent systems (MAS),
together with an algorithm for automated reduction of mod-
els. The semantics was built on the modeling tradition of
distributed systems. As we show here, this can sometimes
lead to counterintuitive interpretation of formulas when rea-
soning about the outcome of strategies. First, the seman-
tics disregards finite paths, and yields unnatural evaluation
of strategies with deadlocks. Secondly, the semantic repre-
sentations do not allow to capture the asymmetry between
proactive agents and the recipients of their choices. We pro-
pose how to avoid the problems by a suitable extension of
the representations and change of the execution semantics for
asynchronous MAS. We also prove that the model reduction
scheme still works in the modified framework.

1 Introduction
Alternating-time temporal logic ATL∗ (Alur, Henzinger,
and Kupferman 2002; Schobbens 2004) is probably the
most popular logic to describe interaction in multi-agent
systems. Formulas of ATL∗ allow to express statements
about what agents (or groups of agents) can achieve. For
example, 〈〈taxi〉〉G¬fatality says that the autonomous cab
can drive in such a way that nobody is ever killed, and
〈〈taxi, passg〉〉F destination expresses that the cab and the
passenger have a joint strategy to arrive at the destination,
no matter what any other agents do. Such statements allow
to express important functionality and safety requirements
in a simple and intuitive way. Moreover, the provide input
to algorithms and tools for verification, that have been in
constant development for over 20 years (Alur et al. 1998;
Chen et al. 2013; Busard et al. 2014; Huang and van der
Meyden 2014; Cermák et al. 2014; Lomuscio, Qu, and
Raimondi 2017; Cermák, Lomuscio, and Murano 2015;
Belardinelli et al. 2017b; Belardinelli et al. 2017a; Jamroga
et al. 2019; Kurpiewski et al. 2021).
Asynchronous semantics and partial-order reduction.
The semantics of strategic logics is traditionally based on
synchronous concurrent game models. However, many real-
life systems are inherently asynchronous or can be more
conveniently modeled as asynchronous.

We have recently proposed how to adapt the semantics
of ATL∗ to asynchronous MAS (Jamroga et al. 2018). We

also showed that the technique of partial order reduction
(POR) (Peled 1993; Peled 1994; Lomuscio, Penczek, and
Qu 2010b) can be adapted to verification of strategic abili-
ties in asynchronous MAS. In fact, the (almost 30 years old)
POR for linear time logic LTL can be taken off the shelf
and applied to a significant part of ATL∗ir, the variant of
ATL∗ based on strategies with imperfect information and
imperfect recall. This is very important, as the practical ver-
ification of asynchronous systems is often impossible due to
the state- and transition-space explosion resulting from in-
terleaving of local transitions. POR allows for a significant,
sometimes even exponential, reduction of the models.

Semantic side effects. While the result is appealing, there
is a sting in its tail: the ATL∗ semantics in (Jamroga et
al. 2018) leads to counterintuitive interpretation of strate-
gic properties. First, it disregards finite paths, and evalu-
ates some intuitively losing strategies as winning (and vice
versa). Secondly, it provides a flawed interpretation of the
concurrency fairness assumption. Thirdly, the representa-
tions and their execution semantics do not allow to capture
the asymmetry between the agents that control which syn-
chronization branch will be taken, and those influenced by
their choices. We tentatively indicated some of the problems
in the extended abstract (Jamroga, Penczek, and Sidoruk
2021). In this paper, we demonstrate them carefully, and
propose how they can be avoided.

Contribution. Our contribution is threefold. First, we dis-
cuss in detail the semantic side effects of adding strate-
gic reasoning on top of classical models of concurrent sys-
tems (Priese 1983). We identify the reasons, and demon-
strate the problematic phenomena on simple examples. Sec-
ondly, we show how to avoid these pitfalls by extending
the class of representations and slightly changing the exe-
cution semantics of strategies. Specifically, we add “silent”
ε-transitions in the models and on outcome paths of strate-
gies, and allow for nondeterministic choices in the agents’
repertoires. We also identify a family of fairness-style con-
ditions, suitable for the interaction of proactive and reactive
agents. No less importantly, we prove that partial order re-
duction is still correct in the modified framework.

Motivation. The variant of ATL∗ for asynchronous sys-
tems in (Jamroga et al. 2018) was proposed mainly as a
framework for formal verification. This was backed by the
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results showing that it submits to partial order reduction.
However, a verification framework is only useful if it allows
to specify requirements in an intuitive way, so that the prop-
erty we think we are verifying is indeed the one being veri-
fied. In this paper, we show that this was not the case. We
also propose how to overcome the problems without spoil-
ing the efficient reduction scheme. The solutions are not
merely technical. In fact, they lead to a better understanding
of how strategic activity influences the overall behavior of
the system, and how it should be integrated with the tradi-
tional models of asynchronous interaction.

2 Models of Multi-agent Systems
We first recall the models of asynchronous interaction in
MAS, proposed in (Jamroga et al. 2018) and inspired
by (Priese 1983; Lomuscio, Penczek, and Qu 2010b).
Asynchronous multi-agent systems. In logical approaches
to MAS, one usually assumes synchronous actions of all the
agents (Alur, Henzinger, and Kupferman 2002; Schobbens
2004). However, many agent systems are inherently asyn-
chronous, or it is useful to model them without assuming
precise timing relationships between the actions of differ-
ent agents. Such a system can be conveniently represented
with a set of automata that execute asynchronously by inter-
leaving local transitions, and synchronize their moves when-
ever a shared event occurs. The idea is to represent the be-
havior of each agent by a finite automaton where the nodes
and transitions correspond, respectively, to the agent’s local
states and the events in which it can take part. Then, the
global behavior of the system is obtained by the interleav-
ing of local transitions, assuming that, in order for a shared
event to occur, all the corresponding agents must execute it
in their automata. This motivates the following definition.
Definition 2.1 (Asynchronous MAS). An asynchronous
multi-agent system (AMAS) S consists of n agents
Agt = {1, . . . , n}, each associated with a tuple Ai =
(Li, ιi,Evt i, Ri, Ti,PVi, Vi) including a set of local states
Li = {l1i , l2i , . . . , l

ni
i }, an initial state ιi ∈ Li, and a set

of events Evt i = {α1
i , α

2
i , . . . , α

mi
i }. An agent’s repertoire

of choices Ri : Li → 2Evti \ {∅} selects the events avail-
able at each local state. Ti : Li × Evt i ⇀ Li is a (par-
tial) local transition function such that Ti(li, α) is defined iff
α ∈ Ri(li). That is, Ti(l, α) indicates the result of executing
event α in local state l from the perspective of agent i.

Let Evt =
⋃
i∈Agt Evt i be the set of all events, andLoc =⋃

i∈Agt Li be the set of all local states in the system. For
each event α ∈ Evt , Agent(α) = {i ∈ Agt | α ∈ Evt i}
is the set of agents which have α in their repertoires; events
shared by multiple agents are jointly executed by all of them.
We assume that each agent i in the AMAS is endowed with a
disjoint set of its local propositions PVi, and their valuation
Vi : Li → 2PVi . The overall set of propositions PV =⋃
i∈Agt PVi collects all the local propositions.

As our working example, we use the following scenario.
Example 2.2 (Conference in times of epidemic). Consider
the AMAS in Figure 1, consisting of the Steering Commit-
tee Chair (sc), the General Chair (gc), and the Organizing

gc oc sc
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Figure 1: Simple asynchronous MAS: agents gc, oc, and sc. A
joint strategy of agents {gc, oc} is highlighted.

Committee Chair (oc). Faced with the Covid-19 epidemics,
sc can decide to give up the conference, or send a signal to
gc to proceed and open the meeting. Then, gc and oc jointly
decide whether the conference will be run on site or online.
In the former case, the epidemiologic risk is obviously much
higher, indicated by the atomic proposition epid.

The set of events, the agents’ repertoires of choices, and
the valuation of atomic propositions can be easily read from
the graph. Note that event proceed is shared by agents sc
and gc, and can only be executed jointly. Similarly, onsite
and online are shared by gc and oc. All the other events are
private, and do not require synchronization.

Interleaved interpreted systems. To understand the inter-
action between asynchronous agents, we use the standard
execution semantics from concurrency models, i.e., inter-
leaving with synchronization on shared events. To this end,
we compose the network of local automata (i.e., AMAS) to
a single automaton based on the notions of global states and
global transitions, see below.

Definition 2.3 (Model). Let S be an AMAS with n agents.
Its model IIS(S) extends S with: (i) the set of global
states St ⊆ L1 × . . . × Ln, including the initial state
ι = (ι1, . . . , ιn) and all the states reachable from ι by T (see
below); (ii) the global transition function T : St × Evt ⇀
St, defined by T (g1, α) = g2 iff Ti(gi1, α) = gi2 for all
i ∈ Agent(α) and gi1 = gi2 for all i ∈ Agt \ Agent(α);
(iii) the global valuation of propositions V : St → 2PV ,
defined as V (l1, . . . , ln) =

⋃
i∈Agt Vi(li).

Models, sometimes called interleaved interpreted sys-
tems (IIS), are used to provide an execution semantics to
AMAS. Intuitively, the global states in IIS(S) can be seen
as the possible configurations of local states of all the agents.
Moreover, the transitions are labeled by events that are si-
multaneously selected (in the current configuration) by all
the agents that have the event in their repertoire.

Example 2.4 (Conference). The model for the asynchronous
MAS of Example 2.2 is shown in Figure 2.

We say that event α ∈ Evt is enabled at g ∈ St if
T (g, α) = g′ for some g′ ∈ St. The set of events enabled at
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g is denoted by enabled(g). The global transition function
is assumed to be serial, i.e., at each g ∈ St there exists at
least one enabled event.

Discussion. This modeling approach is standard in theory of
concurrent systems, where it dates back to the early 1980s
and the idea of APA Nets (asynchronous, parallel automata
nets) (Priese 1983). Note that APA Nets and their models
were not proposed with causal interpretation in mind. In par-
ticular, they were not meant to capture the interaction of pur-
poseful agents that freely choose their strategies, but rather
a set of reactive components converging to a joint behavior.
Despite superficial differences, the same applies to process-
algebraic approaches to concurrency, such as CSP (Hoare
1978), CCS (Milner 1980), ACP (Bergstra and Klop 1985),
and π-calculus (Milner, Parrow, and Walker 1992).

Definition 2.1 extends that with the repertoire functions
from synchronous models of MAS (Lomuscio, van der
Meyden, and Ryan 2000; Alur, Henzinger, and Kupferman
2002). Agent i’s repertoire lists the events available to i, and
is supposed to define the space of i’s strategies. As we show
further, this is not enough in case of asynchronous MAS.

3 Reasoning About Abilities: ATL*
Alternating-time temporal logic ATL∗ (Alur, Henzinger,
and Kupferman 2002; Schobbens 2004) introduces strate-
gic modalities 〈〈A〉〉γ, expressing that agents A can enforce
the temporal property γ. A variant for asynchronous MAS
was proposed recently (Jamroga et al. 2018). We summarize
the main points in this section.

Syntax. Let PV be a set of propositional variables and Agt
the set of all agents. The language of ATL∗ is defined as
below.

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉γ,
γ ::= ϕ | ¬γ | γ ∧ γ | X γ | γU γ,

where p ∈ PV , A ⊆ Agt, X stands for “next”, and U
for “strong until”. The other Boolean operators and con-
stants are defined as usual. “Release” can be defined as
γ1 R γ2 ≡ ¬((¬γ1) U (¬γ2)). “Eventually” and “always”
can be defined as F γ ≡ true U γ and G γ ≡ false R γ.

Example 3.1 (Conference). Formula 〈〈sc〉〉F open expresses
that the Steering Chair can enforce that the conference
is eventually opened. Moreover, formula 〈〈gc, oc〉〉G¬epid
says that the General Chair and the Organizing Chair have
a joint strategy to avoid high epidemiological risk.

Strategies and outcomes. An imperfect information/im-
perfect recall strategy (ir-strategy) for i is a function
σi : Li → Evt i s.t. σi(l) ∈ Ri(l) for each l ∈ Li. We
denote the set of such strategies by Σir

i . A collective strat-
egy σA for a coalition A = (1, . . . ,m) ⊆ Agt is a tuple
of strategies, one per agent i ∈ A. The set of A’s collec-
tive ir strategies is denoted by Σir

A. We will sometimes use
σA(g) = (σa1(g), . . . , σam(g)) to denote the tuple of A’s
selections at state g.

Example 3.2 (Conference). A collective strategy for the
General Chair and the OC Chair is shown in Figure 1.

An infinite sequence of global states and events π =

g0α0g1α1g2 . . . is called a path if gi
αi−→ gi+1 for every

i ≥ 0. Evt(π) = α0α1α2 . . . is the sequence of events in π,
and π[i] = gi is the i-th global state of π. ΠM (g) denotes
the set of all paths in model M starting at g. Intuitively, the
outcome of σA in g is the set of all the paths that can occur
when the agents in A follow σA and the agents in Agt \ A
freely choose events from their repertoires. To define it for-
mally, we first refine the concept of an enabled event, taking
into account the choices of A in strategy σA.

Definition 3.3 (Enabled events). Let A = (1, . . . ,m), g ∈
St, and let −→α A = (α1, . . . , αm) be a tuple of events such
that every αi ∈ Ri(gi). That is, every αi can be selected by
its respective agent i at state g. We say that event β ∈ Evt
is enabled by −→α A at g ∈ St iff

• for every i ∈ Agent(β) ∩A, we have β = αi, and
• for every i ∈ Agent(β) \A, it holds that β ∈ Ri(gi).

Thus, β is enabled by −→α A if all the agents that “own”
β can choose β for execution, even when −→α A has been se-
lected by the coalitionA. We denote the set of such events by
enabled(g,−→α A). Clearly, enabled(g,−→α A) ⊆ enabled(g).

Example 3.4 (Conference). Consider state g = 000 and
the choices of agents A = {gc, oc} shown in Figure 1, i.e.,−→α A = (proceed, online). The only events enabled by −→α A
are proceed and giveup. Event onsite is not enabled be-
cause A chose different events for execution; online is not
enabled because it requires synchronization which is impos-
sible at 000.

Definition 3.5 (Outcome paths). The outcome of strategy
σA ∈ Σir

A in state g ∈ St is the set outM (g, σA) ⊆ ΠM (g)
such that π = g0α0g1α1g2 · · · ∈ outM (g, σA) iff g0 = g,
and ∀i ≥ 0 αi ∈ enabled(π[i], σA(π[i])).

One often wants to look only at paths that do not consis-
tently ignore agents whose choice is always enabled. For-
mally, a path π satisfies concurrency-fairness (CF) if there
is no event α enabled in all states of π from π[n] on and such
that for every αi actually executed in π[i], i = n, n+ 1, . . . ,
we have Agent(α) ∩ Agent(αi) = ∅. We denote the set of
all such paths starting at g by ΠCF

M (g).

Definition 3.6 (CF-outcome). The CF-outcome of σA ∈
Σir
A is defined as outCF

M (g, σA) = outM (g, σA) ∩ΠCF
M (g).

Strategic ability for asynchronous systems. The seman-
tics of ATL∗ir in AMAS is defined by the following clause
for strategic modalities (Jamroga et al. 2018):

M, g |=
ir
〈〈A〉〉γ iff there is a strategy σA ∈ Σir

A s.t.
outM (g, σA) 6= ∅ and, for each path π ∈ outM (g, σA),
we have M,π |=

ir
γ.

The clauses for Boolean and temporal operators are stan-
dard. Moreover, the concurrency-fair semantics |=CF

ir
is ob-

tained by replacing outM (g, σA) with outCF
M (g, σA) in the

above clause.

Example 3.7 (Conference). Clearly, formula
〈〈gc, oc〉〉G¬epid holds in (Mconf , 000), in both |=

ir

and |=CF
ir

semantics. To see that, fix σgc(0) = proceed and
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Figure 2: Model Mconf for the conference scenario. We highlight
the transitions enabled by the strategy in Figure 1, and the resulting
reachable states.

σgc(1) = σoc(0) = online in the collective strategy of
{gc, oc}. Note also that Mconf , 000 |=

ir
¬〈〈gc, oc〉〉F closed

because, after executing proceed and online (or onsite),
event rest may be selected forever. On the other
hand, such paths are not concurrency-fair, and thus
Mconf , 000 |=CF

ir
〈〈gc, oc〉〉F closed.

Discussion. Strategic play assumes proactive attitude: the
agents in 〈〈A〉〉 are free to choose any available strategy
σA. This is conceptually consistent with the notion of
agency (Bratman 1987). At the same time, it is somewhat
at odds with the standard semantics of concurrent processes,
where the components cannot stubbornly refuse to synchro-
nize if that is the only way to proceed with a transition. This
seems a minor problem, but it is worrying that a strategy can
have the empty set of outcomes, and equally worrying that
such strategies are treated differently from the other ones.
Indeed, as we will show in the subsequent sections, the se-
mantics proposed in (Jamroga et al. 2018) leads to a coun-
terintuitive interpretation of strategic formulas.

4 Semantic Problems and How to Avoid Them
Starting with this section, we describe some problematic
phenomena that follow from the straightforward combina-
tion of strategic ability with models of concurrent systems,
proposed in (Jamroga et al. 2018). We also show how to ex-
tend the representations and modify their execution seman-
tics to avoid the counterintuitive interpretation of formulas.

4.1 Deadlock Strategies and Finite Paths
An automata network is typically required to produce no
deadlock states, i.e., every global state in its composition
must have at least one outgoing transition. Then, all the
maximal paths are infinite, and it is natural to refer to only
infinite paths in the semantics of temporal operators. In case
of AMAS, the situation is more delicate. Even if the AMAS
as a whole produces no deadlocks, some strategies might,
which makes the interpretation of strategic modalities cum-
bersome. We illustrate this on the following example.
Example 4.1 (Conference). Recall the 3-agent AMAS of
Figure 1, together with its model Mconf (Figure 2). Clearly,

0

1 2

3

voteda

4

votedb

votea voteb

send send

idlev idlev

0

1

votea voteb

send

idleebm

Figure 3: Casting a ballot: voter v (left) and EBM ebm (right)

Mconf has no deadlock states. Let us now look at the col-
lective strategies of coalition {gc, oc}, with agent sc serving
as the opponent. It is easy to see that the coalition has no
way to prevent the opening of the conference, i.e., it can-
not prevent the system from reaching state 101. However,
the strategy depicted in Figure 1 produces only one infi-
nite path: (000 giveup 002 giveup . . . ). Since the ATL∗

semantics in Section 3 disregards finite paths, we get that
Mconf , 000 |= 〈〈gc, oc〉〉G¬open, which is counterintuitive.

Things can get even trickier. In particular, the outcome of
a strategy can be empty – in fact, it may even happen that a
coalition has only strategies with empty outcomes.

Example 4.2 (Voting). Consider the AMAS in Figure 3 that
depicts a simple voting scenario. A voter v can fill in an
electronic ballot with a vote for candidate a or b, and then
push the send button. The Electronic Ballot Machine ebm
duly registers the choices of the voter. Note that all the
joint strategies of {v, ebm} produce only finite runs. This
is because ebm must choose a single event at location 0
in a memoryless strategy, and thus v and ebm are bound
to “miscoordinate” either at the first or at the second step.
Since finite paths are not included in the outcome sets, and
the semantics in Section 3 rules out strategies with empty
outcomes, we get that IIS(Svote), 00 |= ¬〈〈v, ebm〉〉F>,
which is quite strange.

Notice that removing the non-emptiness requirement
from the semantic clause in Section 3 does not help. In that
case, any joint strategy of {v, ebm} could be used to demon-
strate that 〈〈v, ebm〉〉G⊥.

4.2 Solution: Adding Silent Transitions
To deal with the problem, we augment the model of the sys-
tem with special “silent” transitions, labeled by ε, that are
fired whenever no “real” transition can occur. In our case,
the ε-transitions account for the possibility that some agents
miscoordinate and thus block the system. Moreover, we re-
define the outcome set of a strategy so that an ε-transition is
taken whenever such miscoordination occurs.

Definition 4.3 (Undeadlocked IIS). Let S be an AMAS, and
assume that no agent in S has ε in its alphabet of events. The
undeadlocked model of S, denoted Mε = IISε(S), extends
the model M = IIS(S) as follows:

• EvtMε = EvtM ∪ {ε}, where Agent(ε) = ∅;
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Figure 4: Undeadlocked IIS for the voting scenario

• For each g ∈ St, we add the transition g ε−→ g iff there is
a selection of agents’ choices −→α A = (α1, . . . , αk), αi ∈
Ri(g), such that enabledM (g,−→α A) = ∅. In that case, we
also fix enabledMε(g,

−→α A) = {ε}.
In other words, “silent” loops are added in the states where
a combination of the agents’ actions can block the system.

Paths are defined as in Section 2. The following is trivial.

Proposition 4.4. For any AMAS S, any state
g ∈ IISε(S), and any strategy σA, we have that
enabledIISε(S)(g, σA(state)) 6= ∅.

Example 4.5 (Conference). The undeadlocked model
Mε

conf of the conference scenario (Example 2.2) extends
the model in Figure 2 with one ε-loop at state 101.
The loop models the situation when the agents choose
(onsite, online, proceed) or (online, onsite, proceed).
We leave it for the reader to check that, at the other states, all
the combinations of choices enable at least one transition.

For the strategy in Example 4.1, notice that
its outcome in Mε

conf contains two infinite paths:
not only (000 giveup 002 giveup 002 . . . ), but also
(000 proceed 101 ε 101 . . . ). Since the latter path
invalidates G¬open, we get that Mconf , 000 6|=
〈〈gc, oc〉〉G¬open, as expected.

Example 4.6 (Voting). The undeadlocked model for the
voting scenario is presented in Figure 4. Note that for-
mula ¬〈〈v, ebm〉〉F> does not hold anymore, because the
joint strategies of {v, ebm} have nonempty outcomes in
IISε(Svote). On the other hand, the formula 〈〈v〉〉F voteda
(and even 〈〈v, ebm〉〉F voteda) does not hold, which is con-
trary to the intuition behind the modeling. We will come
back to this issue in Section 7.

Discussion. Adding “silent” transitions to account for the
control flow when no observable event occurs is pretty stan-
dard. The crucial issue is where to add them. Here, we add
the ε-transitions whenever a subset of agents might choose
to miscoordinate (and stick to their choices). Again, this
is in line with the notion of agency and strategic play in
MAS (Bratman 1987; Pauly 2001b). In the next section, we
will discuss a concept of “agent fairness” where the addition
of ε-transitions is constrained by the assumption that only a
given subset of agents is fully proactive.

The examples used in this section expose an important
feature of agent systems. The execution semantics of con-
current processes is often defined by a state-transition graph
(or, alternatively, by the tree of paths generated by the graph,
i.e., the tree unfolding of the graph). For systems that in-
volve proactive agents, this is not enough. Rather, the execu-
tion semantics should map from the possible coalitions and
their available strategies to the outcome sets of those strate-
gies. In this sense, the possible behaviors of an agent system
should be understood via the set of possible execution trees,
rather than a single tree. This is consistent with the theoret-
ical model of MAS in (Goranko and Jamroga 2015), based
on path effectivity functions.

An alternative way out of the problem is to include fi-
nite maximal paths in the outcomes of strategies. How-
ever, the interpretation of strategic modalities over finite
paths is rather nonstandard (Belardinelli et al. 2018) and
may pose new problems in the asynchronous setting. More-
over, our approach allows to reuse the existing techniques
and tools, which are typically built for infinite path se-
mantics, including the verification and partial order reduc-
tion functionalities of tools like SPIN (Holzmann 1997) and
STV (Kurpiewski et al. 2021). In general, this is a design
dilemma between changing the logical semantics of the for-
mulas vs. updating the execution semantics of the represen-
tations. Here, we choose the latter approach.

5 Playing Against Reactive Opponents
The solution proposed in Section 4.2 is based on the assump-
tion that an agent is free to choose any event in its repertoire
– even one that prevents the system from executing anything.
The downside is that, for most systems, only safety goals
can be achieved (i.e., properties specified by 〈〈A〉〉Gϕ). For
reachability, there is often a combination of the opponents’
choices that blocks the execution early on, and prevents the
coalition from reaching their goal. In this section, we de-
fine a fairness-style condition that constrains the choices of
more “reactive” opponents. We also show a construction to
verify the abilities of the coalition over the resulting paths in
a technically simpler way.

5.1 Opponent-Reactiveness
Given a strategy σA, the agents in A are by definition as-
sumed to be proactive. Below, we propose an execution
semantics for σA which assumes that A cannot be stalled
forever by miscoordination on the part of the opponents.

Definition 5.1 (Opponent-reactiveness). A path π =
g0α0g1α1g2 . . . in IISε(S) is opponent-reactive for
strategy σA iff we have that αn = ε implies
enabled(gn, σA(gn)) = {ε}. In other words, whenever the
agents outside A have a way to proceed, they must proceed.
The reactive outcome of σA in g, denoted outReact(g, σA), is
the restriction of out(g, σA) to its opponent-reactive paths.

Example 5.2 (Conference). Consider the un-
deadlocked model Mε

conf of Example 4.5. Path
(000 proceed 101 ε 101 . . . ) is opponent-reactive for
the strategy of agents {gc, oc} shown in Figure 1.
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Figure 5: The auxiliary agent added in Sε

On the other hand, consider coalition {gc, sc}, and the
following strategy of theirs: σgc(0) = proceed, σgc(1) =
onsite, σsc(0) = proceed. The same path is not opponent-
reactive for the strategy because the only opponent (oc) has
a response at state 101 that enables a “real” transition
(onsite).

Proposition 5.3. In outReact
IISε(S)(g, σA), the only possible

occurrence of ε is as an infinite sequence of ε-transitions
following a finite prefix of “real” transitions.

Proof. Take any π = g0α0g1α1g2 · · · ∈ outReact
IISε(S)(g, σA)

such that ε occurs on π, and let i be the first posi-
tion on π st. αi = ε. By Definition 5.1, we get that
enabled(gi, σA(gi)) = {ε}. Moreover, statei+1 = gi, so
also enabled(gi+1, σA(gi+1)) = {ε}. Thus, αi+1 = ε. It
follows by simple induction that αj = ε for every j ≥ i.

The opponent-reactive semantics |=React
ir

of ATL∗ is ob-
tained by replacing outM (g, σA) with outReact

M (g, σA) in the
semantic clause presented in Section 3.

5.2 Encoding Strategic Deadlock-Freeness Under
Opponent-Reactiveness in AMAS

If we adopt the assumption of opponent-reactiveness for
coalition A, there is an alternative, technically simpler way
to obtain the same semantics of strategic ability as in Sec-
tion 4.2. The idea is to introduce the “silent” transitions al-
ready at the level of the AMAS.

Definition 5.4 (Undeadlocked AMAS). The undeadlocked
variant of S is constructed from S by adding an auxiliary
agent Aε with Lε = {qε0}, ιε = qε0, Evtε = {ε}, Rε(qε0) =
{ε}, Ti(qε0, ε) = qε0, and PVε = ∅. In other words, we
add a module with a single local state and a “silent” loop
labeled by ε, as in Figure 5. We will denote the undeadlocked
variant of S by Sε. Note that Sε can be seen as a special
case of AMAS. Thus, the outcome sets and reactive outcomes
of strategies in IIS(Sε) are defined exactly as before.

Obviously, the extra agent adds ε-loops to the model of S,
i.e., to IIS(S). We show now that, under the assumption
of opponent-reactiveness, the view of A’s strategic ability in
the undeadlocked AMAS Sε corresponds precisely to A’s
abilities in the undeadlocked model of the original AMAS
S, i.e., IISε(S). This allows to deal with deadlocks and
finite paths without redefining the execution semantics for
AMAS, set in Definition 2.3, and thus use the existing tools
such as SPIN (Holzmann 1997) in a straightforward way.

Proposition 5.5. Let A ⊆ Agt. In outReact
IIS(Sε)(g, σA), the

only possible occurrence of ε is as an infinite suffix of ε-
transitions.

Proof. Analogous to Proposition 5.3.

Theorem 5.6. For every strategy σA in S, we have that

outReact
IISε(S)(g, σA) = outReact

IIS(Sε)(g, σA).

Proof. outReact
IISε(S)(g, σA) ⊆ outReact

IIS(Sε)(g, σA)outReact
IISε(S)(g, σA) ⊆ outReact

IIS(Sε)(g, σA)outReact
IISε(S)(g, σA) ⊆ outReact

IIS(Sε)(g, σA): Consider

any π = g0α0g1α1g2 · · · ∈ outReact
IISε(S)(g, σA). If there are

no ε-transitions on π, we have that π ∈ outReact
IIS(S)(g, σA) ⊆

outReact
IIS(Sε)(g, σA), QED. Suppose that π includes ε-

transitions, with αi being the first one. Then, we have
that αj 6= ε and αj ∈ enabledIISε(S)(gj , σA(gj)) for ev-
ery j < i, hence also αj ∈ enabledIIS(S)(gj , σA(gj)) ⊆
enabledIIS(Sε)(gj , σA(gj)). (*)
By Proposition 5.3, gj = gi and αj = ε for every
j ≥ i. By Definition 5.1, enabledIISε(S)(gj , σA(gj)) =

{ε}. Hence, enabledIIS(S)(gj , σA(gj)) = ∅ and
enabledIIS(Sε)(gj , σA(gj)) = {ε}. (**)
Thus, by (*) and (**), π ∈ outReact

IIS(Sε)(g, σA), QED.

outReact
IIS(Sε)(g, σA) ⊆ outReact

IISε(S)(g, σA)outReact
IIS(Sε)(g, σA) ⊆ outReact

IISε(S)(g, σA)outReact
IIS(Sε)(g, σA) ⊆ outReact

IISε(S)(g, σA): Analogous, with
Proposition 5.5 used instead of Proposition 5.3.

Discussion. Opponent-reactiveness is to strategic properties
what fairness conditions are to temporal properties of asyn-
chronous systems. If an important property cannot be sat-
isfied in all possible executions, it may at least hold under
some reasonable assumptions about which events can be se-
lected by whom in response to what. Clearly, the condition
can be considered intuitive by some and problematic by oth-
ers. The main point is, unlike in the previous semantics, now
it is made explicit, and can be adopted or rejected depending
on the intuition.

Note that, under the reactiveness assumption, we have that
Mε

conf , 000 |=React
ir

〈〈gc, sc〉〉F epid and Mε
conf , 000 |=React

ir

〈〈oc〉〉G¬epid. This seems to contradict the commonly ac-
cepted requirement of regularity in games (Pauly 2001a).
However, the contradiction is only superficial, as the two for-
mulas are evaluated under different execution assumptions:
for the former, we assume agent oc to be reactive, whereas
the latter assumes gc and sc to react to the strategy of oc.

6 Concurrency-Fairness Revisited
In Def. 3.6, we recalled the notion of concurrency-fair out-
come of (Jamroga et al. 2018). The idea was to remove from
out(g, σA) the paths that consistently ignore agents whose
events are enabled at the level of the whole model. Unfortu-
nately, the definition has unwelcome side effects, too.

6.1 Problems with Concurrency-Fairness
We first show that, contrary to intuition, Definition 3.6 auto-
matically disregards deadlock paths, i.e., paths with finitely
many “real” transitions.

Proposition 6.1. Consider an AMAS S and a path π in
IISε(S) such that, from some point i on, π includes only
ε-transitions. Then, for every strategy σA in S, we have that
π /∈ outCF

IISε(S)(g, σA).
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Proof. Take π as above, i.e., π = g0α0g1α1 . . . giεgiεgi . . . .
Since the transition function in IISε(S) is serial, there must
be some event β 6= ε enabled in gi. In consequence, β
is always enabled from i on, but none of its “owners” in
Agent(β) executes an event on π after i. Hence, π does not
satisfy CF, and does not belong to outCF

IISε(S)(g, σA) for
any strategy σA.

Thus, the CF condition eliminates all the deadlock paths
from the outcome of a strategy (for instance, the path
(000 proceed 101 ε 101 . . . ) in Example 4.5). In conse-
quence, reasoning about concurrency-fair paths suffers from
the problems that we identified in Section 4.1, even for un-
deadlocked models. Moreover, combining the temporal and
strategic fairness (i.e., CF and React) collapses the undead-
locked execution semantics altogether, see below.

Proposition 6.2. Reasoning about reactive and fair out-
comes in an undeadlocked model reduces to reasoning
about the fair executions in the original model with-
out ε-transitions. Formally, let outReact,CF

M (g, σA) =
outReact

M (g, σA) ∩ outCF
M (g, σA). For any AMAS S and any

strategy σA in S, we have:

outReact,CF
IISε(S)(g, σA) = outCF

IIS(S)(g, σA).

Proof. Clearly, we have outCF
IIS(S)(g, σA) ⊆

outReact,CF
IISε(S)(g, σA), since outReact,CF

IISε(S)(g, σA) can only add

to outCF
IIS(S)(g, σA) new paths that include ε-transitions.

For the other direction, take any π ∈ outReact,CF
IISε(S)(g, σA),

and suppose that it contains an ε-transition. By Propo-
sition 5.3, it must have an infinite suffix consisting
only of ε-transitions. Then, by Proposition 6.1, π /∈
outCF

IISε(S)(g, σA), which leads to a contradiction. Thus,
π contains only transitions from IIS(S), and hence π ∈
outCF

IIS(S)(g, σA), QED.

6.2 Strategic Concurrency-Fairness
So, how should fair paths be properly defined for strategic
reasoning? The answer is simple: in relation to the outcome
of the strategy being executed.

Definition 6.3 (Strategic CF). π = g0α0g1α1g2 . . . is a
concurrency-fair path for strategy σA and state g iff g0 = g,
and there is no eventα s.t., for some n and all i ≥ n, we have
α ∈ enabled(π[i], σA(π[i])) and Agent(α)∩Agent(αi) =
∅. That is, agents with an event always enabled by σA can-
not be ignored forever.

The SCF-outcome of σA ∈ Σir
A is defined

as outSCF
M (g, σA) = {π ∈ outM (g, σA) |

π is concurrency-fair for σA, g}.
The following formal results show that SCF does not suf-

fer from the problems demonstrated in Section 6.1.

Proposition 6.4. There is an AMAS S, a strategy σA in
S, and a deadlock path π in IISε(S) such that π is
concurrency-fair for σA.

Proof. To demonstrate the property, it suffices to take the
AMAS and the strategy of {gc, oc} depicted in Figure 1,
and the path π = (000 proceed 101 ε 101 . . . ).

Theorem 6.5. Opponent-reactiveness and strategic CF
are incomparable. Formally, there exists an AMAS S,
a state g in IISε(S), and a strategy σA such that
outSCF

IISε(S)(g, σA) 6⊆ outReact
IISε(S)(g, σA), and vice versa.

Proof. Consider the undeadlocked model Mε
conf in Ex-

ample 4.5, and the strategy discussed in Example 5.2:
σgc(0) = proceed, σgc(1) = onsite, σsc(0) = proceed.
Let π1 = (000 proceed 101 ε 101 onsite 211 rest 211
handle 211 rest 211 . . . ). We have π1 ∈ outSCF

Mεconf
(g, σA),

but π1 /∈ outReact
Mεconf

(g, σA). On the other hand, for path π2 =

(000 proceed 101 onsite 211 rest 211 rest . . . ), we have
that π2 /∈ outSCF

Mεconf
(g, σA), but π2 ∈ outReact

Mεconf
(g, σA).

Discussion. Theorem 6.5 suggests that reactiveness and fair-
ness conditions arise from orthogonal concerns. The two
concepts refer to different factors that influence which se-
quences of events can occur. Opponent-reactiveness con-
strains the choices that (a subset of) the agents can select.
Concurrency-fairness and its strategic variant restrict the
way in which the “scheduler” (Nature, Chance, God...) can
choose from the events selected by the agents.

7 Strategies in Asymmetric Interaction
Now, we point out that AMAS are too restricted to model the
strategic aspects of asymmetric synchronization in a natural
way (e.g., a sender sending a message to a receiver).

7.1 Simple Choices are Not Enough
We demonstrate the problem on an example.

Example 7.1 (Voting). As already pointed out, we have
IISε(Svote), 00 6|= 〈〈v, ebm〉〉F voteda in the model of Ex-
ample 4.2. This is because receiving a vote for a, a vote
for b, and the signal to send the vote, belong to different
choices in the repertoire of the EBM, and the agent can
only select one of them in a memoryless strategy. More-
over, formula 〈〈ebm〉〉F voteda holds under the condition of
opponent-reactiveness, i.e., the EBM can force a reactive
voter to vote for a selected candidate. Clearly, it was not the
intention behind the AMAS: the EBM is supposed to listen to
the choice of the voter. No matter whose strategies are con-
sidered, and who reacts to whose actions, the EBM should
have no influence on what the voter votes for.

The problem arises because the repertoire functions in
AMAS are based on the assumption that the agent can
choose any single event in Ri(li). This does not allow for
natural specification of situations when the exact transition
is determined by another agent. For the AMAS in Exam-
ple 4.2, the decision to vote for candidate a or b (or to press
send) should belong solely to the voter. Thus, setting the
EBM repertoire as Rebm(0) = {votea, voteb, send} does
not produce a good model of strategic play in the scenario.
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7.2 AMAS with Explicit Control
As a remedy, we extend the representations so that one can
indicate which agent(s) control the choice between events.

Definition 7.2 (AMAS with explicit control). Everything
is exactly as in Definition 2.1, except for the repertoires of
choices, which are now functionsRi : Li → 22

Evti\{∅}\{∅}.
That is,Ri(l) lists nonempty subsets of eventsX1, X2, · · · ⊆
Evt i, each capturing an available choice of i at the local
state l. If the agent chooses Xj = {α1, α2, . . .}, then only
an event in that set can be executed within the agent’s mod-
ule; however, the agent has no firmer control over which one
will be fired. Accordingly, we assume that Ti(l, α) is defined
iff α ∈

⋃
Ri(l).1

Notice that the AMAS of Definition 2.1 can be seen as a
special case where Ri(l) is always a list of singletons. The
definitions of IIS and undeadlocked IIS stay the same, as
agents’ repertoires of choices are not actually used to gener-
ate the state-transition structure for the model of S. More-
over, undeadlocked AMAS with explicit control can be ob-
tained analogously to Definition 5.4 by adding the auxiliary
“epsilon”-agent with Rε(qε0) = {{ε}} in its sole local state.

Strategies still assign choices to local states; hence, the
type of agent i’s strategies is now σi : Li → 2Evti \ {∅} s.t.
σi(l) ∈ Ri(l). The definition of the outcome set is updated
accordingly, see below.

Definition 7.3 (Outcome sets for AMAS with explicit con-
trol). First, we lift the set of events enabled by −→α A =
(α1, . . . , αm) at g to match the new type of repertoires and
strategies. Formally, β ∈ enabled(g,−→α A) iff: (1) for ev-
ery i ∈ Agent(β) ∩ A, we have β ∈ αi, and (2) for every
i ∈ Agent(β) \A, it holds that β ∈

⋃
Ri(g

i).
The outcome, React-outcome, and SCF-outcome of σA in

M, g are given as in Definitions 3.5, 5.1, and 6.3.

Example 7.4 (Voting). We improve our voting model by as-
suming repertoires of choices for the voter and the EBM
as follows: Rebm(0) = {{votea, voteb, send}}, Rv(0) =
{{votea}, {voteb}}, Rv(1) = Rv(2) = {{send}}, etc.
That is, the voter’s choices are as before, but the EBM only
listens to what the voter selects.

Clearly, 〈〈v, ebm〉〉F voteda holds in the new AMAS.
Moreover, 〈〈ebm〉〉F voteda does not hold anymore, even as-
suming opponent-reactiveness.

It is easy to see that Propositions 4.4, 5.3, 5.5, and 6.4,
as well as Theorems 5.6 and 6.5 still hold in AMAS with
explicit control.

Discussion. When reasoning about strategic play of asyn-
chronous agents, two kinds of asymmetry come into the pic-
ture. On the one hand, the processes (agents) being modeled
often synchronize in an asymmetric way. For example, the
sender chooses which message to send to the receiver. On
the other hand, the agents A in formula 〈〈A〉〉ϕ choose the
strategy and thus push the other agents to respond accord-
ingly. The variant of AMAS introduced in (Jamroga et al.

1For a set of sets X , we use
⋃

X to denote
⋃

x∈X x.

2018) does not allow to capture the former kind of asymme-
try. In consequence, the choice between the available syn-
chronization branches belongs solely to the agents indicated
by the formula. Unfortunately, there is no natural way to
model the converse situation, i.e., when the agents in 〈〈A〉〉
are forced by the choices of their opponents. With the new
variant of AMAS, we extend the representations so that the
modeler can explicitly specify the degree of autonomy of
each participating agent. Without that, the degree of auton-
omy is implicit and comes from the formula being evaluated.

Various forms of asymmetric synchronization are present
in most process algebras. For example, π-calculus distin-
guishes between the action c〈a〉 of sending the value a on
channel c, and action c(x) of listening on channel c and stor-
ing whatever comes in variable x. CSP goes further, and
allows for a similar degree of flexibility to ours through suit-
able combinations of deterministic choice, nondeterministic
choice, and interface parallel operators. Other synchroniza-
tion primitives are also possible, see e.g. (Bloem et al. 2015).
Instead of allowing for multiple synchronization primitives,
we come up with a single general primitive that can be in-
stantiated to cover different kinds of interaction.

We note in passing the similarity of our new reper-
toire functions in Definition 7.2 to state effectivity func-
tions (Pauly 2001b; Pauly 2002) and especially alternating
transition systems (Alur, Henzinger, and Kupferman 1998).

8 Partial Order Reduction Still Works
Partial order reduction (POR) has been defined for temporal
and temporal-epistemic logics without “next” (Peled 1993;
Gerth et al. 1999; Lomuscio, Penczek, and Qu 2010b), and
recently extended to strategic specifications (Jamroga et al.
2018). The idea is to take a network of automata (AMAS
in our case), and use depth-first search through the space
of global states to generate a reduced model that satisfies
exactly the same formulas as the full model. Essentially,
POR removes paths that change only the interleaving order
of an “irrelevant” event with another event. Importantly, the
method generates the reduced model directly from the rep-
resentation, without generating the full model at all.

8.1 Correctness of POR in the New Semantics
POR is a powerful technique to contain state-space explo-
sion and facilitate verification, cf. e.g. the experimental re-
sults in (Jamroga et al. 2020). In this paper, we extend the
class of models, and modify their execution semantics. We
need to show that the reduction algorithm in (Jamroga et al.
2018), defined for the flawed semantics of ability, is still cor-
rect after the modifications. Our main technical result in this
respect is Theorem 7.1, presented below. The detailed def-
initions, algorithms and proofs are technical (and rather te-
dious) adaptations of those in (Jamroga et al. 2018). We omit
them here for lack of space, and refer the inquisitive reader
to the extended version of the paper (Jamroga, Penczek, and
Sidoruk 2020).

Theorem 7.1. Let M = IIS (Sε), Mε = IISε(S) and let
A ⊆ Agt be a subset of agents. Moreover, let M ′ ⊆ M
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and Mε′ ⊆ Mε be the reduced models generated by DFS
with the choice of enabled events E(g′) given by conditions
C1, C2, C3 and the independence relation IA,PV . For each
sATL∗ir formula ϕ over PV , that refers only to coalitions
Â ⊆ A, we have:

1. M, ι |=React
ir

ϕ iff M ′, ι′ |=React
ir

ϕ, and

2. Mε, ι |=ir ϕ iff Mε′, ι′ |=ir ϕ.

Thus, the reduced models can be used to model-check the
sATL∗ir properties of the full models.

Proof idea. We aim at showing that the full model M and
the reduced one M ′ satisfy the same formulas of ATL∗ir re-
ferring only to coalitions Â ⊆ A and containing no nested
strategic operators. Thanks to the restriction on the for-
mulas, the proof can be reduced to showing that M ′ sat-
isfies the condition AEA, which states that for each strat-
egy and for each path of the outcome of this strategy in
M there is an equivalent path in the outcome of the same
strategy in M ′. In order to show that AEA holds, we
use the conditions on the selection of events E(g′) to be
enabled at state g′ in M ′. The conditions include the
requirement that ε is always selected, together with the
three conditions C1,C2,C3 adapted from (Peled 1994;
Clarke, Grumberg, and Peled 1999; Jamroga et al. 2018).

Intuitively, C1 states that, along each path π in M which
starts at g′, each event that is dependent on an event inE(g′)
cannot be executed in M unless an event in E(g′) is exe-
cuted first in M . C2 says that E(g′) either contains all the
events, or only events that do not change the values of rele-
vant propositions. C3 guarantees that for every cycle in M ′
containing no ε-transitions, there is at least one node g′ in
the cycle for which all the enabled events of g′ are selected.

First, we show that M and M ′ are stuttering-equivalent,
i.e., they have the same sets of paths modulo stuttering (that
is, finite repetition of states on a path). The crucial observa-
tion here is that the reduction ofM under the conditions C1,
C2, C3 is equivalent to the reduction of M without the ε-
loops under the conditions C1, C2, C3 of (Peled 1994), and
then adding the ε-loops to all the states of the reduced model.
Therefore, for the paths without ε-loops the stuttering equiv-
alence can be shown similarly to (Clarke, Grumberg, and
Peled 1999, Theorem 12) while for the paths with ε-loops we
need more involved arguments in the proof. It turns out that
in addition to the fact that M and M ′ are stuttering equiva-
lent, we can show that stuttering equivalent paths of M and
M ′ have the same maximal sequence of visible events. From
that, we can prove that AEA holds.

9 Conclusions
In this paper, we reconsider the asynchronous semantics of
strategic ability for multi-agent systems, proposed in (Jam-
roga et al. 2018). We have already hinted at certain prob-
lems with the semantics in the extended abstract (Jamroga,
Penczek, and Sidoruk 2021). Here, we demonstrate in detail
how the straightforward combination of strategic reasoning
and models of distributed systems leads to counterintuitive
interpretation of formulas. We identify three main sources

of problems. First, the execution semantics does not han-
dle reasoning about deadlock-inducing strategies well. Sec-
ondly, fairness conditions need to be redefined for strategic
play. Thirdly, the class of representations lacks construc-
tions to resolve the tension between the asymmetry imposed
by strategic operators on the one hand, and the asymmetry
of interaction, e.g., between communicating parties.

We deal with the problems as follows. First, we change
the execution semantics of strategies in asynchronous MAS
by adding “silent” ε-transitions in states where no “real”
event can be executed. We also propose and study the con-
dition of opponent-reactiveness that assumes the agents out-
side the coalition to not obstruct the execution of the strategy
forever. Note that, while the assumption may produce simi-
lar interpretation of formulas as in (Jamroga et al. 2018), it
is now explicit – as opposed to (Jamroga et al. 2018), where
it was “hardwired” in the semantics. The designer or verifier
is free to adopt it or reject it, depending on their view of how
the agents in the system behave and choose their actions.

Secondly, we propose a new notion of strategic
concurrency-fairness that selects the fair executions of a
strategy. Thirdly, we allow for nondeterministic choices in
agents’ repertoires. This way, we allow to explicitly specify
that one agent has more control over the outcome of an event
than the other participants of the event.

The main technical result consists in proving that partial
order reduction for strategic abilities (Jamroga et al. 2018) is
still correct after the semantic modifications. Thus, the new,
more intuitive semantics admits efficient verification.
Beyond ATLir. In this study, we have concentrated on the
logic ATL∗ir, i.e., the variant of ATL∗ based on memory-
less imperfect information strategies. Clearly, the concerns
raised here are not entirely (and not even not primarily) log-
ical. ATL∗ir can be seen as a convenient way to specify
the players and the winning conditions in a certain class
of games (roughly speaking, 1.5-player games with imper-
fect information, positional strategies, and LTL objectives).
The semantic problems, and our solutions, apply to all such
games interpreted over arenas given by asynchronous MAS.

Moreover, most of the claims presented here are not spe-
cific to ir-strategies. In fact, we conjecture that our exam-
ples of semantic side effects carry over to the other types of
strategies (except for the existence of coalitions whose all
strategies have empty outcomes, which can happen for nei-
ther perfect information nor perfect recall). Similarly, our
technical results should carry over to the other strategy types
(except for the correctness of POR, which does not hold for
agents with perfect information). We leave the formal anal-
ysis of those cases for future work.
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