
How to Approximate Ontology-Mediated Queries

Anneke Haga1 , Carsten Lutz1 , Leif Sabellek1 , Frank Wolter2
1Department of Computer Science, University of Bremen, Germany

2Department of Computer Science, University of Liverpool, UK
{anneke,clu,sabellek}@uni-bremen.de, wolter@liverpool.ac.uk

Abstract

We introduce and study several notions of approximation for
ontology-mediated queries based on the description logics
ALC and ALCI. Our approximations are of two kinds:
we may (1) replace the ontology with one formulated in a
tractable ontology language such as ELI or certain TGDs
and (2) replace the database with one from a tractable class
such as the class of databases whose treewidth is bounded
by a constant. We determine the computational complexity
and the relative completeness of the resulting approximations.
(Almost) all of them reduce the data complexity from CONP-
complete to PTIME, in some cases even to fixed-parameter
tractable and to linear time. While approximations of kind (1)
also reduce the combined complexity, this tends to not be the
case for approximations of kind (2). In some cases, the com-
bined complexity even increases.

1 Introduction
Ontology-mediated querying enriches database queries by
an ontology, in this way providing domain knowledge and
extending the language available for formulating queries.
For ontologies written in popular expressive description log-
ics (DLs) such as ALC and ALCI , however, the com-
plexity of ontology-mediated querying is prohibitively high,
CONP-complete in data complexity (Schaerf 1993) and
EXPTIME- resp. 2EXPTIME-complete in combined com-
plexity (Lutz 2008). As a consequence, practical imple-
mentations often resort to approximating the answers to on-
tology mediated queries (OMQs) (Tserendorj et al. 2008;
Thomas, Pan, and Ren 2010; Zhou et al. 2015), mostly us-
ing rather pragmatic approaches. The aim of this paper is to
carry out a systematic study of OMQ approximation from a
theoretical angle, introducing several principled notions of
approximation and clarifying their computational complex-
ity and relative completeness. In particular, we aim to find
approximations that reduce the data complexity to PTIME or
even to fixed-parameter tractability (FPT). Preferably, they
should additionally reduce the combined complexity.

We mainly consider approximation from below, that is,
approximations that are sound, but incomplete. While we
also present some first results on approximation from above,
whenever we speak of approximation without further qual-
ification we mean approximation from below. An OMQ is
a triple Q = (O,Σ, q) where O is an ontology, q an actual

query such as a conjunctive query (CQ), and Σ a signature
for the databasesD thatQ is evaluated on. Our starting point
is the observation that this gives us three points of attack for
approximation: we can relax the ontology O, the query q,
and the database D. However, relaxing the query is not use-
ful for attaining PTIME data complexity as in the DLs men-
tioned above, ontology-mediated querying is CONP-hard al-
ready for atomic queries (AQs), that is, for very simple CQs
of the form A(x). We are thus left with the ontology and the
database.

For ontology relaxing approximation, we choose an ontol-
ogy language L that admits ontology-mediated querying in
PTIME in data complexity. To define approximate answers
to OMQ Q = (O,Σ, q), we then consider all L-ontologies
O′ with O |= O′ (to guarantees soundness), replace O with
O′, and take the union of the answers to the resulting OMQs
Q′. Equivalently, we can use a singleO′, namely the unique
logically strongest L-ontology with O |= O′. Such O′
will typically be infinite (Bötcher, Lutz, and Wolter 2019;
Haga et al. 2020), but it turns out that it never has to be
materialized by an algorithm that computes approximate an-
swers; the ontologies O′ in fact only serve the purpose of
defining the semantics of approximation. As choices for L,
we consider Horn description logics such as ELI and sets
of restricted tuple-generating dependencies (TGDs), also
known as existential rules and Datalog± (Gottlob, Morak,
and Pieris 2015). A related (but stronger) notion of OMQ
approximation was proposed in (Haga et al. 2020).

For database relaxing approximation, we choose a class
of databases D that admits ontology-mediated querying in
PTIME in data complexity. To define approximate an-
swers to OMQ Q on input database D, we then consider
all databases D′ ∈ D such that there is a homomorphism
from D′ to D (to guarantee soundness) and take the union
of the answers to Q on all such D′. As choices for D, we
consider databases of bounded treewidth and databases that
are proper trees. Equivalently, we can use the unraveling of
D into a structure of bounded treewidth, resp. into a tree.
Such an unraveling may be infinite, but again this is unprob-
lematic as the unraveling never has to be materialized by an
algorithm that computes approximate answers.

Both of these approaches to approximation can also be
used to define approximation from above. For ontology
strengthening approximation, one requires O′ |= O and

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

323

for database strengthening approximation, one requires that
there is a homomorphism from D to D′, rather than the
other way around. In both cases, one then takes the inter-
section of the answers rather than the union. The resulting
approximations are complete, but unsound. Note that ap-
proximation from above is particularly useful in combina-
tion with approximation from below (Tserendorj et al. 2008;
Zhou et al. 2015). If both approximations produce the same
answers, one has actually succeeded to compute the ‘real’,
non-approximate answers.

An OMQ language is a pair (L,Q) with L an on-
tology language and Q a query language. We consider
the approximation of OMQ languages (L,Q) where L ∈
{ALC,ALCI} and Q ∈ {UCQ,CQ,AQ, bELIQ} with
UCQ denoting unions of CQs and bELIQ denoting the class
of unary CQs that correspond to ELI-concepts (ELIQs) and
of Boolean CQs ∃x q(x) with q(x) an ELIQ. The exact
problem that we consider is (approximate) OMQ evaluation,
meaning to decide, given an OMQ Q, a database D, and a
tuple ā of constants from D, whether ā is an (approximate)
answer to Q on D. We give an overview of our results.

We start in Section 4 with ontology relaxing approxi-
mation, choosing for L the description logic ELIu⊥, that
is, the extension of ELI with the universal role and bot-
tom (logical falsity). We then prove that ELIu⊥-ontology
relaxing OMQ evaluation is in PTIME in data complex-
ity and EXPTIME-complete in combined complexity for all
OMQ languages (L,Q) mentioned above. In contrast, non-
approximate OMQ evaluation is 2EXPTIME-complete in
(ALCI,Q) for Q ∈ {CQ,UCQ}. If we consider more re-
stricted classes of queries, the complexity improves further.
In fact, ELIu⊥-ontology relaxing OMQ evaluation is fixed-
parameter tractable (FPT) with single exponential overall
running time if Q is the class of all CQs or UCQs whose
treewidth is bounded by a constant; here and in what fol-
lows, the parameter is the size of the OMQ. ForQ = bELIQ,
we even obtain linear time in data complexity.

In Section 5, we consider tree-database relaxing approxi-
mation. These (almost) deliver the same answers as ELIu⊥-
ontology relaxing approximation in (ALCI, bELIQs), but
are incomparable for more expressive query languages.
They turn out to be less well-behaved regarding combined
complexity, being 2EXPTIME-complete in (ALCI,Q) for
Q ∈ {UCQ,CQ}; this in fact even holds for (U)CQs of
bounded treewidth. If L = ALC or Q ∈ {AQ, bELIQ},
then they are only EXPTIME-complete, as in the non-
approximate case. On the other hand, tree-database relaxing
approximation enjoys a slight advantage in data complexity
over ELIu⊥-ontology relaxing approximation, namely linear
time for all OMQ languages (Q,L) considered in this pa-
per. We also prove the surprising result that tree-database
relaxing OMQ evaluation is EXPSPACE-hard in (ALC,CQ)
and 2EXPTIME-complete in (ALC,UCQ). This means that
it is harder in combined complexity than non-approximate
OMQ evaluation (which is only EXPTIME-complete in these
two cases), while it is easier in data complexity.

In Section 6, we revisit ontology relaxing approximation,
replacing ELIu⊥ with frontier-one TGDs whose rule bodies
and heads are of bounded treewidth. Recall that a TGD is

frontier-one if body and head share at most a single vari-
able (Baget et al. 2009). For rule heads, we do not only
require bounded treewidth, but the existence of a tree de-
composition in which the bags overlap in at most a single el-
ement. The resulting approximations are significantly more
complete than ELIu⊥-ontology relaxing approximations, but
enjoy the same favourable computational properties regard-
ing both data and combined complexity except that we do
not attain linear time. We also observe that by increasing
the treewidth of the rule bodies and heads, we obtain infinite
hierarchies of increasingly complete approximations.

In Section 7, we generalize tree-database relaxing approx-
imation into btw-database relaxing approximation, replacing
tree databases with databases of bounded treewidth. These
are strictly more complete than TGD-ontology relaxing ap-
proximations. They enjoy the same computational proper-
ties as tree-database relaxing approximations both regarding
data and combined complexity except that we do not attain
linear time.

Finally, in Section 8 we consider approximation from
above. For database strengthening approximation, the re-
sults are negative: we show CONP-completeness in data
complexity even if the original OMQ is from (EL,CQ), an
OMQ language that admits non-approximate OMQ evalua-
tion in PTIME in data complexity. Ontology strengthening
approximation looks more promising. We consider the frag-
ment ELIU⊥ ofALC and show that ELI⊥-ontology relax-
ing OMQ evaluation in (ELIU⊥,Q) is FPT with double ex-
ponential overall running time (thus in PTIME in data com-
plexity) and 2EXPTIME-complete in combined complexity
forQ ∈ {AQ,CQ,UCQ}. Note that non-approximate OMQ
evaluation in (ELIU⊥,AQ) is only EXPTIME-complete
(Lutz 2008), and thus this is another case where approx-
imate OMQ evaluation is harder in combined complexity
than non-approximate OMQ evaluation. An appendix with
full proofs is available at (Haga et al. 2021).

Related work. Several approaches achieve practically ef-
ficient OMQ evaluation by a pragmatic translation of on-
tologies into languages that enjoy PTIME data complex-
ity such as Datalog, OWL 2 QL, or OWL 2 EL. This in-
cludes Screech (Hitzler and Vrandečić 2005; Tserendorj et
al. 2008), TrOWL (Pan and Thomas 2007; Thomas, Pan,
and Ren 2010), and PAGOdA (Zhou et al. 2015), see also
(Carral et al. 2014). Approximations are computed both
from below and above, in the spirit of knowledge com-
pilation (Selman and Kautz 1996). Approximations of
ontologies in tractable languages with stronger guarantees
were recently studied in (Bötcher, Lutz, and Wolter 2019;
Haga et al. 2020), but querying and data were (mostly)
not considered. In database theory, approximate querying
(without ontologies) was studied in (Fink and Olteanu 2011;
Barceló, Libkin, and Romero 2014; Barceló, Romero, and
Zeume 2018). The approximation and rewriting of OMQs
in(to) datalog is studied in (Bienvenu et al. 2014; Kaminski,
Nenov, and Grau 2016; Feier, Kuusisto, and Lutz 2019). In
the context of Horn DLs, OMQ approximation that achieves
FPT was considered in (Barceló et al. 2019).

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

324

2 Preliminaries
Description Logics. Let NC and NR be countably infinite
sets of concept names and role names. Further fix a count-
ably infinite supply of constants. A role is a role name r or
an inverse role r−, with r a role name and (r−)− = r. An
ALCI-concept is defined according to the syntax rule

C,D ::= > | ⊥ | A | ¬C | C uD | ∃r.C
where A ranges over concept names and r over roles. We
use C t D as abbreviation for ¬(¬C u ¬D), C → D
for ¬C t D, and ∀r.C for ¬∃r.¬C. An ELI⊥-concept
is an ALCI-concept that does not use negation “¬”
and an ELIu⊥-concept is an ELI⊥-concept that may use
the universal role u in place of a role name. ELI-
concepts and ELIu-concepts do not admit ⊥. Let L ∈
{ALCI, ELI, ELIu, ELI⊥, ELIu⊥}. An L-ontology is a
finite set of concept inclusion (CIs) C v D with C and D
L-concepts. We sometimes also consider infinite ontologies
that, however, only serve the purpose of defining a seman-
tics and never have to be represented explicitly. For ELIu⊥-
ontologies, we assume w.l.o.g. that ⊥ occurs only in CIs of
the form C v ⊥ where ⊥ does not occur in C. A database
is a finite set of facts of the form A(a) or r(a, b) where
A ∈ NC ∪ {>}, r ∈ NR, and a, b are constants. We use
adom(D) to denote the set of constants used in database D,
also called its active domain.

A signature Σ is a set of concept and role names, uni-
formly referred to as symbols. We use sig(X) to denote
the set of symbols used in any syntactic object X such as a
concept or an ontology. A Σ-database is a database D with
sig(D) ⊆ Σ. The size of a (finite) syntactic object X , de-
noted ||X||, is the number of symbols needed to write it as a
word using a suitable encoding.

The semantics is given in terms of interpretations I,
which we define to be a (possibly infinite and) non-empty set
of facts. We use ∆I to denote the set of individual names
in I, define AI = {a | A(a) ∈ I} for all A ∈ NC, and
rI = {(a, b) | r(a, b) ∈ I} for all r ∈ NR. The extension
CI of ALCI-concepts C is then defined as usual (Baader
et al. 2017). The universal role u is always interpreted as
uI = ∆I ×∆I . This definition of interpretation is slightly
different from the usual one, but equivalent; its virtue is uni-
formity as every database is a (finite) interpretation. Inter-
pretation I satisfies CI C v D if CI ⊆ DI , fact A(a) if
a ∈ AI , and fact r(a, b) if (a, b) ∈ rI . We thus make the
standard names assumption, that is, we interpret constants
as themselves. For S ⊆ ∆I , we use I|S to denote the re-
striction of I to facts that only contain constants from S.

Interpretation I is a model of an ontology or database if it
satisfies all inclusions or facts in it. A database D is satisfi-
able w.r.t. an ontology O if there is a model I of O and D.
We write O |= O′ if every model of ontology O is also a
model of ontology O′. We associate every interpretation I
with an undirected graph GI = (V,E) where V = ∆I and
E = {{d, e} | (d, e) ∈ rI for some r ∈ NR}. We say that I
is a tree if GI is acyclic without self loops and multi-edges,
that is, (d, e) ∈ rI1 implies (d, e) /∈ rI2 for all distinct roles
r1, r2. Note that, somewhat unusually, our trees need thus
not be connected.

Queries. A conjunctive query (CQ) is of the form q(x̄) =
∃ȳ ϕ(x̄, ȳ), where x̄ and ȳ are tuples of variables and ϕ(x̄, ȳ)
is a conjunction of atoms of the form A(x) and r(x, y),
A ∈ NC, r ∈ NR, and x, y variables from x̄ ∪ ȳ. We re-
quire that all variables in x̄ are used in ϕ, call the variables
in x̄ the answer variables of q, and use var(q) to denote
x̄ ∪ ȳ. We take the liberty to write α ∈ q to indicate that α
is an atom in q and sometimes write r−(x, y) ∈ q in place
of r(y, x) ∈ q. The CQ q gives rise to a database Dq , of-
ten called the canonical database for q, obtained by viewing
the variables in q as constants and the atoms as facts. For
V ⊆ var(q), we use q|V to denote the restriction of q to the
atoms that use only variables in V .

A homomorphism from interpretation I1 to interpretation
I2 is a function h : ∆I1 → ∆I2 such that d ∈ AI1 implies
h(d) ∈ AI2 and (d, e) ∈ rI1 implies (h(d), h(e)) ∈ rI2 for
all d, e ∈ ∆I1 , A ∈ NC, and r ∈ NR. A homomorphism
from CQ q to interpretation I is a homomorphism from Dq
to I. A tuple d̄ ∈ (∆I)|x̄| is an answer to q on I if there is a
homomorphism h from q to I with h(x̄) = d̄. A contraction
of a CQ p is a CQ that can be obtained from q by identifying
variables. The identification of two answer variables is not
admitted and the identification of an answer variable x with
a quantified variable y results in x.

A union of conjunctive queries (UCQ) q(x̄) is a disjunc-
tion of CQs that all have the same answer variables x̄. A
tuple d̄ ∈ (∆I)|x̄| is an answer to q on interpretation I,
written I |= q(d̄), if d̄ is an answer to some CQ in q on I.
We use q(I) to denote set of all answers to q on I. The arity
of q is the length of x̄ and q is Boolean if it is of arity zero.

An ELI-query (ELIQ) is a unary CQ q(x) such that Dq
is a connected tree and a Boolean ELI-query (BELIQ) is
a Boolean CQ q() such that Dq is a connected tree. One
can alternatively define ELIQs as being of the form C(x)
with C an ELI-concept, and BELIQs as being of the form
∃u.C with C an ELI-concept and we may thus use ELIQs
as ELI-concepts and BELIQs as ELIu-concepts, and vice
versa. For uniformity, we use bELIQ to refer to a CQ that
is either an ELIQ or a BELIQ. An atomic query (AQ) is an
ELIQ of the form A(x), A a concept name.

Ontology-Mediated Queries. An ontology-mediated
query (OMQ) is a triple Q = (O,Σ, q) with O an ontol-
ogy, Σ ⊆ sig(O) ∪ sig(q) a signature called the data sig-
nature, and q a query such as a UCQ. We write Q(x̄) to
indicate that the answer variables of q are x̄. The signa-
ture Σ expresses the promise that Q is only evaluated on Σ-
databases. Let D be such a database. Then ā ∈ adom(D)|x̄|

is an answer to Q on D, written D |= Q(ā), if I |= q(ā)
for all models I of O and D. When more convenient, we
might alternatively write D,O |= q(ā). We further write
Q(D) to denote the set of all answers to Q onD. For OMQs
Q1(x̄) and Q2(x̄), Qi = (Oi,Σ, qi), we say that Q1 is con-
tained in Q2 and write Q1 ⊆ Q2, if for every Σ-database D,
Q1(D) ⊆ Q2(D). We say that Q1 is equivalent to Q2 and
write Q1 ≡ Q2, if Q1 ⊆ Q2 and Q2 ⊆ Q1. We use (L,Q)
to denote the OMQ language that contains all OMQs Q in
which O is formulated in DL L and q in query language Q,
such as in (ALCI,UCQ) and (ELI,AQ).

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

325

Treewidth. Treewidth is a widely used notion that mea-
sures the degree of tree-likeness of a graph. As common for
example in the area of constraint satisfaction problems, we
are interested in two parameters of tree decompositions in-
stead of only one. A tree decomposition of an interpretation
I is a triple (V,E, (Bv)v∈V) where (V,E) is an undirected
tree and (Bv)v∈V is a family of subsets of ∆I , often referred
to as bags, such that:

1. for all d ∈ ∆I , {v ∈ V | d ∈ Bv} is nonempty and
connected in (V,E);

2. if (d1, d2) ∈ rI for any role name r, then there is a v ∈ V
with d1, d2 ∈ Bv .

We call (V,E, (Bv)v∈V) an (`, k)-tree decomposition if for
all distinct v, v′ ∈ V , |Bv ∩ Bv′ | ≤ ` and |Bv| ≤ k. An
interpretation I has treewidth (`, k) if it admits an (`, k)-
tree decomposition. It has treewidth k if it has treewidth
(k, k + 1). As usual, the ‘+1’ is used to achieve that trees
have treewidth 1.

We also speak of the treewidth of a CQ q = ∃ȳ ϕ(x̄, ȳ),
which is that of Dq|ȳ , and of the treewidth of a UCQ q,
which is the maximum of the treewidths of the CQs in q.
Note that answer variables do not contribute to treewidth.
For `, k ≥ 1 with ` < k, we use CQtw

`,k (resp. CQtw
k) to de-

note the class of CQs of treewidth (`, k) (resp. of treewidth
k), and likewise for UCQtw

`,k (resp. UCQtw
k) and UCQs.

Tuple-Generating Dependencies. A tuple-generating
dependency (TGD) is a first-order sentence ϑ of the form
∀x̄∀ȳ

(
φ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)

)
such that ∃ȳ φ(x̄, ȳ) and

∃z̄ ψ(x̄, z̄) are CQs. For simplicity, we write ϑ as φ(x̄, ȳ)→
∃z̄ ψ(x̄, z̄). We call φ and ψ the body and head of ϑ. The
body may be the empty conjunction, i.e. logical truth, then
denoted by >, and the head may be logical falsity denoted
by ⊥. TGDs with head ⊥ are often called denial constraints
(Fan and Geerts 2012). The frontier variables of TGD ϑ are
the variables that occur unquantified in both body and head.
We say that ϑ is frontier one if it has at most one frontier
variable. An interpretation I satisfies ϑ, denoted I |= ϑ, if
qφ(I) ⊆ qψ(I).

We also consider ontologies that are sets of TGDs and,
more generally, sentences formulated in first-order logic
(FO). What we mean here is the version of FO in which
only unary and binary relation symbols are used, which are
from NC and NR, respectively. Function symbols, constants,
and equality are not permitted. An interpretation is a model
of an FO ontology if it satisfies all sentences in O. With
an FO-fragment L, we mean a class of FO-sentences and an
L-ontology is a finite set of sentences from L. As in the DL
case, we sometimes also consider infinite ontologies. We use
TGD to denote the FO-fragment that consists of all TGDs,
and thus speak of TGD-ontologies. It is easy to see that ev-
ery ELIu⊥-ontology is also a frontier one TGD-ontology.

A standard tool for dealing with TGD ontologies O is the
chase that constructs from O and a database D a universal
model ofO andD, that is, a model chO(D) ofD andO that
homomorphically embeds into every model of D and O and
thus satisfies D,O |= q(ā) iff chO(D) |= q(ā) for all CQs
q and tuples ā. Details are given in the appendix, see also
(Johnson and Klug 1982; Calı̀, Gottlob, and Kifer 2013).

3 OMQ Approximation
We introduce two notions of OMQ approximation from be-
low: one where we relax the ontology and one where we
relax the database. We start with the former.

For an OMQ Q(x̄) = (O,Σ, q), a Σ-database D, and an
ontology language L′, we use appL′(Q,D) to denote the set
of tuples ā ∈ adom(D)|x̄| such that ā ∈ Q′(D) for some
OMQ Q′ = (O′,Σ, q) where O′ is a (finite) L′-ontology
with O |= O′. Note that the ontology O′ might contain
symbols that do not occur in O, we will see later that this in
fact results in additional answers. Every choice of an OMQ
language (L,Q) and an ontology language L′ gives rise to
an approximate OMQ evaluation problem, as follows.

L′-ontology relaxing OMQ evaluation in (L,Q)
INPUT: OMQ Q(x̄) = (O,Σ, q) ∈ (L,Q),

Σ-database D, tuple ā ∈ adom(D)|x̄|

OUTPUT: ‘yes’ if ā ∈ appL′(Q,D) and ‘no’ otherwise

It follows from the definition that ontology relaxing approx-
imation is sound, in the sense that appL′(Q,D) ⊆ Q(D)
for all OMQs Q = (O,Σ, q) and Σ-databases D. We con-
centrate on the case where L′ is an ontology language such
that (L′,Q) enjoys PTIME data complexity. For (L,Q) =
(ALCI,CQ), for instance, we might choose L′ = ELIu⊥.

In the definition of appL′(Q,D), one can equivalently re-
place the infinitely many L′-ontologies O′ with the single
but infinite L′-ontologyO≈L′ that consists of all L′-sentences
ϕ with O |= ϕ. In fact, the following lemma is a conse-
quence of compactness. For an OMQQ(x̄) = (O,Σ, q) and
an ontology language L′, we use Q≈L′ to denote the OMQ
(O≈L′ ,Σ, q).

Lemma 1. LetQ(x̄) = (O,Σ, q) ∈ (FO,UCQ) be an OMQ
and L′ an ontology language. Then for every Σ-databaseD,
appL′(Q,D) = Q≈L′(D).

Note that we do not insist that the infinitely many O′ or
the infiniteO≈L′ is ever explicitly generated when computing
approximate answers.

We next define a mode of approximation that is based on
relaxing the database by replacing it with a homomorphic
pre-image. A pointed database is a pair (D, b̄) with D
a database and b̄ a tuple over adom(D). For an OMQ
Q(x̄) = (O,Σ, q), a Σ-database D, and a class of pointed
databases D, we use appD(Q,D) to denote the set of
tuples ā ∈ adom(D)|x̄| such that for some (D′, b̄) ∈ D
with b̄ ∈ Q(D′) there is a homomorphism h from D′ to
D with h(b̄) = ā. Every choice of (L,Q) and D gives
rise to an approximate OMQ evaluation problem, as follows.

D-database relaxing OMQ evaluation in (L,Q)
INPUT : OMQ Q(x̄) = (O,Σ, q) ∈ (L,Q),

Σ-database D, tuple ā ∈ adom(D)|x̄|

OUTPUT : ‘yes’ if ā ∈ appD(Q,D) and ‘no’ otherwise

Answers to any OMQ Q = (O,Σ, q) ∈ (FO,UCQ) are
preserved under homomorphisms ifO does not use equality,
that is, if D1,D2 are databases, h is a homomorphism from
D1 to D2, and ā ∈ Q(D1) for an OMQ Q, then h(ā) ∈

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

326

Q(D2) (Bienvenu et al. 2014). As a consequence, database
relaxing approximation is sound.

We are interested in choosing D such that evaluating
OMQs from (L,Q) on D enjoys PTIME data complex-
ity. An important example are classes of databases that are
of bounded treewidth, the simplest case being the class of
databases that are trees. More precisely, we use Df (with
‘f’ symbolizing a tree) to denote the class of all pointed
databases (D, ā) such that the restriction of D to domain
adom(D) \ ā is a tree. Recall that a tree does not need to be
connected. The resulting notion of approximation is closely
related to ELIu⊥-ontology relaxing approximation.

In the same way in which we have rephrased ontology re-
laxing approximation in terms of a single infinite ontology,
we can sometimes (depending on the choice of D) rephrase
database relaxing approximation in terms of evaluation on
a single infinite database. We illustrate this for the case
D = Df. Let D be a database and S ⊆ adom(D). A path
in D is a sequence p = a0r1a1r2 · · · rnan, n ≥ 0, where
a0, . . . , an ∈ adom(D), r1, . . . , rn are (potentially inverse)
roles, and ri+1(ai, ai+1) ∈ D for 0 ≤ i < n. We use
tail(p) to denote an. The tree unraveling D≈S of D at S is
the (potentially infinite) database that contains the following
facts: all facts from D|S , r(p, prb) for every path prb, A(p)
for every path pwithA(tail(p)) ∈ D, and r(a, p) for every
r(a, b) ∈ D and every path pwith a ∈ S and tail(p) = b (r
a potentially inverse role). Note that D≈S is a tree if and only
if S = ∅. Thus, the tree unravelings D≈ā in the following
lemma are in general not tree databases.
Lemma 2. Let Q = (O,Σ, q) ∈ (FO,UCQ). Then for all
Σ-databases D and ā ∈ adom(D)|x̄|, ā ∈ appDf

(Q,D) iff
ā ∈ Q(D≈ā).

4 ELIu⊥-Ontology Relaxing Approximation
We consider ELIu⊥-ontology relaxing evaluation of OMQs
from (ALCI,UCQ), starting with an example.
Example 1. Let Q(x) = (O,Σ, q) ∈ (ALC,CQ) where

O = {> v ∀r.(B1 → A) t ∀r.(B2 → A)}
Σ = {r,A,B1, B2}
q = ∃y r(x, y) ∧A(y).

Further let D = {r(a, b1), r(a, b2), B1(b1), B2(b2)}.
Clearly, a ∈ Q(D). The ontology O≈ELIu⊥ contains CI
∃r.B1 u ∃r.B2 v ∃r.A, thus also a ∈ Q≈ELIu⊥(D).

We next illustrate incompleteness, which cannot be
avoided by any notion of approximation from below that
attains PTIME data complexity. This follows from the ex-
istence of OMQs that express non-3-colorability.
Example 2. Let Q() = (O,Σ, ∃xD(x)) ∈ (ALC,BELIQ)
with

O = {> v RtGtB, X u ∃e.X v D | X ∈ {R,G,B}}

and Σ = {e}. Every Σ-database D can be viewed as an
undirected graph by ‘forgetting’ the direction of e-edges.
ThenD |= Q iff the graph is not 3-colorable. In contrast,the
careful chase algorithm given below can be used to verify

thatD 6|= Q≈ELIu⊥
for all Σ-databasesD. It is easy to modify

the example so as to use an AQ in place of a BELIQ.
For readers who are disappointed by the extreme incom-

pleteness in the previous example, we remark replacing
ELIu⊥ with classes of TGDs improves the situation.

We next present three observations regarding our defini-
tion of ontology relaxing approximation. The first obser-
vation is that it increases completeness to admit in O≈ELIu⊥
symbols that do not occur in O.
Example 3. Let Q(x) = (O,Σ, q) ∈ (ALC,CQ) with
O = {> v ∀r.(B1 → B) t ∀r.(B2 → B)}
Σ = {r,A,B,B1, B2} q = ∃y r(x, y) ∧A(y) ∧B(y).

Then O≈ELIu⊥ contains the CI

∃r.(B1 uA) u ∃r.(B2 uA) v ∃r.(A uB)

despite the fact that A does not occur in O. Let
D = {r(a, b1), r(a, b2), B1(b1), B2(b2), A(b1), A(b2)}.

Then a ∈ Q≈ELIu⊥(D), but we show in the appendix that this
is no longer true when we remove from O≈ELIu⊥ all CIs that
use a symbol that does not occur in O.

It is, however, easy to see that it suffices to admit in
O≈ELIu⊥ the symbols that occur inO or in Σ while additional
symbols do not further increase completeness.

The second observation is that ELIu⊥-ontology relaxing
approximation is more complete than ELI⊥-ontology re-
laxing approximation. In fact, it seems to be much more
challenging to compute answers for the latter while offering
no obvious benefit compared to the former, and thus we do
not consider it in this paper.
Example 4. Let Q() = (O,Σ, q) ∈ (ALC,CQ) be the
Boolean OMQ with
O = {A v B t ∀r.B} Σ = {r,A,B} q = ∃xB(x).

LetD = {A(a), r(a, b)}. ThenO≈ELIu⊥ containsAu∃r.> v
∃u.B and thus D |= Q≈ELIu⊥

, but it is shown in the appendix
that D 6|= Q≈ELI⊥ .

We remark that ELIu⊥-ontology relaxing approximation
is also more complete than ELIu-ontology relaxing approx-
imation, examples are easy to find.

Third, we observe that defining ontology relaxing approx-
imation in terms of ontologies that are implied by the orig-
inal ontology does not necessarily result in maximum com-
pleteness. In fact, the following example shows that it may
pay off to use an ELIu⊥-ontology that is not a consequence
of the original ontology. This is a very interesting effect, but
we do not investigate it further.
Example 5. We use the ontology O and signature Σ from
Example 4. Let Q0() = (O,Σ, q0) for

q0 = ∃x∃y A(x) ∧A(y) ∧B(y) ∧ r(x, y) ∧ r(y, x),

and let D0 = {A(a), r(a, b), r(b, a), A(b)}. While D0 |=
Q0, the careful chase algorithm below yieldsD0 6|= Q≈ELIu⊥

.
Now take O′ = {A v B} and note that O 6|= O′ but Q0 is
equivalent to (O′,Σ, q0) as in fact both OMQs are equiva-
lent to the CQ q0 with atom B(y) dropped.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

327

The following is the main result of this section. When
we speak about fixed-parameter tractability (FPT), we gen-
erally mean that the parameter is the size of the OMQ, that
is, we refer to running time f(||Q||) ·O(||D||c) where f is a
computable function and c a constant.
Theorem 1. Let L ∈ {ALC,ALCI}. Then ELIu⊥-
ontology relaxing OMQ evaluation is

1. EXPTIME-complete in combined complexity and
PTIME-complete in data complexity in (L,Q),
Q ∈ {AQ,CQ,UCQ};

2. FPT with single exponential running time in (L,Q), Q ∈
{CQtw

k ,UCQtw
k | k ≥ 1};

3. in linear time in data complexity in (L, bELIQ) with run-
ning time 2O(||Q||) ·O(||D||).
To prove Theorem 1, we first establish the following cru-

cial lemma that relates ELIu⊥-ontology relaxing OMQ eval-
uation to tree unravelings.
Lemma 3. Let Q(x̄) = (O,Σ, q) ∈ (ALCI, bELIQ), D be
a Σ-database, and ā ∈ adom(D)|x̄|. Then

1. ā ∈ Q≈ELIu⊥(D) iff ā ∈ Q(D≈∅);

2. D is satisfiable w.r.t. O≈ELIu⊥ iff D≈∅ is satisfiable w.r.t. O.

We first prove Point 3 of Theorem 1. We are thus given an
OMQ Q(x̄) = (O,Σ, q) ∈ (ALCI, bELIQ), a Σ-database
D, and a tuple ā ∈ adom(D)|x̄| and have to decide whether
ā ∈ Q≈ELIu⊥(D). By Point 1 of Lemma 3, it suffices to de-
cide whether ā ∈ Q(D≈∅). This is much more convenient
as we are back to the original ontology instead of having to
deal directly with O≈ELIu⊥ . In the appendix, we show that
deciding ā ∈ Q(D≈∅) can be reduced in linear time (data
complexity) to the unsatisfiability of propositional Horn for-
mulas, which is well-known to be in linear time (Dowling
and Gallier 1984).

Regarding the upper bounds in Points 1 and 2, we first
observe that we can concentrate on CQs rather than UCQs.
This follows from the fact that ELIu⊥-ontologies have uni-
versal models, even if infinite.
Lemma 4. Let Q(x̄) = (O,Σ, q) ∈ (ALCI,UCQ) with
q = p1 ∨ · · · ∨ pn, and let D be a Σ-database. Then
Q≈ELIu⊥

(D) = Q1(D)∪ · · · ∪Qn(D), Qi = (O≈ELIu⊥ ,Σ, pi)
for 1 ≤ i ≤ n.

We now describe an algorithm that establishes the upper
bounds in Points 1 and 2 of Theorem 1 and that we refer to
as a careful chase, see also (Bienvenu et al. 2013).

Assume that we are given an OMQ Q(x̄) = (O,Σ, q) ∈
(ALCI,CQ), a Σ-database D, and a tuple ā ∈ adom(D)|x̄|.
We use trees(q) to denote the set of bELIQs that can be
obtained from CQ q by first quantifying all variables, then
taking a contraction, then an induced subquery, and then
choosing at most one variable as the answer variable. In
addition, trees(q) contains all AQs A(x) with A a concept
name used in O.

The algorithm first extendsD to a databaseD′ as follows:
• whenever D,O≈ELIu⊥ |= p() with p() ∈ trees(q) a

BELIQ, then take a disjoint copy of Dp and add it to D;

• whenever D,O≈ELIu⊥ |= p(a) with p(x) ∈ trees(q) an
ELIQ, then take a disjoint copy of Dp and add it to D,
glueing the root x of Dp to a.

D,O≈ELIu⊥ |= p() and D,O≈ELIu⊥ |= p(a) can be decided

in time 2O(||Q||) · O(||D||) by Point 3 of Theorem 1. Note
that D′ is a subdatabase of chO≈ELIu⊥

(D), which is why we

speak of a careful chase. The algorithm then carries out the
following steps:

(i) If D is unsatisfiable w.r.t. O≈ELIu⊥ , then returns ‘yes’;

(ii) check whether ā ∈ q(D′) and return the result.

By Point 2 of Lemma 3, the unsatisfiability check in (i) is
equivalent to checking whether D≈∅ is unsatisfiable w.r.t. O.
This is the case if and only if D≈∅ ,O |= ∃xA(x) with A a
fresh concept name, which can be decided in time 2O(||Q||) ·
O(||D||) by Point 3 of Theorem 1.

Checking ā ∈ q(D′) in (ii) can be implemented using
brute force to attain EXPTIME combined complexity and
PTIME data complexity or using as a blackbox an algorithm
that runs within the time requirements of fixed-parameter
tractability to attain FPT when q is of bounded treewidth.
We prove in the appendix that the algorithm is correct and
achieves the upper bounds stated in Theorem 1.

The EXPTIME lower bounds in Theorem 1 are proved by
a straightforward reduction from the subsumption of concept
names in ALC (Baader et al. 2017): A is subsumed by B
w.r.t.O iff {A(a)},O |= B(a) iff {A(a)},O≈ELIu⊥ |= B(a).
This trivial reduction also shows that using fragments of
ELIu⊥ such as EL⊥ or ELu⊥ as a target for ontology approx-
imation cannot improve combined complexity. The PTIME
lower bound in Point 1 is inherited from OMQ evaluation in
(EL,AQ) (Calvanese et al. 2015).

5 Tree-Database Relaxing Approximation
We study Df-database relaxing approximation that for the
sake of readability we from now on refer to as tree-database
relaxing approximation. We start with observing that tree-
database relaxing approximation is incomparable to ELIu⊥-
ontology relaxing approximation.

Example 6. Let Q(x) = (O,Σ, A(x)) ∈ (ALCI,AQ)
where

O = {P u∃r.P v A, ¬P u∃r.¬P v A} Σ = {P, r,A}.

Consider D = {r(a, a)}. Then a /∈ Q≈ELIu⊥
(D), but a ∈

Q(D≈{a}) since D≈{a} = D.

Conversely, let Q(x) = (∅, {r}, q) ∈ (ALCI,CQ) where

q(x) = ∃y1∃y2∃y3 r(x, y1)∧r(y1, y2)∧r(y2, y3)∧r(y3, y1),

and D = {r(a, b1), r(b1, b2), r(b2, b3), r(b3, b1)}. Then
Q≈ELIu⊥

(D) = {a}, but Q(D≈{a}) = ∅.

Note that the OMQs in Example 6 are based on CQs that
are not bELIQs. This is no coincidence, as the following is
a consequence of Lemma 3 and the fact that D≈∅ ⊆ D

≈
S for

all databases D and S ⊆ adom(D).

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

328

Proposition 1. In (ALCI, bELIQ), tree-database relaxing
OMQ evaluation is at least as complete as ELIu⊥-ontology
relaxing OMQ evaluation.

The converse of Proposition 1 fails, as per the first part of
Example 6. The first main result of this section follows.

Theorem 2. Tree-database relaxing OMQ evaluation is

1. 2EXPTIME-complete in combined complexity and in
linear time in data complexity (thus FPT) with run-
ning time 22O(||Q||) · O(||D||) in (ALCI,Q), Q ∈
{CQ,UCQ,CQtw

k ,UCQtw
k | k ≥ 1};

2. EXPTIME-complete in combined complexity and in lin-
ear time in data complexity (thus FPT) with running time
2O(||Q||) · O(||D||) in (ALC,Q) and (ALCI,Q), Q ∈
{AQ, bELIQ}.
The upper bound in Point 2 of Theorem 2 is proved sim-

ilarly to Point 3 of Theorem 1, by reduction to the unsatis-
fiability of propositional Horn formulas. To prove the upper
bound in Point 1, we first show that one can construct from
an OMQ Q = (O,Σ, q) ∈ (ALCI,UCQ) and Σ-database
D an OMQ Q′ = (O,Σ′, q′) and a Σ′-database D′ such that
Q(D) = Q(D′) and q′ is a conjunction of disjunctions of
BELIQs. This again enables a reduction to the unsatisfiabil-
ity of propositional Horn formulas. Note that a counterpart
of Lemma 4 does not hold for tree-database relaxing approx-
imation and thus we treat UCQs directly. The lower bounds
are trivial as (non-approximate) evaluation in all mentioned
OMQ languages is hard already on databases of the form
D = {A(a)}, which satisfy D≈{a} = D, and for CQs of
bounded treewidth (Lutz 2008).

In contrast to ELIu⊥-ontology relaxing approximation,
we achieve no improvement in combined complexity in the
ALCI case, but we achieve linear time data complexity also
for (U)CQs that are not of bounded treewidth. Informally,
this is because database relaxing OMQ evaluation also ap-
proximates answers to the actual query (if it is a (U)CQ)
while ontology relaxing evaluation only approximates the
impact of the ontology. For comparison we recall that with-
out ontologies, evaluating CQs of unbounded treewidth is
W [1]-hard, thus most likely not linear time in data complex-
ity and not even FPT (Grohe 2007).

We next prove the second main result of this section. Re-
call that non-approximate OMQ evaluation in (ALC,CQ)
and (ALC,UCQ) is EXPTIME-complete in combined com-
plexity and CONP-complete in data complexity. Supris-
ingly, tree-database relaxing evaluation in these OMQ
languages is harder in combined complexity than non-
approximate evaluation while it is simpler in data complex-
ity (the latter by Theorem 2).

Theorem 3. Tree-database relaxing OMQ evaluation is
EXPSPACE-hard in (ALC,CQ) and 2EXPTIME-hard in
(ALC,UCQ).

The proof of Theorem 3 adapts hardness proofs from
(Lutz 2008) for non-approximate OMQ evaluation in
(ALCI,CQ), simulating inverse roles by making use of the
unraveled database.

6 TGD-Ontology Relaxing Approximation
We generalize ontology relaxing approximation from ELIu⊥
to TGDs that are frontier-one and have bodies and heads of
bounded treewidth. This yields an infinite hierarchy of in-
creasingly more complete approximations.

A TGD ϑ = φ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄) is an `, k, `′, k′-
TGD, ` < k and `′ < k′, if its body has treewidth (`, k)
and its head has treewidth (`′, k′) when viewed as CQs
in which all variables are quantified. Every ELIu⊥-CI can
be written as a frontier-one 1, 2, 1, 2-TGD, but there are
frontier-one 1, 2, 1, 2-TGDs that are not ELIu⊥-CIs, such as
r(x, x) → s(x, x). From now on, when speaking about
`, k, `′, k′-TGDs, we generally mean frontier-one TGDs.
An `, k, `′, k′-TGD-ontology is an FO-ontology that consists
only of (frontier-one) `, k, `′, k′-TGDs. If any of `, k, `′, k′
is not bounded, we assign to it value ω.

We study `, k, `′, k′-TGD-ontology relaxing OMQ evalu-
ation. Recall that, by Lemma 1, computing such approxi-
mations for an OMQ Q ∈ (FO,UCQ) corresponds to eval-
uating the OMQ Q≈`,k,`′,k′-TGD which is based on ontology
O≈`,k,`′,k′-TGD. For brevity, we drop the suffix ‘-TGD’ and
for instance speak about `, k, `′, k′-ontology relaxing OMQ
evaluation and write Q≈`,k,`′,k′ .

We first observe that restricting the treewidth of the body
is necessary to attain PTIME data complexity and that we
cannot hope to attain the favourable combined complexity
enjoyed by ELIu⊥-ontology relaxing approximation for ev-
ery value of `′ and k′. The following is a consequence of
Example 7 below and of hardness proofs in (Lutz 2008).

Proposition 2. ω, ω, 1, 2-ontology relaxing OMQ evalua-
tion in (ALC,AQ) is CONP-hard in data complexity and
there are `′, k′ such that 1, 2, `′, k′-ontology relaxing OMQ
evaluation in (ALCI,CQ) is 2EXPTIME-hard in combined
complexity.

To tame the combined complexity of TGD-ontology-
relaxing approximation, we concentrate on the case where
`′ = 1. We next consider the choice of values for k and
k′, the treewidth of rule bodies and heads. We first show
that k gives rise to an infinite hierarchy of increasingly more
complete approximations.

Example 7. Consider the OMQ Q = (O, {e}, ∃xD(x))
from Example 2 that expresses non-3-colorability. For every
{e}-database D, there is a k ≥ 1 such that D |= Q iff
D |= Q≈1,k,1,2: for k = |adom(D)|, O≈1,k,1,2 contains qD →
∃xD(x) if D is not 3-colorable, where qD is D viewed as
a CQ. Unless PTIME = NP, there are thus no `, k, `′, k′
such that Q≈`,k,`′,k′ ⊇ Q≈1,k+p,1,2 for all p > 0. In fact, the
existence of such `, k, `′, k′ implies that 3-colorability is in
PTIME by Theorem 4 below.

Example 7 also shows that TGD-ontology relaxing ap-
proximations are more complete than ELIu⊥-ontology re-
laxing approximations, c.f. Example 2.

For k′, we make the weaker observation that there is no
maximum value to be used uniformly for all OMQs.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

329

x0,1

A0,1
x1,1

A1,1
x2,1

A2,1

x0,2

A0,2
x1,2

A1,2
x2,2

A2,2

x0,0

A0,0
x1,0

A1,0
x2,0

A2,0

r r

r

r

r
r

r
r

r

r

r

r

Figure 1: CQ from Example 8 for the case m = 2.

Example 8. For m ≥ 2, consider the Boolean CQ

qm =
∧

i,j,i′,j′∈{1,...,m}
i+j is even

|i−i′|+|j−j′|=1

r(xi,j , xi′,j′) ∧
∧

i,j∈{1,...,m}

Ai,j(xi,j)

which takes the form of anm×m grid in which the direction
of the roles alternate and every point in the grid is labeled
with a unique concept name, see Figure 1. Consider the
following two ways of contracting qm into a path: identify
xi,j with xi′,j′ if i+ j = i′ + j′ or identify xi,j with xi′,j′ if
i − j = i′ − j′. Let C1 and C2 be the two paths obtained,
viewed as ELI-concepts.

Set Om = {A v C1 tC2} and Qm() = (Om, {A}, qm),
and let D = {A(a)}. Then (Om)≈1,2,1,m2 contains the TGD
A → qm, so D |= (Qm)≈1,2,1,m2 . In contrast, we argue in
the appendix that D 6|= (Qm)≈ω,ω,1,m2−1.

For every fixed OMQ, however, there is a maximum use-
ful value for k′. The next proposition is established analyz-
ing the algorithm in the proof of Theorem 4 below.
Proposition 3. Let `, k ≥ 1 with ` < k. For every
Q(x̄) = (O,Σ, q) ∈ (ALCI,UCQ) and k′ ≥ |var(q)|,
Q≈`,k,1,|var(q)| ≡ Q

≈
`,k,1,k′ .

The main result of this section is as follows.
Theorem 4. Let L ∈ {ALC,ALCI} and `, k, k′ ≥ 1 with
` < k. Then `, k, 1, k′-ontology relaxing OMQ evaluation is

1. EXPTIME-complete in combined complexity and
PTIME-complete in data complexity in (L,Q),
Q ∈ {AQ,CQ,UCQ};

2. FPT in (L,Q), Q ∈ {CQtw
p ,UCQtw

p | p ≥ 1}.
So TGD-ontology relaxing approximation inherits the

good computational properties of ELIu⊥-ontology relaxing
approximation except for linear time for bELIQs, while be-
ing significantly more complete.

The lower bounds are proved exactly as for ELIu⊥-
ontology relaxing approximation, see Section 4. For the
upper bounds, we treat the CQs in a UCQ independently
and use a careful chase algorithm that essentially follows
the lines of the careful chase presented in Section 4. An im-
portant difference is that a counterpart of Lemma 3 in which
Q≈ELIu⊥

is replaced withQ≈`,k,1,k′ andD≈∅ with an unraveling
of D into a database of treewidth `, k fails to hold if k′ > k
(the ‘only if’ direction of Point 1 fails). We resort to Theo-
rem 5 below, which is a central ingredient to the proof. For

a database D and `, k ≥ 1, with ` < k, D≈`,k denotes the
unraveling of D into a database of treewidth (`, k), defined
in the appendix. While adom(D) ∩ adom(D≈`,k) = ∅, D≈`,k
contains constants that are ‘copies’ of each a ∈ adom(D).
We use 〈D≈`,k, a〉 to denote a database obtained from D≈`,k
by choosing a copy of a in D≈`,k and renaming it back to a.
With 〈D≈`,k, ()〉, we mean D≈`,k.

Theorem 5. Let `, k, k′ ≥ 1 with ` < k. Given an
OMQ Q(x̄) = (O,Σ, q) ∈ (ALCI,CQ) of arity at most
one and with Dq of treewidth (1, k′), a Σ-database D, and
ā ∈ adom(D)|x̄|, deciding whether ā ∈ Q(〈D≈`,k, ā〉) is in
EXPTIME in combined complexity and FPT.1

The proof of Theorem 5 uses alternating tree automata.
Both the correctness proof for the careful chase algo-

rithm and the proof of Theorem 5 exploit the regular shape
of chO(D) for frontier one TGD-ontologies O and fail for
unrestricted TGDs. In fact, we do not know whether un-
restricted TGD-ontology relaxing evaluation is decidable.
However, we conjecture that the results in this section gen-
eralize to frontier-guarded TGDs (Baget, Leclère, and Mug-
nier 2010). The gain in completeness appears to be modest.

7 BTW-Database Relaxing Approximation
We study database relaxing approximation based on
databases of bounded treewidth. For `, k ≥ 1 with ` < k, let
D`,k denote the class of pointed databases (D, ā) such that
the restriction ofD to domain adom(D)\ā has treewidth `, k.
For readability, we speak of `, k-database relaxing approx-
imation in place of D`,k-database relaxing approximation.
As for TGD-ontology relaxing approximations, the parame-
ter k gives rise to an infinite hierarchy of increasingly more
complete approximations.

We first observe a counterpart of Lemma 2. Let D be a
database, ā a tuple over adom(D), and `, k ≥ 1 with ` < k.
With D≈ā,`,k, we denote the database obtained by unraveling
D such that (D≈ā,`,k, ā) ∈ D`,k. Details are in the appendix.

Lemma 5. Let Q = (O,Σ, q) ∈ (FO,UCQ) and `, k ≥ 1
with ` < k. Then for all Σ-databases D and ā ∈
adom(D)|x̄|, ā ∈ appD`,k

(Q,D) iff ā ∈ Q(D≈ā,`,k).

We next relate `, k, `′, k′-ontology relaxing approxima-
tion to `, k-database relaxing approximation.
Example 9. LetQn() = (∅, {r}, qn) ∈ (ALCI,CQ) where

qn = ∃x1 · · · ∃xn
∧

1≤i,j≤n

r(xi, xj),

and let Dn = {r(ai, aj) | 1 ≤ i, j ≤ n}. Then Dn |=
(Qn)≈1,2,1,2, but (Dn)≈∅,n−2,n−1 6|= Qn.

Conversely, take Q() = (O,Σ, q) ∈ (ALCI,CQ) where

O = {A v ∀s.B t ∀s2.B t ∀s3.B}
Σ = {A,A1, A2, A3, B, r, s}
q = ∃x1∃x2∃x3∃y

∧
1≤i≤3 r

2(xi, y) ∧Ai(xi) ∧B(y)

1Note that Dq being of treewidth (1, k′) is a stricter condition
than q being of treewidth (1, k′).

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

330

A1 A2 A3x1 x2 x3

y
B

r r r

r r r
a1 a2 a3

A1 A2 A3

A
r, s r, s

rr
r r r

Figure 2: Query q() and database D from (2nd part of) Example 9.

and let

D = {A(a1), Ai(ai), s(ai, ai+1), r(ai, ai+1), r(ai+1, ai),

r(ai, ai), r(a3, a3), A3(a3) | 1 ≤ i < 3}.

A picture is provided in Figure 2. The algorithms underlying
the theorems in this and the previous section can be used to
show that D≈∅,1,2 |= Q, but D 6|= Q≈ω,ω,ω,ω .

A straightforward variation of Example 7 shows that the
parameter k indeed gives rise to an infinite hierarchy of in-
creasingly more complete approximations.
Proposition 4. Let `, k, `′, k′ ≥ 1 with ` < k and `′ < k′.

1. In (ALCI,UCQtw
`,k), `, k-database relaxing OMQ evalu-

ation is at least as complete as `, k, `′, k′-ontology relax-
ing OMQ evaluation.

2. For OMQ from (ALCI,CQtw
`′,k′) of arity at most r ≤ 1,

`+ r, k + r, `′, k′-ontology relaxing OMQ evaluation is
at least as complete as `, k-database relaxing OMQ eval-
uation.
We remark that Point 2 of Proposition 4 no longer holds

if CQs are replaced by UCQs. We now formulate the main
result of this section.
Theorem 6. Let `, k ≥ 1, ` < k. Then `, k-database relax-
ing OMQ evaluation is

1. 2EXPTIME-complete in combined complexity and fixed-
parameter tractable with double exponential running time
in (ALCI,Q), Q ∈ {CQ,UCQ,CQtw

p ,UCQtw
p | p ≥ 1};

2. EXPTIME-complete in combined complexity and fixed-
parameter tractable with single exponential running time
in (ALC,Q) and (ALCI,Q), Q ∈ {AQ, bELIQ}.
We thus achieve FPT even for (U)CQs of unbounded

treewidth, as for tree-database relaxing approximations, but
not linear time. The lower bounds are proved exactly as for
Theorem 2. The upper bounds are shown by an elimination
approach. We remark that `, k-database relaxing approxima-
tion coincides with the answers given by canonical (`, k)-
Datalog programs, see (Feier, Kuusisto, and Lutz 2019).

Recall that for tree-database unraveling approximation,
the combined complexity increases for OMQ languages
based on ALC and (U)CQs. It seems clear that the same
is true for BTW-database relaxing approximation and that it
can be proved by adapting the proof of Theorem 3. A central
idea is to replace single constants in databases by cliques.
Conjecture 1. Let `, k ≥ 1, ` < k. Then `, k-database
relaxing OMQ evaluation in (ALC,UCQ) is 2EXPTIME-
hard.

8 Approximation from Above
The approximations studied so far are from below, thus
sound but incomplete. We define dual approximations from
above that are complete but unsound: ontology strengthen-
ing approximation and database strengthening approxima-
tion. It turns out that these are computationally less well-
behaved. While the former may increase combined com-
plexity, the latter does not even enjoy PTIME data complex-
ity.

We start with ontology strengthening approximation. For
an OMQ Q(x̄) = (O,Σ, q), a Σ-database D, and an ontol-
ogy language L′, we use app

↑
L′(Q,D) to denote the set of

tuples ā ∈ adom(D)|x̄| such that ā ∈ Q′(D) for all OMQs
Q′ = (O′,Σ, q) where O′ is an L′-ontology with O′ |= O.
Every choice of (L,Q) and L′ gives rise to an approximate
OMQ evaluation problem.

L′-ontology strengthening evaluation in (L,Q)
INPUT : OMQ Q(x̄) = (O,Σ, q) ∈ (L,Q),

Σ-database D, tuple ā ∈ adom(D)|x̄|

OUTPUT : ‘yes’ if ā ∈ app
↑
L′(Q,D) and ‘no’ otherwise

We consider ELI⊥-ontology strengthening OMQ eval-
uation in (ELIU⊥,UCQ) where ELIU⊥ is the extension
of ELI⊥ with disjunction. Note that we can find an im-
plying ELI⊥-ontology for every ELIU⊥-ontology, namely
{> v ⊥}. In contrast to ontology relaxing approximation,
it does not seem beneficial to use the universal role. The
following example illustrates unsoundness.

Example 10. Take Q(x) = (O,Σ, q) where

O = {A v A1 tA2,
∃r.(Ai uB1) u ∃r.(Ai uB2) v B | i ∈ {1, 2}}

Σ = {A,A1, A2, B,B1, B2, r}
q = B(x).

Let D = {r(a, b1), r(a, b2), A(b1), B1(b1), A(b2), B2(b2)}.
Then a ∈ app

↑
ELI⊥(D) as every ELI⊥-ontology O′ with

O′ |= O implies A v A1 or A v A2. But a /∈ Q(D).

Let O be an ELIU⊥-ontology. A set M of ELI⊥-
ontologies is an exhaustive ELI⊥-approximation set for O
if Ô |= O for every Ô ∈ M, and for every ELI⊥-
ontology O′ with O′ |= O, there is an Ô ∈ M such that
O′ |= Ô. Such sets M are interesting because for all
OMQs Q = (O,Σ, q) with q a UCQ and all Σ-databases D,
app
↑
ELI⊥(Q,D) =

⋂
Ô∈MQÔ(D) where QÔ = (Ô,Σ, q).

Consider for instance O = {> v A1 t A2}, for which
{O1,O2} is an exhaustive ELI⊥-approximation set where
Oi = {> v Ai}. In the appendix, we show how to construct
a finite exhaustive ELI⊥-approximation set for any given
ELIU⊥-ontology and use this to prove the upper bounds in
the following result.

Theorem 7. Let L ∈ {AQ,CQ,UCQ}. ELI⊥-
ontology strengthening OMQ evaluation in (ELIU⊥,L) is
2EXPTIME-complete in combined complexity and FPT with
double exponential running time.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

331

Ontology relaxing Database relaxing
ELIu⊥ TGD trees bounded treewidth

(ALC(I), bELIQ) LIN / EXPTIME FPT / EXPTIME LIN / EXPTIME FPT / EXPTIME
(ALC,CQ) PTIME / EXPTIME FPT / EXPSPACE–2EXPTIME FPT / in 2EXPTIME

(ALC,UCQ) PTIME / EXPTIME FPT / 2EXPTIME FPT / in 2EXPTIME

(ALCI, (U)CQtw
k) FPT / EXPTIME FPT / 2EXPTIME

(ALCI, (U)CQ) PTime / EXPTIME FPT / 2EXPTIME

Figure 3: Results for approximate OMQ evaluation, data and parametric complexity / combined complexity.

The lower bound is proved by a reduction from the word
problem for a suitable kind of alternating Turing machine.
We consider the lower bound for (ELIU⊥,AQ) surpris-
ing as non-approximate OMQ evaluation is only EXPTIME-
complete (Lutz 2008). Thus, approximate OMQ evaluation
is significantly harder, the only result of this kind in the cur-
rent paper that applies to AQs. It is amusing to note that
the lower bound depends only on disjunction on the left
hand side of concept inclusions, which are syntactic sugar,
but not on the seemingly much more ‘dangerous’ disjunc-
tions on the right hand side. It is in fact a byproduct of our
proofs that, without disjunctions on the left, ELI⊥-ontology
strengthening OMQ evaluation in (ELIU⊥,UCQ) is only
EXPTIME-complete. ALCI-ontologies can be rewritten in
polynomial time into a ‘nesting-free’ normal form that is of-
ten used by reasoners and that has sometimes been presup-
posed for approximation (Zhou et al. 2015). The rewriting
is not equivalence preserving, but only yields a conserva-
tive extension. ALCI-ontologies in this form can in turn
be rewritten into an equivalent ELIU⊥-ontology without
disjunction on the left. The following example shows that
ALC-ontologies that are not in normal form behave differ-
ently in that they may have only infinite exhaustive ELI⊥-
approximation sets.
Example 11. Let O = {∃r.> u ∀r.A v B1 t B2}. Then
for each n ≥ 1, the ELI⊥-ontology
On = {∃r.A v ∃rn.X, ∃r.(A u ∃rn−1.X) v B1}

is such that On |= O. It is easy to see that On 6|= Om when
n 6= m and any ELI⊥-ontologyO′n withOn |= O′n |= O is
equivalent to On.

In the appendix, we give another example which shows
that the effect pointed out in Example 11 also affects an-
swers to OMQs. We leave the decidability and complexity of
ELI⊥-ontology relaxing approximation in (ALCI,UCQ)
(without assuming normal form) as an open problem.

We next turn to database strengthening approximation.
For an OMQ Q(x̄) = (O,Σ, q), a Σ-databaseD, and a class
D of pointed databases, we use app

↑
D(Q,D) to denote the

set of tuples ā ∈ adom(D)|x̄| such that for all 〈D′, b̄〉 ∈ D
and all homomorphisms h from D to D′ with h(ā) = b̄,
b̄ ∈ Q(D′). Every choice of (L,Q) and D gives rise to an
approximate OMQ evaluation problem.

D-database strengthening evaluation in (L,Q)
INPUT : OMQ Q(x̄) = (O,Σ, q) ∈ (L,Q),

Σ-database D, tuple ā ∈ adom(D)|x̄|

OUTPUT : ‘yes’ if ā ∈ app
↑
D(Q,D) and ‘no’ otherwise

A natural choice for D are classes of databases of bounded
treewidth. We only consider here the class D1 of pointed
databases 〈D, ā〉 where adom(D) \ ā has treewidth (1, 2),
i.e. it is a tree with multi-edge and self-loops admitted.
Example 12. Take Q(x) = (O,Σ, q) where

O = {Ai uAj v B | 1 ≤ i < j ≤ 3}
Σ = {A1, A2, A3, B, r}
q = ∃xB(x).

Let D = {r(a1, a2), r(a2, a3), r(a3, a1),
A1(a1), A2(a2), A3(a3)}.

Then () ∈ app
↑
D1

(D), but () /∈ Q(D).
Examples 10 and 12 also show thatD1-database strength-

ening approximation and ELI⊥-ontology strengthening ap-
proximation are incomparable as a /∈ app

↑
D1

(D) in Exam-
ple 10 and () /∈ app

↑
ELI⊥(D) in Example 12. It turns out

that D1-database strengthening approximation does not even
enjoy PTIME data complexity, and this holds already when
the original ontology is formulated in a tractable language.
Theorem 8. D1-database strengthening approximation is
CONP-complete in data complexity in (ALCI,UCQ). The
lower bound already holds when the ontology is empty. It
also holds in (EL,CQ).

The interesting part is the lower bound, proved by a non-
trivial reduction from the validity of propositional formulas.

9 Conclusion
We have introduced and studied various kinds of OMQ ap-
proximations. Our results on approximation from below are
summarized in Figure 3 where all entries for combined com-
plexity mean completeness results, unless stated otherwise.
We believe that the results in this paper show that ontology
relaxing approximation is preferable to database-relaxing
approximation in most aspects. First, they are conserva-
tive in the sense that they are complete when the ontology is
empty. Second, they have lower combined complexity. And
third, also for the dual notion of ontology-strengthening ap-
proximation one attains PTIME data complexity. It would
be interesting to generalize our approach to extensions of
ALCI with, for instance, role hierarchies, transitive roles,
and functional roles. Moreover, ontology strengthening ap-
proximation deserves further study.

Acknowledgements
Haga and Lutz were supported by DFG CRC 1320 Ease.
Wolter was supported by EPSRC grant EP/S032207/1.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

332

References
Baader, F.; Horrocks, I.; Lutz, C.; and Sattler, U. 2017. An
Introduction to Description Logic. Cambridge University
Press.
Baget, J.; Leclère, M.; Mugnier, M.; and Salvat, E. 2009.
Extending decidable cases for rules with existential vari-
ables. In Proc. of IJCAI, 677–682.
Baget, J.; Leclère, M.; and Mugnier, M. 2010. Walking the
decidability line for rules with existential variables. In Proc.
of KR. AAAI Press.
Barceló, P.; Feier, C.; Lutz, C.; and Pieris, A. 2019. When
is ontology-mediated querying efficient? In Proc. of LICS,
1–13. IEEE.
Barceló, P.; Libkin, L.; and Romero, M. 2014. Efficient
approximations of conjunctive queries. SIAM J. Comput.
43(3):1085–1130.
Barceló, P.; Romero, M.; and Zeume, T. 2018. A more gen-
eral theory of static approximations for conjunctive queries.
In Proc. of ICDT, volume 98 of LIPIcs, 7:1–7:22. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik.
Bienvenu, M.; Ortiz, M.; Simkus, M.; and Xiao, G. 2013.
Tractable queries for lightweight description logics. In Proc.
of IJCAI, 768–774. IJCAI/AAAI.
Bienvenu, M.; ten Cate, B.; Lutz, C.; and Wolter, F. 2014.
Ontology-based data access: A study through disjunctive
datalog, CSP, and MMSNP. ACM Trans. Database Syst.
39(4):33:1–33:44.
Bötcher, A.; Lutz, C.; and Wolter, F. 2019. Ontology ap-
proximation in Horn description logics. In Proc. of IJCAI,
1574–1580. ijcai.org.
Calı̀, A.; Gottlob, G.; and Kifer, M. 2013. Taming the in-
finite chase: Query answering under expressive relational
constraints. J. Artif. Intell. Res. 48:115–174.
Calvanese, D.; Giacomo, G. D.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2015. Data complexity of query answering
in description logics (extended abstract). In Proc. of IJCAI,
4163–4167. AAAI Press.
Carral, D.; Feier, C.; Grau, B. C.; Hitzler, P.; and Horrocks,
I. 2014. EL-ifying ontologies. In Proc. of IJCAR, volume
8562 of LNCS, 464–479. Springer.
Dowling, W. F., and Gallier, J. H. 1984. Linear-time al-
gorithms for testing the satisfiability of propositional Horn
formulae. J. Log. Program. 1(3):267–284.
Fan, W., and Geerts, F. 2012. Foundations of Data Qual-
ity Management. Synthesis Lectures on Data Management.
Morgan & Claypool Publishers.
Feier, C.; Kuusisto, A.; and Lutz, C. 2019. Rewritability in
monadic disjunctive Datalog, MMSNP, and expressive de-
scription logics. Log. Methods Comput. Sci. 15(2).
Fink, R., and Olteanu, D. 2011. On the optimal approxima-
tion of queries using tractable propositional languages. In
Proc. of ICDT, 174–185. ACM.
Gottlob, G.; Morak, M.; and Pieris, A. 2015. Recent ad-
vances in datalog±. In Reasoning Web, volume 9203 of
LNCS, 193–217. Springer.

Grohe, M. 2007. The complexity of homomorphism and
constraint satisfaction problems seen from the other side. J.
ACM 54(1):1:1–1:24.
Haga, A.; Lutz, C.; Marti, J.; and Wolter, F. 2020. A journey
into ontology approximation: From non-Horn to Horn. In
Proc. of IJCAI, 1827–1833. ijcai.org.
Haga, A.; Lutz, C.; Sabellek, L.; and Wolter, F. 2021.
How to approximate ontology-mediated queries. CoRR
abs/2107.05369.
Hitzler, P., and Vrandečić, D. 2005. Resolution-based ap-
proximate reasoning for OWL DL. In Proc. of ISWC, 383–
397. Springer.
Johnson, D. S., and Klug, A. C. 1982. Testing contain-
ment of conjunctive queries under functional and inclusion
dependencies. In Proc. of PODS, 164–169. ACM.
Kaminski, M.; Nenov, Y.; and Grau, B. C. 2016. Datalog
rewritability of disjunctive datalog programs and non-Horn
ontologies. Artif. Intell. 236:90–118.
Lutz, C. 2008. The complexity of conjunctive query an-
swering in expressive description logics. In Proc. of IJCAR,
volume 5195 of LNCS, 179–193. Springer.
Pan, J. Z., and Thomas, E. 2007. Approximating OWL-DL
ontologies. In Proc. of AAAI, 1434–1439. AAAI Press.
Schaerf, A. 1993. On the complexity of the instance check-
ing problem in concept languages with existential quantifi-
cation. J. of Intel. Inf. Systems 2:265–278.
Selman, B., and Kautz, H. A. 1996. Knowledge compilation
and theory approximation. J. ACM 43(2):193–224.
Thomas, E.; Pan, J. Z.; and Ren, Y. 2010. TrOWL: Tractable
OWL 2 reasoning infrastructure. In Proc. of ESWC, volume
6089 of LNCS, 431–435. Springer.
Tserendorj, T.; Rudolph, S.; Krötzsch, M.; and Hitzler, P.
2008. Approximate OWL-reasoning with Screech. In Proc.
of RR, volume 5341 of LNCS, 165–180. Springer.
Zhou, Y.; Grau, B. C.; Nenov, Y.; Kaminski, M.; and Hor-
rocks, I. 2015. PAGOdA: Pay-as-you-go ontology query
answering using a datalog reasoner. J. Artif. Intell. Res.
54:309–367.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

333

