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Abstract
This paper introduces the Temporal Inference Problem (TIP),
a general formulation for a family of inference problems that
reason about the past, present or future state of some ob-
served agent. A TIP builds on the models of an actor and
of an observer. Observations of the actor are gathered at ar-
bitrary times and a TIP encodes hypothesis on unobserved
segments of the actor’s trajectory. Regarding the last obser-
vation as the present time, a TIP enables to hypothesize about
the past trajectory, future trajectory or current state of the ac-
tor. We use LTL as a language for expressing hypotheses and
reduce a TIP to a planning problem which is solved with an
off-the-shelf classical planner. The output of the TIP is the
most likely hypothesis, the minimal cost trajectory under the
assumption that the actor is rational. Our proposal is evalu-
ated on a wide range of TIP instances defined over different
planning domains.

1 Introduction
Inference is the process of reaching a conclusion on the ba-
sis of evidence and reasoning. Many planning-related tasks
are assimilated to inference tasks. A diagnosis problem de-
fines a set of observations and a hypothesis space of faulty
components with the purpose of finding an explanation of
the observed behaviour through exploration of the hypoth-
esis space (Grastien et al. 2011). Goal recognition is the
problem of inferring the objective of an actor among a set of
hypothesized goals by observing its behaviour (Ramı́rez and
Geffner 2009; Sukthankar et al. 2014). Some plan recogni-
tion approaches additionally stress the role of unreliable and
noisy observations in the inference task (Sohrabi, Riabov,
and Udrea 2016; Kim et al. 2018).

Given some observed behaviour of an agent and a set
of hypotheses, several different approaches have been pro-
posed to tackle the problem of finding explanations (rea-
soning about past) or generating plans (reasoning about fu-
ture). Finding preferred explanations for observed behavior
has been formulated with LTL (Sohrabi, Baier, and McIl-
raith 2011). Situation calculus and event-based language
(Grastien et al. 2011; Haslum and Grastien 2011) are com-
monly used to capture the evolution of the system. Recog-
nition tasks have also been addressed from different per-
spectives: with a probabilistic interpretation of the recog-
nition problem (Ramı́rez and Geffner 2010; Sohrabi, Ri-
abov, and Udrea 2016; E-Martı́n, R.-Moreno, and Smith

2015), with planning-based formulations (Pereira, Oren, and
Meneguzzi 2020) or adopting changes in the agent model to
enhance the recognition task (Keren, Gal, and Karpas 2019;
Keren, Gal, and Karpas 2020). Assumption-based planning
has been proposed to address both past and future inference
tasks under incomplete knowledge (Davis-Mendelow, Baier,
and McIlraith 2013).

In general, inference tasks are differentiated between ex-
plicability and predictability . This distinction, which has
been discussed in recent works (Chakraborti et al. 2019),
conceives explicability as finding completions of a plan pre-
fix via plans that satisfy the emitted observations, and pre-
dictability as minimizing the set of possible completions so
as to unambiguously predict the goal of the agent. This view
reveals that inference oriented towards explaining some past
behaviour or to predicting some future behaviour are two
sides of the same coin and as such, they can be formulated
within a single unified framework.

Another relevant aspect is that inference tasks typically
account for hypotheses on the unobserved behaviour at a sin-
gle point of the actor’s trajectory. Assumptions regarding the
initial state are included in approaches to the diagnosis prob-
lem (Sohrabi, Baier, and McIlraith 2010), estimations about
the actual state are considered in plan monitoring (Fritz and
McIlraith 2007), and the set of hypotheses in plan recogni-
tion contains goal states. The ability to hypothesize that two
variables are achieved in some particular order or conjectur-
ing about whether a variable is achieved before or after some
observation is a powerful inference ability.

In this paper, we present a general formulation of a tem-
poral inference problem (TIP) and its relationship to plan-
ning from both a theoretical and practical perspective. Our
contributions are:

• a decoupled planning-sensing model that allows repre-
senting observations captured with different types of sen-
sors,

• a formalization of a temporal hypothesis on finite traces
expressed in Linear Temporal Logic (LTLf ) that repre-
sents an intertwined combination of observations and con-
jectures,

• a TIP formulation in terms of a planning model and a set
of hypotheses to infer the unobserved behaviour of the
actor,
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Figure 1: Initial state corresponding to a classical planning problem
from the driverlog domain: Square city (Sc), Diamond city (Dc),
Triangle city (Tc) and Hexagon city (Hc).

• a formal characterization of a TIP solution as planning via
translation of a temporal formula to a deterministic finite
automata (DFA).

The paper is structured as follows. The next section intro-
duces a motivating example that we will use throughout the
paper to support explanations and illustrate the application
of theoretical concepts. Section 3 introduces the planning
model and the sensor model. Section 4 formalizes the con-
cept of hypothesis using LTLf . Section 5 formulates the
temporal inference problem (TIP) and identifies three types
of TIP of special interest. In section 6 we show how to for-
mally characterize a TIP solution as a planning problem by
translating temporal formulas to a DFA. Section 7 presents
the empirical evaluation of the three types of TIP. In section
8 we summarize related work and last section concludes.

2 Motivating Scenario
To exemplify the wide scope of temporal inference, Figure 1
shows an initial state of a classical planning problem from
the driverlog domain introduced at the 3rdInternational
Planning Competition (IPC) (Fox and Long 2003). In this
domain, packages are transported by trucks and trucks navi-
gate between two connected locations provided that a driver
is onto the truck, and drivers ride trucks. Drivers can also
walk between two locations iff a walking path connects these
locations (represented in Figure 1 by a thin line). Figure 1
features locations grouped in four cities, namely Square city
(Sc), Diamond city (Dc), Triangular city (Tc) and Hexagon
city (Hc). Two packages are found at locations 1 and 4 of the
Square city, one driver at location 3 of the Triangular city, a
second driver at location 3 of the Hexagon city, and a single
truck at location 4 of this same city. There are no drivers or
trucks in the Diamond city. Examples of TIPs are: tracking
the driver who is currently driving the truck; uncovering the
origin location of the truck; predicting the delivering order
of the packages after observing only the cities that the truck

traverses or the number of packages and drivers in each city.

3 Preliminaries
In this section we introduce the basic notions needed for the
formalization of the temporal inference problem as well as a
working example on the domain illustrated in Figure 1.

3.1 The Augmented Model
Our approach builds on a decoupled planning-sensing
model. The model of the actor (planning agent) and the
model of the observer (sensing agent) are defined indepen-
dently of each other. We call augmented model the pair
M = 〈Mp,Ms〉 that contains a planning model Mp,
which implicitly represents the set of all possible plans of
the actor, and a sensor modelMs, which defines the type of
observations that are captured by the observer.

The planning model A planning model is a tupleMp =
〈X,A, θ, cost〉, where X is a finite set of state variables, A
is a finite set of deterministic actions, θ : X × A → X
is a successor function, and cost : A → N is a cost
function. Each state variable Xi ∈ X takes on a sin-
gle value from its corresponding domain DXi . A state
s = 〈X1 = v1, . . . , X|X| = v|X|〉 is a full assignment over
X . The set of all possible states derivable fromMp is de-
noted by S.

A planning problem is a tuple P = 〈Mp, I, G〉 where
Mp is a planning model, I ∈ S is the initial state of the
problem and G is the goal condition over the state variables.
G implicitly defines the subset SG ⊆ S of goal states.

A plan is an action sequence π = [a1, . . . , an], and |π| =
n denotes the plan length. The execution of a plan π in an
initial state I induces a trajectory τ = [s0, . . . , sn], such that
s0 = I and for each 1 ≤ i ≤ n it holds that si = θ(si−1, ai).
The cost of a trajectory τ = [s0, . . . , sn] induced by a plan
π = [a1, . . . , an] is defined as cost(τ) =

∑n
i=1 cost(ai). A

solution plan π is a solution to a planning problem P iff the
goal condition holds in the last state reached by the induced
trajectory; i.e. sn ∈ SG. A plan is optimal iff it induces a
minimal cost trajectory. Hereafter, and without loss of gen-
erality, we will assume that states are full assignments over
X ∪ A; i.e., the action executed by the actor are encoded
as state variables and so the actor’s plan is embedded in its
corresponding trajectory.

The sensor model A sensor model is a tuple Ms =
〈X,Y,Φ〉. X are the state variables of the actor, whose val-
ues are actually hidden from the observer; Y are the ob-
servable variables (each Yi ∈ Y has a domain DYi

); and
Φ = {f1, . . . , f|Y |} is a set of sensing functions such that
each fi ∈ Φ models the sensor of one variable Yi ∈ Y .

A sensing function fi : Ci → ℘(DYi
) associated to

Yi defines the possible emissions (elements of the power-
set ℘(DYi

)) that may be emitted when a condition c ∈ Ci

holds in a state. A condition is a partial assignment over X
that entails the set of states Sc where c holds. The mapping
defined by fi must be exhaustive (

⋃
c∈Ci

Sc = S) and exclu-
sive (Sc ∩ Sc′ = ∅, ∀c, c′ ∈ Ci) so that a state emits exactly
one observed value for each variable Yi.
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An observation ω = 〈Y1 = w1, . . . , Y|Y | = w|Y |〉, wi ∈
DYi , is a full assignment over the observable variables Y .
An observation ω is valid in state s if ∀i, wi ∈ fi(ci)
and ci ∈ s; i.e., w1, . . . , w|Y | are the values observed
through the |Y | sensors in a state s which satisfies condi-
tions c1, . . . , c|Y |.

Now we exemplify a sensor model through the following
variables:
• X = {loc tk1}: one state variable of the planning model

that represents the location of truck1. For instance, the
fact loc tk1 = h4 denotes that truck1 is at location 4 of
the Hexagon city; and the fact loc tk1 = t1 represents
that truck1 is at location 1 of the Triangular city.

• Y = {city tk1}: one observable variable that represents
the city where truck1 is. DY1

= {Hc, Dc, Sc, Tc} con-
tains the four cities in Figure 1.
The sensor of Y1 relies on a low resolution GPS located

in each truck that reports the city where the truck is, but
the exact location within a city is unknown. The sensing
function associated to Y1, f1 : C1 → ℘(DY1), establishes
a relationship between the state variable and the observable
variable. When a condition (a fact) of C1 holds in a state,
a value among ℘(DY1) = 2DY1 is a possible emission (ob-
servation) of the variable Y1. For instance, for a condition
c ∈ {loc tk1 = h1, loc tk1 = h2, . . . , loc tk1 = h6}, a
value that can be emitted for Y1 (assuming no malfunction-
ing sensors) is f1(c) = {Hc}; that is, city tk1 = Hc is an
observation broadcast by the GPS that denotes that truck1
is found in the Hexagon city on the condition that the truck
is at one location of the Hexagon city. As another example,
when c ∈ {loc tk1 = t1, . . . , loc tk1 = t3}, a possible
emission is f1(c) = {Tc}, which amounts to the observa-
tion city tk1 = Tc being captured through the GPS. Thus,
city tk1 = Tc is valid observation in a state s as long as
s satisfies one of the conditions of C1 that may produce the
observed value.

The set C1 includes all possible locations of truck1,
which guarantees exhaustiveness of the function f1; that
is, since one condition of C1 will always hold in a state, one
emission of the observable variable Y1 is guaranteed. And
the values of C1 are mutually exclusive so as to avoid more
than one observation of Y1. Generally speaking, an observed
value maps to a set of exclusive conditions, i.e., to a disjunc-
tive set of values of one or more state variables.

The above examples present a deterministic sensor model
because the set of possible emissions, ℘(DY1

), is a single-
ton. Although out of the scope of this paper, our definition of
sensing function supports noisy and non-deterministic sen-
sors. This is the case, for instance, of a weak GPS signal
that returns either the correct city or a neighbouring one.
We follow a model-based approach to noise where spurious
observations that cannot be explained by the sensor model
are not supported.

3.2 Working Example
This section presents the whole set of state variables X and
observable variables Y on the scenario in Figure 1 that will
be used throughout the paper.

State variables. Regarding the example of Figure 1, the
set X of the planning model includes:
• For each package, a variable loc pkp represents the loca-

tion of package p ; e.g., loc pk1 = s1 ∧ loc pk2 = s4
means that package1 is at location 1 of Square city and
that package2 is at location 4 of this same city. These
variables also indicate whether a package is loaded onto a
truck, in which case the variable is assigned to the corre-
sponding truck, e.g. loc pk1 = truck1.

• For each driver, a variable loc drd indicates its location;
e.g., loc dr1 = t3 ∧ loc dr2 = h3 represents that
driver1 is at location 3 of the Triangle city and driver2
is at location 3 of the Hexagon city. This variable can
also indicate that a driver is on board of a truck, e.g.
loc dr1 = truck1.

• For each truck, a variable loc tkt represents the location
of the truck as explained previously.
Observable variables. As we mentioned before, each

truck is equipped with a low resolution GPS that reports the
city at which the truck is located. In addition, the competent
authorities of the cities keep track of the number of available
drivers (the ones who are not driving a truck) as well as of
the number of undelivered packages (the delivery company
has an office in each city that records this information). The
exact location of a truck, package, or driver is however un-
known. The set Y of observable variables is:
• Variables city tkt indicate the city where a truck t is lo-

cated as explained in the example above.
• Variables num pkc and free drc indicate the number of

undelivered packages and available drivers in city c. E.g.,
num pks = 2 means there are two packages at Square
city; free drt = 1 means that there is one available driver
at the Triangular city. Let’s call Tloc = {t1, t2, t3}, the
set of locations of the Triangle city. In Figure 1, the sens-
ing function that returns the observation free drt = 1
is applicable to all the states that satisfy loc dri = li ∧
loc drj = lj/li ∈ Tloc ∧ lj 6∈ Tloc. Note that here there is
a mapping from the observable variable free drt to two
state variables because the scenario features two drivers.
This particular set of observable variables report an ab-

straction of the world state, reason why there may exist mul-
tiple states that emit the same observation. That is, Ms

emits the same ω from different states. For instance, follow-
ing the modeled sensors, the observation of the state of Fig-
ure 1 is ω = 〈num pkd = 0, num pkh = 0, num pks =
2, num pkt = 0, free drd = 0, free drh =
1, free drs = 0, free drt = 1, city tk1 = Hc〉. Differ-
ent world states can also emit this same observation.

Finally, the set of actions A comprises the load/unload
actions for packages and trucks, board/debark actions for
drivers and trucks, the walk action for drivers and locations,
and the drive action for drivers, trucks and locations. For
simplicity, we assume all actions have unitary cost.

4 Formalizing Hypotheses
A Temporal Inference Problem (TIP) is an inference task
about finding the hypothesis that best explains some obser-
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vations (our evidence). The starting point of our approach is
then a sequence of observations {ωi}ki=1 of the acting agent.
Considering that the last observation ωk is part of the cur-
rent state of the agent, we are interested in uncovering un-
observed segments of the trajectory followed by the agent
before ωk, discerning the current state of the agent, or pre-
dicting the trajectory the agent will follow in the future.

We use conjectures to talk about the unobserved parts of
the trajectory. A conjecture is a constraint over a single state
that expresses our assumptions regarding the acting agent
at some time point. A hypothesis is an expression that in-
tertwines conjectures with an observation sequence and are
used to indistinctly pose queries about the past (e.g., for find-
ing explanations), present (e.g., for diagnosis and monitor-
ing) or future (e.g., for prediction and goal recognition).

4.1 LTLf Specifications of Hypotheses
We formulate intertwined sequences of observations and hy-
potheses in Linear Temporal Logic (LTL). Specifically, we
use LTLf (De Giacomo and Vardi 2013), a variant of LTL
interpreted over finite traces which uses the same syntax as
that of LTL, and suffices for our purposes.

A formula of LTLf is written as ϕ. An atomic formula
is an element of P , a set of propositional symbols. A non-
atomic formulae is built by applying negation (¬), boolean
connective (∧), and temporal modalities X (next), U (until),
G (always) and F (eventually). We also assume the standard
boolean abbreviations true, false, ∨ and → (implies) as
well as the abbreviation Last, which stands for ¬Xtrue and
denotes the last instant of the finite trace (De Giacomo and
Vardi 2013).

The semantics of a LTLf formula ϕ is given in terms
of interpretations over finite trajectories τ denoting a fi-
nite sequence of states at consecutive instants of time
[s0, s1, . . . , sn]. Essentially, the definition of a formula ϕ
being true in τ is circumscribed to an instant i (0 ≤ i ≤ n)
on the trajectory τ . A formula ϕ is true in τ if τ, i |= ϕ,
i = 0. An interpretation is represented as a finite trajectory
τ over the alphabet of 2P .

For the purposes of this work, we focus our attention
in LTLf formulas that represent an ordered occurrence
XF(ϕ1 ∧ XF(ϕ2 ∧ . . . ∧ XFϕn)). As the name suggests,
an ordered occurrence expresses the property that formulas
ϕ1 . . . ϕn must be satisfied in order. We define a syntactic
constructor that builds an ordered occurrence from a list of
formulas Φ = (ϕ1, . . . , ϕm):

ord(Φ) := XF(Φ[0] ∧ ord(Φ[1 :])), when |Φ| > 1

:= XFΦ[0],when |Φ| = 1

Note that we use the notation Φ[0] to denote the first ele-
ment of the list Φ and Φ[1 :] to denote the tail of the list.

We now explain how we employ LTLf to define the el-
ements of our hypothesis language. We set P as the set of
assignments to state variables of the form state variable =
value. We first formally introduce a conjecture η and re-
mark that an observation ω can be expressed as a non-atomic
formula of LTLf :

• A conjecture η is a Boolean expression over P and there-
fore a LTLf formula.

• Each variable of an observation ω =
〈Y1 = w1, . . . , Y|Y | = w|Y |〉 maps to a set of exclu-
sive conditions, and a condition is a partial assignment
over X . The LTLf formula that expresses an observation
is
∧|Y |

i=1

∨|Ci|
j=1 cij , where cij ∈ 2P .

Definition 1 (Hypothesis). A hypothesis is a LTLf formula
ord(ϕ1, . . . , ϕm) such that ϕi : ωi ∧ ηi, 1 ≤ i ≤ m.

For a formula ϕ : ω∧η, ϕmay denote only an observation
if η is true, only a conjecture if ω is true or otherwise a joint
occurrence of an observation along with a conjecture.

This definition is sufficiently expressive to write hypothe-
ses that intertwine observations and conjectures. For exam-
ple, the formula ord(ω1∧true, true∧η2, ω3∧true, ω4∧η4)
is used to find a trajectory whose states satisfy observation
ω1, later constraint η2, later observation ω3 and finally the
trajectory contains a state in which ω4 ∧ η4 holds.

4.2 Examples of Hypotheses
Once presented the specification of hypotheses as LTLf for-
mulas, we show here some illustrative examples.

Example 1. truck1 is first observed at some location of
the Hexagon city, and it is observed later at some location
of the Diamond city. Table 1 shows the observations and
conjectures for this example1.

Time Observation Conjecture
1 ω1 : city tk1 = Hc η1 : true
2 ω2 : city tk1 = Dc η2 : true

Table 1: Hypothesis of Example 1

The LTLf formula that expresses the hypothesis of Table
1 is XF(ϕ1 ∧ XFϕ2) where ϕ1 : ω1 ∧ η1 and ϕ2 : ω2 ∧ η2.
For instance, the LTLf formula of ω2 is loc tk1 = d1 ∨
loc tk1 = d2 ∨ loc tk1 = d3 ∨ loc tk1 = d4.

The formula XF(ϕ1 ∧ XFϕ2) is true in some trajectory
τ = [s0, s1, . . . , sn] where truck1 is at one location of the
Hexagon city in some state at instant i such that 0 < i < n,
and for some j such that i < j ≤ Last there is a state sj
where we have observed that truck1 is at one location of
the Diamond city.

Example 2. We know that truck1 has visited the
Hexagon city and the Diamond city afterwards. We wish
to find out whether truck1 was driven by driver2 and
it traversed first location t2 and then t1 after visiting the
Hexagon city and before the Diamond city. Table 2 shows
the observations and conjectures for this example.

The formula XF(ϕ1 ∧ XF(ϕ2 ∧ XF(ϕ3 ∧ XFϕ4))) of Ex-
ample 2 is satisfiable if it is true in some trajectory τ =
[s0, s1, . . . , sn] such that τ contains four states si, sj , sk
and sl, 0 < i < j < k < l ≤ n where ω1 is true in si, η2 is
true in sj , η3 is true in sk and ω4 is true in sl.

1For simplicity, observable variables whose value is zero in ω
are not shown in the examples.
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Time Observation Conjecture
1 ω1 : city tk1 = Hc η1 : true

2 ω2 : true η2 : loc tk1 = t2 ∧
loc dr2 = truck1

3 ω3 : true η3 : loc tk1 = t1 ∧
loc dr2 = truck1

4 ω4 : city tk1 = Dc η4 : true

Table 2: Hypothesis of Example 2

Example 3. We have observed truck1 at some location
of the Triangle city and later in the Diamond city. We hy-
pothesize that package1 was unloaded in location 4 of the
Diamond city. The hypothesis ord(ϕ1, ϕ2, ϕ3) of this exam-
ple is shown in Table 3.

Time Observation Conjecture
1 ω1 : city tk1 = Tc η1 : true
2 ω2 : city tk1 = Dc η2 : true
3 ω3 : true η3 : loc pk1 = d4

Table 3: Hypothesis of Example 3

5 The Temporal Inference Problem
In this section we formally introduce the temporal inference
problem (TIP) and describe three relevant families of infer-
ence problems.

We formally define a TIP as a tuple 〈M, H〉 where:

• M = 〈Mp,Ms〉 is an augmented model.

• H is a finite and non-empty set of hypotheses.

The solution to a TIP is the most likely hypothesis, h∗ ∈
H . We build upon the assumption that the planning agent
is rational (i.e. lower cost trajectories are more likely). The
most likely hypothesis is defined as follows:

h∗ = arg min
h∈H

cost(τ), τ ∈ T (h) (1)

where T (h) is the set of trajectories (i.e., interpretations
over finite traces in LTLf semantics) that satisfy the hypoth-
esis h.

A wide palette of inference problems can be expressed as
particular instances of a TIP. We focus on three types of TIP
of special interest:

• Monitoring. Monitoring is a TIP about the current state
of the actor. In a monitoring problem the conjectures are
exclusively about the world state associated to the last ob-
servation. Formally, every hypothesis h ∈ H of the form
h : ord(ϕ1, . . . , ϕm) represents a Monitoring problem if:

– ∀i, 1 ≤ i < m,ϕi : ωi ∧ true, and
– ϕm : ωm ∧ ηm

• Hindsight. Hindsight is the TIP concerned with uncov-
ering the unobserved behaviour of the planning agent up
to the last instant observed. A hypothesis that denotes

a hindsight problem describes our conjectures about the
past. Formally, every hypothesis h ∈ H of the form
h : ord(ϕ1, . . . , ϕm) represents a Hindsight problem if:
– ∃k < m such that ϕk : true ∧ ηk, and
– ∀i, k < i ≤ m,ϕi : ωi ∧ true

• Prediction. The prediction TIP formulates conjectures
about the future of the agent. Formally, every hypothesis
h ∈ H of the form h : ord(ϕ1, . . . , ϕm) represents a
Prediction problem if:
– ∃k < m such that ∀i, 1 ≤ i ≤ k, ϕi : ωi ∧ true, and
– ∀j, k < j ≤ m,ϕj : true ∧ ηj

5.1 Examples of TIPs
We exemplify the three types of TIP using the initial state
illustrated in Figure 1. We will assume the two-observation
sequence of Table 4 as the evidence for all the examples in
this section. The observations portray that we first observed
two packages at the Square city, one free driver at the Trian-
gle city and that truck1 is in Hexagon city; and afterwards
we observed one package less in the Square city and truck1
in the Diamond city.

Time Observation
1 ω1 : num pks=2 ∧ free drt=1 ∧ loc tk1=Hc
2 ω2 : num pks=1 ∧ free drt=1 ∧ loc tk1=Dc

Table 4: Observation sequence for the TIP examples

Monitoring. An example of monitoring is identifying the
driver who is currently on board of truck1, for which we
generate two alternative hypothesesH = {h, h′}, one where
truck1 is driven by driver1 and another where it is driven
by driver2. The first two rows of Table 5 represent the
hypothesis h and the other two rows the hypothesis h′.

Time Observation Conjecture
1(h) ω1 η1 : true
2(h) ω2 η2 : loc dr1 = truck1

1(h′) ω1 η1 : true
2(h′) ω2 η2 : loc dr2 = truck1

Table 5: Hypotheses of the monitoring example

Hindsight. An example of hindsight is determining
whether the package picked up between the two observa-
tions is package1 or package2. We formulate the two hy-
potheses shown in Table 6. Note that intertwining conjecture
η2 moves the second observation to time index 3.

Prediction. Let us assume the delivery point of the two
packages is location d1 of the Diamond city. An exam-
ple of a prediction TIP is worded as follows: ”after hav-
ing observed ω1 and ω2, will package1 be delivered before
package2 or vice versa?”

This task is formulated with the hypotheses of Table 7
where h conjectures that package1 is delivered first and h′
conjectures the reverse order.
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Time Observation Conjecture
1(h) ω1 η1 : true
2(h) ω2 : true η2 : loc pk1 = truck1
3(h) ω3 η3 : true

1(h′) ω1 η1 : true
2(h′) ω2 : true η2 : loc pk2 = truck1
3(h′) ω3 η2 : true

Table 6: Hypotheses of the hindsight example

Time Observation Conjecture
1(h) ω1 η1 : true
2(h) ω2 η2 : true
3(h) ω3 : true η3 : loc pk1=d1 ∧ ¬loc pk2=d1
4(h) ω4 : true η4 : loc pk2=d1
1(h′) ω1 η1 : true
2(h′) ω2 η2 : true
3(h′) ω3 : true η3 : loc pk2=d1 ∧ ¬loc pk1=d1
4(h′) ω4 : true η4 : loc pk1=d1

Table 7: Hypotheses of the prediction example

The two hypotheses of Table 7 show a sequence of conjec-
tures rather than an instant-wise conjecture. The same can
be applied to the Hindsight TIP to query about the specific
order of two past occurrences.

6 Temporal Inference as Planning
In this section we present the reduction of a TIP 〈M, H〉
to |H| classical planning instances, one for each hypothesis
h ∈ H . Intuitively, each planning instance implements the
product of the non-deterministic automaton that corresponds
to the planning model Mp and a deterministic finite automa-
ton (DFA) that accepts trajectories that satisfy the hypothe-
sis h, thus restricting the possible solutions of the planning
instance to T (h). The most likely hypothesis is the hypothe-
sis that corresponds to the planning problem whose optimal
plan presents the minimum cost.

6.1 Building a DFA for a Hypothesis
Our compilation to planning exploits the fact that every
LTLf formula can be translated into an equivalent DFA.
The details of this translation can be found in (De Gia-
como and Vardi 2013). A DFA is specified as a tuple
A = 〈Q,Σ, δ, q0, F 〉, where:
• Q is a finite set of states,
• Σ is the input alphabet,
• δ : Q× Σ→ Q is the state transition function,
• q0 is the initial state, and
• F ⊆ Q is the set of accepting states.

When a DFA is in a state q ∈ Q, and receives a symbol
σ ∈ Σ, it transitions to state q′ = δ(q, σ). This process starts
with the initial state q = q0, and it is repeated for q = q′,
until the input sequence of symbols is exhausted. At this

q0 q1 q2 q3 q4

¬ϕ1

ϕ1

¬ϕ2

ϕ2

¬ϕ3

ϕ3

¬ϕ4

ϕ4

true

Figure 2: DFA for the hypothesis of Example 2 in section 4.2.

point, iff the automaton ends at a state that belongs to F , the
input sequence of symbols is accepted.

The ordered occurrence property denoted by a hypothe-
sis in a TIP translates to a DFA with a forward topology
and self-loops as illustrated in Figure 2. This DFA can be
computed in linear time in the number of subformulas ϕi of
ord(ϕ1, . . . , ϕm). Given a hypothesis h : ord(ϕ1, . . . , ϕm),
we define Ah = 〈Q,Σ, δ, q0, F}〉 as follows:

• Q = {qi | 0 ≤ i ≤ m} contains one state for each
subformula ϕi in h : ord(ϕ1, . . . , ϕm) plus an additional
initial state.

• Σ = 2P where P is the set of assignments to state vari-
ables of the form state variable = value.

• δ defines transitions qi = δ(qi−1, ϕi), 1 ≤ i ≤ m to
advance the state of the automaton, and defines loop tran-
sitions of the form qi−1 = δ(qi−1,¬ϕi) to remain in the
same state.

• F = {qm}.

The states of Ah represent the current progress in
the validation of the satisfiability of a hypothesis h :
ord(ϕ1, . . . , ϕm) by a trajectory τ . Being at state qi means
thereby that τ satisfies h up to ϕi. When a state s of a trajec-
tory τ is processed in the automaton state qi−1, the transition
qi = δ(qi−1, ϕi) is triggered iff s |= ϕi, progressing the
automaton to state qi; otherwise the automaton remains at
qi−1 through transition qi−1 = δ(qi−1,¬ϕi). Consequently,
reaching state qm means that τ satisfies h.

6.2 The Classical Planning Problem
Given a TIP 〈M, H〉, this section shows how to build the
classical planning instance Ph = 〈Xh, Ah, Ih, Gh〉 that cor-
responds to the hypothesis h ∈ H . Building Ph mainly in-
volves extending the state variables and actions of the actor’s
planning modelMp ∈M with new variables and actions to
represent the states and transitions of the DFA Ah.

Initial state and goals. Similarly to the compilation
scheme for planning with extended goals (Baier and McIl-
raith 2006), Xh extends the set of original state variables
with extra variables to keep track of the current state of the
DFA Ah. Accordingly, the initial state Ih is also extended
with the initial state of the Ah. The goal Gh of the classi-
cal planning instance comprise now only the single accept-
ing state qm of the automaton. Additionally, we introduce
a Boolean variable invalid which must be false in the goal
state and is used to ensure that solutions satisfy the hypothe-
ses.
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Actions. The set Ah of the classical planning instance Ph

contains two types of actions: transition actions, which
implement the state transition function of the acting agent
and validation actions, which implement the state transition
function of Ah:
• Transition actions. These are the same actions as in the

original planning modelMp.
• Validation actions. A new validatei action is introduced

for every transition qi = δ(qi−1, ϕi), 1 ≤ i ≤ m, in the
DFAAh. The applicability of the validatei action requires
that the automaton is at state qi−1, and its execution up-
dates the automaton state to qi. The conjecture part of ϕi

is encoded straightforward by inserting ηi in the precondi-
tions of the validatei action. Following the same approach
for the observation part would introduce disjunctions in
the precondition so we decided against. Instead, the ob-
servation is encoded as conditional effects with condition
c ∈ {c ∈ Ci | wi /∈ fi(c)}, 1 ≤ i ≤ |Y | and effect
invalid = true. This produces a dead-end (through vari-
able invalid) if a validation action associated to some ob-
servation ω is executed in a state for which ω is not a valid
observation.
Example. Revisiting once again the hypothesis of Exam-

ple 2, we have that truck1 is observed first at Hexagon city
and later at Diamond city and we conjecture that truck1
traversed locations t2 and t1 of the Triangle city. In ev-
ery solution plan that satisfies this hypothesis, truck1 must
initially be in one of the locations among h1, . . . , h6; then
truck1 needs to be at t2, then at t1, and finally it must
be in one of the locations of the Diamond City. Coding
the DFA for this hypothesis requires four validating ac-
tions: validate1, executable in a state where truck1 is at
any location of the Hexagon city; validate2, executable af-
ter validate1 only in a state in which truck1 is at loca-
tion t2 and driven by driver2, validate3, executable af-
ter validate2 in a state in which truck1 is at location t1
and driven by driver2; and validate4, executable after
validate3 from any state that features truck1 in a location
of the Diamond city.
Theorem 1. Completeness. For every trajectory τ that sat-
isfies a hypothesis h there exists a solution plan π for Ph

such that π induces τ .
Theorem 2. Soundness. If π is a solution plan for Ph then
the trajectory τ induced by π satisfies the hypothesis h.

Proof. The planning problem Ph extends Mp with only the
state variables and sensing actions needed to model Ah. No
other constraint is added that affects the applicability of the
actions of the original planning model or their execution
cost. Therefore, solutions to Ph are only restricted by Ah

which strictly defines the language T (h). Additionally, the
goal condition Gh is to reach automaton state qm of Af

which can only be reached after processing a trajectory that
satisfies h.

The size of the resulting classical planning problem is de-
termined by the number of conditional effects of the validat-
ing actions, which is given by (i) the sensor model and (ii),
the size of the hypothesis.

7 Evaluation
This section evaluates the ability of an off-the-shelf planner
to solve the palette of TIPs presented in this work.

7.1 Experimental Setup
All experiments were run on an Intel Core i5 3.10GHz x
4 16GB of RAM. The planning problems were optimally
solved with the FAST-DOWNWARD planning system, fol-
lowing the configuration for the merge and shrink heuris-
tic (Helmert et al. 2014) that uses bisimulation based shrink-
ing, the merge strategy SCC-DFP, and the appropriate label
reduction setting (Sievers, Wehrle, and Helmert 2016), as
recommended at the http://www.fast-downward.org/ web-
site. Planning problems are solved with a timeout value of
120 secs of CPU-time, and 8GB of memory. The source
code and test benchmark for the evaluation is available
at https://github.com/anonsubs/planning inference. Our im-
plementation uses the LTLf2DFA tool2 to transform general
LTLf formulas into minimal DFAs as well as our own trans-
formation optimized for ordered occurrence formulas.

We tested our approach on benchmark TIPs of monitor-
ing, hindsight, and prediction, in five well-known classical
planning domains from the IPC: grid, miconic, driverlog,
floortile, and openstacks. A TIP 〈M, H〉 is constructed as
follows:

• For the augmented model M = 〈Mp,Ms〉 we use the
planning model of the original domain3, and define a sen-
sor model in the same way as the one used in our work-
ing example. This means that the values of the observ-
able variables Y are high-level observations of the world
states that convey how many objects meet some particular
property, but not the actual identity of the objects. For in-
stance, in the miconic domain, an observation is ”the num-
ber of passengers inside a lift”; in the openstacks domain,
an observation is ”the number of waiting/started/shipped
orders”. In both cases, the actual identity of the passen-
gers/orders remains unknown to the observer.

• H is a set of hypotheses regarding the current state in
monitoring TIPs, a sequence of past states in hindsight
TIPs, and a sequence of future states in prediction TIPs.
Hypotheses allow us to answer queries such as ”which are
the currently opened locks?” (grid), ”what was the order
of the first four painted tiles?” (floortile), and ”what will
be the order in which the last three packages will be de-
livered?” (driverlog). For each TIP, we created a set H in
which only one of the hypothesis is correct with respect to
the trajectory τ . Observations were collected by observ-
ing some trajectory τ of the agent with the sensor model.
We also define an observability parameter that determines
the percentage of states of τ that emit an observation.

7.2 Empirical Results
Table 8 summarizes the results of evaluating our approach
on monitoring, hindsight and prediction TIPs. Column
”O%” is the observability parameter (30%, 50%, or 70%).

2https://github.com/whitemech/LTLf2DFA
3http://api.planning.domains
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Monitoring Hindsight Prediction
Domain O% |H| |H∗| Q T |H| |H∗| Q T |H| |H∗| Q T

30 1.00 1.00 7.97 1.00 1.00 135.52 1.00 1.00 32.17
Grid 50 5.40 1.00 1.00 27.85 2.00 1.00 1.00 146.05 2.00 1.00 1.00 13.73

70 1.00 1.00 65.78 1.00 1.00 138.33 1.00 1.00 17.79
30 1.10 1.00 53.22 1.90 0.90 149.04 3.00 1.00 140.57

Miconic 50 6.00 1.10 1.00 180.29 5.00 2.00 1.00 140.24 5.00 2.60 1.00 255.56
70 1.20 1.00 120.13 1.80 1.00 121.02 2.60 1.00 320.65
30 1.40 0.90 162.61 1.00 1.00 238.16 1.00 1.00 169.24

Driverlog 50 5.40 1.40 0.90 284.90 5.30 1.00 1.00 399.23 5.30 1.00 1.00 250.70
70 1.40 0.90 390.91 1.00 1.00 560.77 1.00 1.00 349.16
30 1.30 0.40 37.31 4.70 0.80 443.10 3.00 1.00 676.76

Floortile 50 5.90 1.30 0.50 56.97 6.00 4.00 0.80 141.56 6.00 3.80 0.90 713.32
70 1.50 0.60 44.53 3.50 0.80 128.48 4.70 1.00 734.02
30 2.30 0.80 5.93 2.00 1.00 11.19 2.50 1.00 15.70

Openstacks 50 5.60 2.30 0.80 6.81 5.80 1.70 1.00 11.32 5.90 2.50 1.00 20.30
70 2.30 0.80 9.60 1.60 1.00 14.28 2.50 1.00 18.77

Table 8: Results for temporal inference problems of monitoring, hindsight, and prediction in five different domains and for three different
levels of observability.

For each type of TIP, we report the size of the hypotheses set
(|H|), the number of most likely hypotheses as computed by
our approach (|H∗|), the ratio of TIPs whose correct hypoth-
esis is among H∗ (Q), and the accumulated time (T) in secs
to solve the TIP. We note that solving a TIP implies solving
|H| planning instances Ph, one instance for each h in H .

The best score is obtained when |H∗| = 1 and Q = 1,
meaning that only one hypothesis is recognized as the most
likely and that such hypothesis is the correct one. For each
combination of TIP (monitoring, hindsight and prediction),
domain and observability percentage, we report in Table 8
the average score across 10 problems. Thus, our approach
was evaluated over 5× 3× 3× 10 = 450 TIPs.

As expected, the best results, i.e. larger values for Q
and/or lower values for |H∗|, are obtained for high degrees
of observability since more informative evidence is avail-
able. Yet, we also find quite a few cases of 30% observabil-
ity that achieve the top performance. Increasing observabil-
ity comes however at the cost of longer planning solutions
(more validating actions), which require longer computa-
tion times. The prediction results for the floortile in Table
8 show that increasing the observability may actually hin-
der the performance of the system as computation times are
pushed over the set timeout of 120s.

Interestingly, we can observe in Table 8 that the worst
quality results are found in monitoring TIPs and to a lesser
extent in the hindsight tasks. This is particularly remarkable
in the floortile domain. The reason behind these results is
that the observations only convey a small subset of the fi-
nal goals that the actor pursues in the trajectory τ . More
specifically, the hypothesis only reveals the goals up to the
last observation. This happens, for example, when the goal
of the actor is to have the whole board painted and the last
observation only shows a handful of the painted tiles. This
mismatch between the information conveyed by the obser-
vations and the goal pursued by the agent in τ causes a drop
of the quality, as the prefix of an optimal plan is not neces-
sarily optimal with respect to the subset of achieved goals.

This limitation can easily be overcome if the agent’s goals
are known, in which case they will be added as the last con-
jecture of the hypothesis.

In summary, the results show the versatility of our ap-
proach for solving temporal inference problems. We can
also conclude an overall good-quality results even in the case
of problems with a low level of informedness of the obser-
vations.

8 Related Work
Several of the inference problems found in the planning lit-
erature can be formulated as instances of our temporal infer-
ence problem. Goal recognition (Ramı́rez and Geffner 2010;
Vered, Kaminka, and Biham 2016), for example, is a par-
ticular instance of our prediction TIP where hypotheses
are limited to conjectures at a single point (the goal state)
that must necessarily occur after the given sequence of ob-
servations. This limitation of the hypothesis language is
also present in related work that builds on top of the goal-
recognition as planning scheme; e.g., goal recognition de-
sign (GRD) (Keren, Gal, and Karpas 2020) or counter-
planning (Pozanco et al. 2018). Likewise, a particular
case of hindsight problem is the assumption-based diagnosis
with assumptions regarding the initial state and observations
within the diagnosis trajectory (Sohrabi, Baier, and McIl-
raith 2010).

More recently, we can find some works in the line of rec-
ognizing temporally extended goals, which amounts to infer
the exact order that a set of facts of a goal must be achieved
in a plan (Fraga Pereira, Fuggitti, and De Giacomo 2021).
In this work, goals are formalized in LTLf and Pure Past
LTL (PLTLf ) (De Giacomo et al. 2020). The use of PLTLf

allows expressing past temporal goals, similarly to the hy-
potheses in our hindsight problem. Our approach however
is restricted to a subset of LTLf that is sufficiently expressive
to reason about past, present and future in linear trajectories,
thus avoiding the worst-case double-exponential cost in the
size of the formula of the DFA transformation.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

29



Most of the works in the literature adopt a fairly con-
strained definition of observation usually limited to the ac-
tions executed by the agent although some exceptions exist.
The work in (Keren, Gal, and Karpas 2020) deals with noisy
(non-deterministic) sensor models that emit one among sev-
eral observable tokens but these are likewise only over ac-
tions. Exceptionally, extending observations to handle noise
over state fluents is proposed in (Sohrabi, Riabov, and Udrea
2016) but this formulation is constrained to a single flu-
ent per observation and noisy observations are handled by
skipping them. The idea of skipping observations is bet-
ter suited for atomic observations (such as actions) that are
either right or wrong. In our formulation we have several
observable variables, and a single observation may contain a
noisy reading for one variable and a correct one for another.
In this work, we follow a model-based approach to noise that
checks whether that noisy reading is possible with the given
sensor model. Additionally, our definition of sensor model
allows a broader range of observations to fit the needs of the
problem at hand which include features as the ones used in
this paper as well as noisy observations.

Our approach can be straightforwardly extended to a
probabilistic formulation of a TIP by exploiting the notion
of log-probability that allows an optimal planner to max-
imize the accumulated transition and emissions probabili-
ties defined by a probabilistic specification ofMp andMs.
However, given that current off-the-shelf planners are ill-
suited to optimize state-dependent costs, the evaluation of
a probabilistic setting would be limited to a handful of prob-
lems with small state spaces (Aineto, Jimenez, and Onaindia
2020).

Temporal inference is also a common task in probabilistic
graphical models, a type of state-space models represented
by a probabilistic state-transition function and a probabilis-
tic observation function. In graphical models, the tasks of
inferring the past, current and future state of the system
given all evidence up to present are called smoothing, filter-
ing and prediction, respectively (Koller and Friedman 2009).
Probabilistic models handle rich sensor models but they are
not particularly well suited for decoding gapped sequences
observed at intermittent times (e.g. when sensing the en-
vironment regularly is too costly). Although some recent
approaches have been proposed to address missing observa-
tions associated to state transitions (Yu 2016), these models
are specifically designed to deal with bounded observation
sequences.

9 Conclusions
In this paper, we have presented a formalism that given some
evidence about the behaviour of an acting agent allows for
posing hypothesis about the past, present or future trajectory
of the agent. The hypotheses are expressed as LTLf formu-
las and unlike other inference schemes ours account for ex-
plaining and predicting the order in which two or more vari-
ables are achieved. The paper shows that the wide landscape
of diverse inference tasks in this setting can be addressed
with a unified method that leverages classical planning.

In the future, we plan to investigate the application of this
inference framework to planning models that use a differ-

ent notion of plan optimality such as, for instance, the plan
makespan used in temporal planning (Cushing, Kambham-
pati, and Weld 2007).
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