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Abstract

In this work, we explore the links between the Borda voting
rule and belief merging operators. More precisely, we define
two families of merging operators inspired by the definition
of the Borda voting rule. We also introduce a notion of can-
cellation in belief merging, inspired by the axiomatization of
the Borda voting rule proposed by Young. This allows us to
provide a characterization of the drastic merging operator.

1 Introduction
Belief merging operators aim at synthesizing a set of con-
flicting belief bases in order to form a coherent view of the
world. To this aim, these operators benefit from the comple-
mentarity of the belief bases, which allows to generate new
pieces of information that are distributed in the belief bases,
while solving the logical conflicts between these bases.

Belief merging (Revesz 1997; Lin and Mendelzon 1998;
Liberatore and Schaerf 1998; Konieczny and Pino Pérez
1998; Konieczny and Pino Pérez 2002; Konieczny and Pino
Pérez 2011) can be considered as the intersection of two re-
search topics. The first one is belief revision (Alchourrón,
Gärdenfors, and Makinson 1985; Gärdenfors 1988; Katsuno
and Mendelzon 1991; Fermé and Hansson 2011), where the
problem is to correct the beliefs of the agent by a (more
reliable) piece of information. In both revision and merg-
ing the problem is to find the most plausible information
given the input. The difference is that for revision the in-
put is a single belief base, whereas for merging it is a set
of such bases. So the principles governing these two prob-
lems are closely related. The second research topic is group
decision as studied in social choice theory (Arrow 1963;
Arrow, Sen, and Suzumura 2002), and especially in voting
methods. The aim of a voting method is to define a so-
cial preference (a preference for the whole group) from a
set of individual preferences given by the individuals. Sim-
ilarly belief merging aims at defining the ”beliefs of the
group” from the beliefs provided by several sources. So so-
cial choice (particularly voting methods) and belief merging
share concern about how to faithfully take into account the
set of inputs (preferences for vote, beliefs for merging).

Formal links between belief merging and belief revision
are well known. For instance it is easy to show that belief re-
vision can be considered as a special case of belief merging

when there is a single belief base in the profile (Konieczny
and Pino Pérez 2002).

Links between belief merging and social choice theory
have also been investigated. For instance in (Konieczny
and Pino Pérez 2005) there is a comparison between so-
cial choice functions and belief merging operators. Some
questions coming from social choice and voting methods
have also been investigated in the context of belief merg-
ing. For instance, (Everaere, Konieczny, and Marquis 2007)
studies the manipulation issue for merging operators. (Ever-
aere, Konieczny, and Marquis 2010b) investigates the prob-
lem of finding the truth (truth-tracking) and a generaliza-
tion of Condorcet’s Jury Theorem for belief merging op-
erators is given. Some egalitarian belief merging opera-
tors were proposed using standard techniques coming from
social choice (Everaere, Konieczny, and Marquis 2014a).
A generalisation of Arrow’s impossibility Theorem in the
framework of belief merging is given in (Mata Dı́az and
Pino Pérez 2017). Finally, some works on judgment ag-
gregation and its link with belief merging have been done
(Everaere, Konieczny, and Marquis 2015). Judgment ag-
gregation can be seen as an intermediate issue between vot-
ing and belief merging. As in belief merging, judgment
aggregation (List and Pettit 2002; List and Puppe 2009;
Pigozzi 2006; Everaere, Konieczny, and Marquis 2014b;
Lang et al. 2017) works from logical formulae, and as
in (multiple) vote (and contrarily to merging), there is an
agenda (a set of formulae) on which the group has to decide.

In this work we want to investigate a more direct and more
technical link between some merging operators and a voting
method. In fact a wide class of belief merging operators is
the class of distance-based merging operators (Konieczny,
Lang, and Marquis 2004; Konieczny and Pino Pérez 2011).
These operators use a distance in order to generate an evalu-
ation of the plausibility of each possible world with respect
to each belief base from the input profile, and then they use
an aggregation function in order to obtain a global evalua-
tion of the plausibility of each possible world.

Several aggregation functions can be considered in order
to give rise to sensible operators, like the sum (Revesz 1997;
Lin and Mendelzon 1998), the leximax (Konieczny and Pino
Pérez 2002), the sum of the nth powers (Konieczny and Pino
Pérez 2005), the leximin (Everaere, Konieczny, and Marquis
2010a), etc.
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When using the sum as aggregation function, the corre-
sponding operators are quite close to the Borda voting rule
(Borda 1781; Young 1974; Merlin 2003). In both cases the
information provided by the individual sources generates a
score (numerical evaluation) for each alternative, that are
then aggregated using the sum.

There are some differences between the two processes.
For the Borda voting rule the source provides a (linear) or-
der. For belief merging, the source provides a belief base.
The distance used to define the merging operator may pro-
duce a corresponding ordering, which is, in fact, a total pre-
order (we will see that this has an impact on the formal re-
sults).

But the similarity is large enough to warrant some deeper
investigations. In particular, there are some interesting for-
mal results on the Borda voting rule which we want to in-
vestigate in the belief merging context. This allows us to
define two new families of belief merging operators and a
characterization result.

Basically, there are two definitions for the Borda voting
rule. These two definitions are equivalent when linear or-
ders are considered. But it is no longer the case on general
preorders. So we obtain two different definitions, that, ap-
plied to belief merging, give us new merging operators.

Another interesting formal result is that the Borda vot-
ing rule is characterized by a cancellation property (Young
1974). This property is really about the orders, and cannot
be directly translated to belief merging. But this idea can
give us interesting counterparts. We investigate this class of
cancellation properties. And we give a characterization of a
belief merging operator using one of these properties.

The plan of the paper is as follows. The next Section pro-
vides the required notions and notations for the paper. Then
in Section 3 we recall the definition of IC merging operators,
the representation theorem in terms of plausibility preorders,
and the definition of distance-based merging operators. In
Section 4 we give the two definitions of the Borda voting
rule, we show that they are not equivalent when preorders
are used, and we give the cancellation property. In Section
5 we give the definition of the two families of Borda-like
merging operators. These operators need a function that as-
sociates a preorder to each belief base. This can be provided,
for instance, by an IC merging operator or by a belief revi-
sion operator. Then in Section 7 we investigate the prop-
erties of these two families of operators. And in Section 8
we investigate the cancellation properties and we provide a
characterization of the ∆dD,f operator. We conclude in Sec-
tion 9.

2 Preliminaries
We consider a propositional language L defined from a fi-
nite set of propositional variables P and the standard con-
nectives. An interpretation ω is a total function from P to
{0, 1}. The set of all interpretations is noted Ω. An interpre-
tation ω is a model of a formula ϕ ∈ L if and only if it makes
it true in the usual truth functional way. [[ϕ]] denotes the set
of models of the formula ϕ, i.e., [[ϕ]] = {ω ∈ Ω : ω |= ϕ}.
When M is a set of models, we denote by ϕM a formula
such that [[ϕM ]] = M .

A profile E is a vector of formulae E = (ϕi1 , . . . , ϕin)
where each ij represents an agent/individual/source (hence
different agents/individuals/sources are allowed to exhibit
identical formulae), so it represents a group of n agents. We
denote by E the set of profiles.

∧
E represents the conjunc-

tion of formulae of E = (ϕi1 , . . . , ϕin), i.e.,
∧
E = ϕi1 ∧

. . . ∧ ϕin . A profile E is said to be consistent if and only if∧
E is consistent. Two profiles E1 = (ϕi1 , . . . , ϕin), E2 =

(ϕj1 , . . . , ϕjn) are equivalent, denoted E1 ≡ E2, if there is
a bijective function σ from {i1, . . . , in} onto {j1, . . . , jn}
such that for every ik ∈ {i1, . . . , in}, ϕik ≡ ϕσ(ik). The
concatenation of profiles1 is noted t. By abuse of notation
we will write ϕtE instead of (ϕ)tE. We denote byEn the
profile E “concatenated with itself n times”. More precisely
En = E1 t . . . t En where each Ei is equivalent to E. The
notation ¬E represents the profile composed of the nega-
tions of the belief bases of the profile E = (ϕi1 , . . . , ϕin),
i.e. ¬E = (¬ϕi1 , . . . ,¬ϕin).

A total preorder over a set X is a binary relation � that
is reflexive, transitive and total, ≺ denotes the associated
strict relation defined by ω ≺ ω′ if and only if ω � ω′ and
ω′ 6� ω. Let � be a total preorder on X , and B ⊆ X , then
min(B,�) = {b ∈ B : @x ∈ B, x ≺ b}.

If A is a set, we denote |A| the cardinality of A. The
symbol ⊆ will denote set containment and ⊂ strict set con-
tainment, i.e., A ⊂ B if and only if A ⊆ B and A 6= B.

When� is a total preorder over X , the canonical ranking
function r� : X → IN, associated to � is defined by putting
r�(x) as the maximum of integers k such that there exists
x0, x1, . . . , xk in X with xk = x and xi ≺ xi+1 for i =
0, . . . , k − 1.

Suppose X = {x1, . . . , xm}. Given a vector P =
(�1, . . . ,�n) of total preorders, we define πij(P ), for any
i, j ∈ {1, . . . ,m}, by πij(P ) = |{1 ≤ k ≤ n : xi ≺k xj}|.
πij(P ) represents the number of bases in the vector P
which prefer xi to xj . Note that πii(P ) = 0 for any
i ∈ {1, . . . ,m}, and that ∀i, j ∈ {1, . . . ,m}, πij(P ) ≥ 0.

The merging operators we will consider are functions
from the set of profiles and the set of propositional formulae
(that will represent integrity constraints noted µ) to the set
of formulae, i.e. ∆ : E × L 7→ L. We will use the notation
∆µ(E) instead of ∆(E,µ). We write also ∆(E) instead of
∆>(E) where > is the tautological formula.

3 IC Merging
Let us recall in this Section the postulates for IC merging,
the representation theorem, and the definition of distance-
based operators (Konieczny and Pino Pérez 2002).
Definition 1. A merging operator ∆ is called an IC merging
operator if it satisfies postulates (IC0-IC8). An IC merging
operator ∆ is called a majority merging operator if it satis-
fies postulate (Maj).

(IC0) ∆µ(E) |= µ

(IC1) If µ is consistent, then ∆µ(E) is consistent

1We assume that the profiles to be concatenated have disjoint
sets of agents.
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(IC2) If
∧
E ∧ µ is consistent, then ∆µ(E) ≡

∧
E ∧ µ

(IC3) If E1≡ E2 and µ1 ≡ µ2, then ∆µ1
(E1) ≡ ∆µ2

(E2)

(IC4) If ϕ1 |= µ, ϕ2 |= µ and ∆µ((ϕ1, ϕ2)) ∧ ϕ1 is con-
sistent, then ∆µ((ϕ1, ϕ2)) ∧ ϕ2 is consistent

(IC5) ∆µ(E1) ∧∆µ(E2) |= ∆µ(E1 t E2)

(IC6) If ∆µ(E1) ∧∆µ(E2) is consistent,
then ∆µ(E1 t E2) |= ∆µ(E1) ∧∆µ(E2)

(IC7) ∆µ1
(E) ∧ µ2 |= ∆µ1∧µ2

(E)

(IC8) If ∆µ1(E) ∧ µ2 is consistent,
then ∆µ1∧µ2(E) |= ∆µ1(E) ∧ µ2

(Maj) ∃n ≥ 1 ∆µ(E1 t En2 ) |= ∆µ(E2)

Definition 2. A function E 7→�E that maps each profile
E to a total preorder over worlds �E is called a syncretic
assignment iff:

1. If ω, ω′ |=
∧
E, then ω 'E ω′

2. If ω |=
∧
E and ω′ 6|=

∧
E, then ω ≺E ω′

3. If E1 ≡ E2, then �E1
=�E2

4. ∀ω |= ϕ1, ∃ω′ |= ϕ2, ω′ �ϕ1tϕ2
ω

5. If ω �E1
ω′ and ω �E2

ω′, then ω �E1tE2
ω′

6. If ω �E1 ω
′ and ω ≺E2 ω

′, then ω ≺E1tE2 ω
′

A syncretic assignment is called a majority assignment iff:

7. If ω ≺E2 ω
′, then ∃n, ω ≺E1tEn2 ω

′

Any IC merging operator can be represented by a syn-
cretic assignment:

Theorem 1. (Konieczny and Pino Pérez 2002) A merging
operator ∆ is an IC merging operator (resp. majority merg-
ing operator) if and only if there exists a syncretic assign-
ment (resp. majority assignment) that associates to every
profile E a total preorder �E such that for any formula µ,

[[∆µ(E)]] = min([[µ]],�E)

Observation 1. An analysis of the proof of this theorem re-
veals that:
• Postulates (IC0), (IC1), (IC7), (IC8) are enough to obtain
the representation by an assignment E 7→�E where�E is a
total preorder over interpretations.
• Modulo the postulates mentioned in the previous point
(which allow the representation) we have: (IC2) is equiv-
alent to properties2 1 and 2; (IC3) is equivalent to property
3; (IC4) is equivalent to property 4; (IC5) is equivalent to
property 5; (IC6) is equivalent to property 6; (Maj) is equiv-
alent to property 7.

An interesting way to define concrete IC merging opera-
tors is to start from a distance d between worlds and an ag-
gregation function f (see (Konieczny and Pino Pérez 2011)),
in order to construct a syncretic assignment, and then to use
the equation in Theorem 1 for defining the operator. More
precisely:

2The properties are those of syncretic assignments (Defini-
tion 2).

Definition 3. Let d : Ω × Ω → R and f :
⋃
n

Rn → R be

a distance3 between worlds and an aggregation function re-
spectively. Suppose that E = (ϕ1, . . . , ϕn) is a profile.

• d(ω, ϕi) = minω′|=ϕi d(ω, ω′)

• df (ω,E) = fϕi∈E{d(ω, ϕi)}
• ω �d,fE ω′ iff df (ω,E) ≤ df (ω′, E)

Given a profile E and a formula µ, the distance-based
merging operator ∆d,f

µ (E) is defined as [[∆d,f
µ (E)]] =

min([[µ]],�d,fE ).

Usual distances are the drastic distance (dD(ω, ω′) = 0
if ω = ω′ and 1 otherwise), and the Hamming distance
(dH(ω, ω′) = n if ω and ω′ differ on n variables). Usual
aggregation functions are the sum, the leximax; the sum
of the nth powers, the leximin etc. All these aggrega-
tion functions satisfy the properties that allow to obtain IC
merging operators (Konieczny, Lang, and Marquis 2004;
Konieczny and Pino Pérez 2011). When the drastic distance
dD is used, we refer to the IC merging operators ∆dD,f as
the drastic merging operator (these operators are all equiva-
lent to ∆dD,Σ, see Corollary 1).

4 Borda Rules
We have deliberately chosen the plural in the title of this
section because in Social Choice Theory there are two ways
for defining the Borda rule. They are equivalent when the
preferences of the voters are linear orders. But they are not
equivalent if the preferences of the voters are total preorders
as we will see below.

We recall some of the basic notions on social choice
theory before introducing the Borda rules. From now on,
N = {1, 2, . . . , n} will denote a finite set of voters and
X = {x, y, z, . . . } will denote a finite set of alternatives.
The ballot (or preference) of a voter i will be given by a to-
tal preorder �i over X . The meaning of x �i y is that the
agent i prefers the alternative x to the alternative y.4 A pro-
file is an n-tuple P = (�1,�2, . . . ,�n), which collects the
ballots of all the voters in N , in an ordered manner. We will
say that P is a linear profile if each �i in P is a linear or-
der over X . A welfare choice function is a map W sending
a profile P into a total preorder �P , the social preference
associated to profile P .

Let us now define the scoring Borda rule :

Definition 4. Given a profile P = (�1, . . . ,�n) on a set of
alternatives X = {x1, . . . , xm} and an alternative a ∈ X ,
the borda score of a is the integer rsP (a) =

∑n
i=1 r�i(a).

Now define �sP by putting a �sP b iff rsP (a) ≤ rsP (b).
Finally, the scoring Borda rule, Bs, is the welfare choice
function Bs(P ) =�sP .

3Formally, only a pseudo-distance is required (triangle inequal-
ity is not necessary).

4We make this choice, converse to what is usually done in so-
cial choice, in order to be coherent with the orders used for belief
revision.
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Example 1. Consider the set of alternatives X =
{x1, x2, x3} and the following profile P = (�1,�2) where
x1 ≺1 x2 '1 x3 and x2 ≺2 x1 ≺2 x3. It is easy to
see that rsP (x1) = 1 = rsP (x2) and rsP (x3) = 3. Thus,
x1 'sP x2 ≺sP x3.

Now we define the beta Borda rule (or comparison by
pairs Borda rule).

Definition 5. LetX be the set of alternatives {x1, . . . , xm}.
The score by comparison by pairs (β) of the alternative
xi in the profile P = (�1, . . . ,�n) is defined as follows:
βi(P ) =

∑m
j=1(πij(P )− πji(P )).

When P is clear of the context we simply write βi instead of
βi(P ).
Now we put xi �βP xj iff βi ≥ βj . Finally, the beta Borda
rule Bβ is defined by putting Bβ(P ) =�βP .

Example 2. Consider X = {x1, x2, x3} and P as in Ex-
ample 1. It is easy to see that β1(P ) = 2, β2(P ) = 1 and
β3(P ) = −3, that is x1 ≺βP x2 ≺βP x3.

We can now state that the two definitions are equivalent
for linear orders, but not for general preorders. This result is
known in social choice, and is mentionned in (Young 1974)
but without proof. So we put it here for completeness.

Proposition 1. For every linear profile P we haveBs(P ) =
Bβ(P ). This equality is not true in general, i.e. there exists
a profile P such that Bs(P ) 6= Bβ(P ).

Proof. We observe that an alternative way to calculate∑m
j=1 πij(P ) is, for each k ∈ {1, . . . , n}, to count the

number of alternatives y s.t. xi ≺k y and then make the
sum of these numbers over k ∈ {1, . . . , n}. Analogously,
an alternative way to calculate

∑m
j=1 πji(P ) is, for each

k ∈ {1, . . . , n}, count the number of alternatives y s.t.
y ≺k xi and then make the sum of these numbers over
k ∈ {1, . . . , n}. Note that if�k is a linear order, the number
of alternatives y s.t. xi ≺k y is exactly m − 1 − r�k(xi)
and the number of alternatives y s.t. y ≺k xi is exactly
r�k(xi)− 1. Thus,∑m
j=1 πij(P ) =

∑n
k=1m−1−r�k(xi) = nm−n−rsP (xi),∑m

j=1 πji(P ) =
∑n
k=1 r�k(xi)− 1 = rsP (xi)− n and

βi =
∑m
j=1 πij(P ) −

∑m
j=1 πji(P ) = nm − 2rsP (xi).

Therefore, xi �βP xj iff βi ≥ βj iff nm − 2rsP (xi) ≥
nm− 2rsP (xj) iff rsP (xi) ≤ rsP (xj) iff xi �sP xj .

The computations of Examples 1 and 2 show that
Bs(P ) 6= Bβ(P ).

An interesting result by Young (1974) is an axiomatic
characterization of Borda rule for linear profiles. Let us in-
troduce four axioms for a social welfare function W :
Neutrality: For every permutation σ over the alternatives,
W (σ(P )) = σ(W (P )).
Faithfulness: For every singleton profile (�),W ((�)) =�.
Consistency: Assume P1 and P2 are profiles over dis-
joint voters. If min(W (P1)) ∩ min(W (P2)) 6= ∅, then
min(W (P1 t P2)) = min(W (P1)) ∩min(W (P2)).

Cancellation: If for every pair of alternatives xi, xj we have
πij(P ) = πji(P ) then W (P ) is the flat total preorder5.
Theorem 2. (Young 1974) Restrained to linear profiles, the
only social welfare function satisfying neutrality, faithful-
ness, consistency and cancellation is the Borda rule Bs.

So on linear profiles the two definitions of Borda rules
coincide, and this rule is characterized exactly by those four
axioms.

5 Borda-like Merging
In this section we will use the two definitions of the previous
section (which we know, from Proposition 1, differ in the
general case) in order to define merging operators. We just
need a generating function that associates a total preorder on
interpretations to any base ϕ :
Definition 6. We call generating function any function / that
associates to each belief base ϕ a total preorder on inter-
pretations �ϕ such that min(Ω,�ϕ) = [[ϕ]] and �ϕ=�ϕ′
whenever ϕ ≡ ϕ′.

Note that / can be provided by a revision operator ◦ or a
merging operator ∆ since, from the representation theorems
in terms of faifthful/syncretic assignments, they allow to as-
sociate a preorder to each belief base ϕ. Note that a distance
d between interpretations is also a manner to define a pre-
order for each belief base ϕ, with ω �ϕ ω′ if and only if
d(ω, ϕ) ≤ d(ω′, ϕ).

Once a generating function / is considered, it is easy to
define a profile of preorders over Ω (the elements of Ω are
viewed as alternatives) PE = (�ϕ1

, . . . ,�ϕn) from a pro-
file of belief bases E = (ϕ1, . . . , ϕn).
Definition 7. Given a generating function / and a pro-
file P /E = (�ϕ1

, . . . ,�ϕn) over Ω associated to E =

(ϕ1, . . . , ϕn) with /, we consider the assignment P /E 7→�
β
PE

(see Definition 5). The β-Borda merging operator ∆β/ is de-
fined by:

[[∆β/
µ (E)]] = min([[µ]],�βPE )

We say that a merging operator is based on pairwise com-
parison if it is identical to its β-Borda merging version :
Definition 8. Let ∆ be a merging operator and /∆ the gen-
erating function associated to ∆. We say that ∆ is based on
pairwise comparisons iff ∆ = ∆β/∆ .

In an analogous way, using the scoring Borda welfare
function Bs of Definition 4, we can define another merging
operator, which transforms each preorder into a score func-
tion for each base, and the score of an interpretation is the
sum of all its scores. This way to proceed can be related to
the usual ∆d,Σ operators, but instead of using a distance, we
use a more qualitative information provided by the preorder:
Definition 9. Given a generating function /, a profile PE =
(�ϕ1

, . . . ,�ϕn) over Ω associated to E = (ϕ1, . . . , ϕn)
with /, we consider the assignment E 7→�sPE (see Defini-
tion 4). The s-Borda merging operator ∆s/ is defined by:

[[∆s/
µ (E)]] = min([[µ]],�sPE )

5The flat total preorder over X , is the unique total preorder �
such that for all x, y in X , we have x � y.
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6 Example
In this section we provide an example for illustrating the
difference of behaviour between β-Borda operators, s-Borda
operators and classical distance-based merging operators.

Consider the profile E = (ϕ1, ϕ2, ϕ3), with [[ϕ1]] =
{111, 001}, [[ϕ2]] = {011, 110}, and [[ϕ3]] = {000}. We
do not consider any integrity constraint, so µ = >.

We will consider the distance-based merging operator
∆dρH ,Σ, that is, the operator for which the sum is the aggre-
gation function, and the distance is the weighted Hamming
distance dρH , defined below:

Definition 10. Let ρ : P → R∗ be a function that asso-
ciates to any propositional variable in the language a non-
null weight. Then the weighted-Hamming distance dρH be-
tween two interpretations ω and ω′ is defined as:

dρH(ω, ω′) =
∑
x∈P,ω(x)6=ω′(x) ρ(x)

Using such a distance is very natural when all proposi-
tional variables do not have the same importance. Such is
the case if the base can be split in several topics (encoded by
subsets of propositional variables), with some topics being
more important than others.

Note that the standard Hamming distance is obtained in
the particular case where all weights are equal to 1.

In this example we will use the weight function ρ =
(1, 3, 6). And we will look at the results of the merging of
the profile E for the operator ∆dρH ,Σ, for its s-Borda and β-
Borda versions where the generating function J is given by
∆dρH ,Σ.

Tables 1, 2, 3 sum up the respective computations.
Then one can check that the result for the distance-based

operator is [[∆dρH ,Σ(E)]] = {001}. Whereas for its s-Borda
version the exact values of the distance are not used, just the
plausibility order from each base is considered, that leads
us to a different result: [[∆sJ(E)]] = {000, 110}. Finally,
using the β-Borda version of this operator, we compute the
relative positions of all couples of interpretations via the βi,
and we obtain as result: [[∆βJ(E)]] = {110}.

Finally, let us note that there is not, in general, a logical
correlation between the operators ∆dρH ,Σ, ∆sJ and ∆βJ . In
this example we can already see that this is the case between
∆dρH ,Σ and the two other operators, but we have ∆βJ(E) `
∆sJ(E). To see that it is not always the case let us do the
merging under the constraints [[µ]] = {010, 111}. From ta-
bles 2 and 3 we can easily see that [[∆sJ

µ (E)]] = {010} and
[[∆βJ

µ (E)]] = {111} Thus, in general, it is not the case that
∆sJ
µ (E) ` ∆βJ

µ (E) nor ∆βJ
µ (E) ` ∆sJ

µ (E).

7 Properties of Borda-like Merging
We will now study the logical properties of the two above-
defined families of operators.

First we can show that s-Borda merging operators satisfy
all IC merging postulates except (IC4). This fact is a direct
consequence of a result of (Konieczny and Pino Pérez 2002):

Proposition 2. A merging operator ∆s/ satisfies (IC0-IC3)
and (IC5-IC8).

ϕ1 ϕ2 ϕ3 distρ,Σ

000 6 4 0 10
001 0 3 6 9
010 7 1 3 11
011 1 0 9 10
100 7 3 1 11
101 1 4 7 12
110 6 0 4 10
111 0 1 10 11

Table 1: ∆d
ρ
H
,Σ(E)

ϕ1 ϕ2 ϕ3 distρ,s

000 2 3 0 5
001 0 2 4 6
010 3 1 2 6
011 1 0 6 7
100 3 2 1 6
101 1 3 5 9
110 2 0 3 5
111 0 1 7 8

Table 2: ∆sJ(E)

So we obtain all the usual rationality postulates except
(IC4) which requires some symmetry between the bases,
that we can not ensure here.

Now note that we obtain the same result for β-Borda op-
erators:

Proposition 3. A merging operator ∆β/ satisfies (IC0-IC3)
and (IC5-IC8).

Proof. Given that the operator ∆β/ is defined by the assign-
ment E 7→�βPE (cf. Definition 7), Observation 1 tells us
that (IC0), (IC1), (IC7) and (IC8) are satisfied. Moreover,
by Observation 1, in order to prove (IC2), we have to prove
that the assignment satisfies properties 1 and 2; in order to
prove (IC3) we have to prove that the assignment satisfies
property 3; in order to prove (IC5) we have to prove that the
assignment satisfies property 5 and, finally, in order to prove
(IC6) we have to prove that the assignment satisfies property
6. Then, we proceed to prove properties 1-3, 5 and 6.

πij πji βi

000 9 10 -1
001 11 8 3
010 9 10 -1
011 11 8 3
100 8 11 -3
101 6 13 -7
110 12 7 5
111 10 9 1

Table 3: ∆βJ(E)
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Property 1: We want to show that if ω1 |=
∧
E and ω2 |=∧

E, then ω1 'βPE ω2 where PE = (�ϕ1
, . . . ,�ϕn). Thus,

we have to show that β1(PE) = β2(PE). Let’s compute
β1(PE) and β2(PE):

β1(PE) =
∑

1≤j≤m

(π1j(PE)− πj1(PE))

and
β2(PE) =

∑
1≤j≤m

(π2j(PE)− πj2(PE))

As ∀i, πii(PE) = 0, we can easily deduce that: β1(PE) =
(π12(PE)−π21(PE))+

∑
3≤j≤m(π1j(PE)−πj1(PE)) and

β2(PE) = (π21(PE) − π12(PE)) +
∑

3≤j≤m(π2j(PE) −
πj2(PE)). We have ω1 |=

∧
E, then, ∀ϕi ∈ E, ω1 |= ϕi,

thus ∀ωj ∈ Ω, ω1 �ϕi ωj (no interpretation ωj ∈ Ω can be
better than ω1), then πj1(PE) = 0 (1).
The same reasoning holds for ω2, and ∀j πj2(PE) = 0 (2).
From (1) and (2) we deduce that:

β1(PE) =
∑

3≤j≤m

π1j(PE) and β2(PE) =
∑

3≤j≤m

π2j(PE)

We have ∀ϕi ∈ E, ω1 |= ϕi and ω2 |= ϕi. So, ∀ωj ∈
Ω, ω1 ≺ϕi ωj if and only if ω2 ≺ϕi ωj . From this, we can
deduce that π1j(PE) = π2j(PE), and

∑
3≤j≤m π1j(PE) =∑

3≤j≤m π2j(PE). This gives us β1(PE) = β2(PE), thus
ω1 'βPE ω2.

Property 2: We have to show that if ω1 |=
∧
E and ω2 6|=∧

E, then ω1 ≺βPE ω2. Thus, we have to prove β1(PE) >
β2(PE), that is,∑

1≤j≤m

π1j(PE)−πj1(PE) >
∑

1≤j≤m

π2j(PE)−πj2(PE) (1)

Since ω1 |=
∧
E, ∀ϕi ∈ E, ∀ωj ∈ Ω, ω1 �ϕi ωj , thereby

πj1(PE) = 0, thus Equation 1 is equivalent to:∑
1≤j≤m

π1j(PE) >
∑

1≤j≤m

π2j(PE)− πj2(PE)

or to:
π12(PE) +

∑
3≤j≤m

π1j(PE) >

(π21(PE)− π12(PE)) +
∑

3≤j≤m

π2j(PE)− πj2(PE)

To show the inequality below it is sufficient to show:

π12(PE) > (π21(PE)− π12(PE)) (2)

and ∑
3≤j≤m

π1j(PE) ≥
∑

3≤j≤m

π2j(PE)− πj2(PE) (3)

For (2) we already know that π21(PE) = 0. We know also
that ∀ϕi ∈ E, ω1 �ϕi ω2 and ω2 6|= E, then ∃ϕi ∈ E, s.t.
ω2 6|= ϕi, thus ω1 ≺ϕi ω2, which implies that π12(PE) > 0,
then π12(PE) > −π12(PE) and (2) is shown.
For (3), ∀ϕi ∈ E, ω1 |= ϕi, then ω1 �ϕi ω2, and (ω2 �ϕi

ωj)⇒ (ω1 �ϕi ωj) (the bases that prefer ω2 over ωj should
also prefer ω1 over ωj) , thus

π1j(PE) ≥ π2j(PE)

and also ∑
3≤j≤m

π1j(PE) ≥
∑

3≤j≤m

π2j(PE)

We know that πj2(PE) ≥ 0, then
∑

3≤j≤m πj2(PE) ≥ 0,
thus ∑

3≤j≤m

π1j(PE) ≥
∑

3≤j≤m

π2j(PE)− πj2(PE)

which shows that (3) is true. As a consequence, ω1 ≺βPE ω2.

Property 3: We want to show that if E1 ≡ E2, then
�βPE1

=�βPE2
. Suppose that E1 = (ϕ1, . . . , ϕn) and

E2 = (ϕ′1, . . . , ϕ
′
n) and for every i ∈ {1, . . . , n}, ϕi ≡

ϕ′i. Since / is a generating function, for every i ∈
{1, . . . , n}, �ϕi=�ϕ′i . Therefore, PE1

= PE2
and trivially

�βPE1
=�βPE2

.
Before proceeding to the proof of conditions 5 and 6, we

observe the following fact. If E1 and E2 are two profiles,
we have for every k ∈ {1, . . . ,m}

βk(PE1tE2
) = βk(PE1

) + βk(PE2
) (2)

Property 5: We want to show that if ω1 �βPE1
ω2 and

ω1 �βPE2
ω2, then ω1 �βPE1tE2

ω2. By assumption we

have ω1 �βE1
ω2, i.e. β1(PE1) ≥ β2(PE1) (∗). We have also

ω1 �βE2
ω2, i.e. β1(PE2) ≥ β2(PE2) (∗∗). From (∗) and

(∗∗) we have, β1(PE1
) + β1(PE2

) ≥ β2(PE1
) + β2(PE2

).
From this and Equation 2 we obtain, β1(PE1tE2

) ≥
β2(PE1tE2

). Thus, ω1 �βPE1tE2
ω2.

Property 6: We want to show that if ω1 �βPE1
ω2 and

ω1 ≺βPE2
ω2, then ω1 ≺βPE1tE2

ω2. As in the previous
point, from the assumptions, we obtain β1(PE1) ≥ β2(PE1)
(1) and β1(PE2

) > β2(PE2
) (2). From (1) and (2) we have,

β1(PE1
) + β1(PE2

) > β2(PE1
) + β2(PE2

). From this and
Equation 2 we obtain, β1(PE1tE2

) > β2(PE1tE2
). Thus,

ω1 ≺βPE1tE2
ω2.

This definition of β-Borda (pairwise comparison) oper-
ators allows us to provide a characterization of the drastic
merging operator.

Theorem 3. Let ∆d,f be a distance-based operator. ∆d,f is
based on pairwise comparisons if and only if it is the drastic
operator.

The proof is organized in three lemmas.

Lemma 1. If a distance d is not the drastic distance then
there exist x, y and z such that d(x, y) < d(x, z).
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Proof. By assumption there exist ω1, ω2, ω3 and ω4 such
that 0 < d(ω1, ω2) < d(ω3, ω4). Put a = d(ω1, ω2). We
consider c = d(ω1, ω3). If c = 0, then ω1 = ω3 and defining
x = ω1, y = ω2 and z = ω4, we have d(x, y) < d(x, z). If
c 6= 0, we consider two cases: c = a or c 6= a. In the first
case, c = a, we put x = ω3, y = ω1 and z = ω4 and we
have d(x, y) < d(x, z). In the second case, c 6= a, we can
assume (w.l.o.g.) that c < a, then putting x = ω1, y = ω3

and z = ω2, we have d(x, y) < d(x, z).

Lemma 2. If a distance d is not the drastic distance dD,
then ∆d,f is not based on pairwise comparisons.

Proof. If d is not a drastic distance, necessarily the set of
interpretations Ω = {ω1, . . . , ωm} is such that m ≥ 4.
Moreover, by Lemma 1, there are ωi, ωj , and ωk such
that d(ωi, ωj) < d(ωi, ωk). Consider ϕωi , the base such
that [[ϕωi ]] = {ωi}. Then we have 0 = d(ωi, ϕωi) <
d(ωj , ϕωi) < d(ωk, ϕωi). Consider ϕ¬ωi the base defined
by ϕ¬ωi = ¬ϕωi , in particular, [[ϕ¬ωi ]] = Ω \ {ωi}. Then
∀ω 6= ωi, d(ω, ϕ¬ωi) = 0, whereas d(ωi, ϕ¬ωi) > 0. Let
ωh ∈ [[ϕ¬ωi ]] s.t. d(ωi, ωh) = min

ω∈[[ϕ¬ωi ]]
d(ωi, ω) =

d(ωi, ϕ¬ωi).
Observe that necessarily d(ωi, ωh) ≤ d(ωi, ωj). Therefore,
d(ωi, ωh) ≤ d(ωi, ωk).

We have d(ωi, ϕωi) < d(ωh, ϕωi) < d(ωk, ϕωi) and
d(ωh, ϕ¬ωi) = d(ωk, ϕ¬ωi) < d(ωi, ϕ¬ωi).

Consider E = (ϕωi , ϕ¬ωi). Let us compute βi and
βh. Remember that βi counts the number of interpreta-
tions that are ranked worse than ωi in all bases, minus the
number of interpretations that are ranked better than ωi in
all bases. Here we have 2 bases ϕωi and ϕ¬ωi , so for
ϕωi , ωi is better than all other interpretations, and it is the
contrary for ϕ¬ωi . So βi = Σp=mp=1,p 6=iπip − Σp=mp=1,p 6=iπpi
= (m− 1)− (m− 1) = 0.
Now we are going to calculate βh = Σp=mp=1,p 6=hπhp −
Σp=mp=1,p 6=hπph.

Let l ∈ {1, . . . ,m}, l 6= i, l 6= k and l 6= h. As
ωh ≡ϕ¬ωi ωl, πhl − πlh = ah,l, with ah,l = 0 if
d(ωh, ϕωi) = d(ωl, ϕωi) or ah,l = 1 if d(ωh, ϕωi) <
d(ωl, ϕωi). The case ah,l = −1 is not possible because it
corresponds to the situation where d(ωh, ϕωi) > d(ωl, ϕωi),
i.e. d(ωh, ωi) > d(ωl, ωi), impossible by assumption
(d(ωi, ωh) = minω∈Ωd(ωi, ω)). So πhl − πlh ≥ 0.
Furthermore, πhi−πih = 0 (since ωi |= ϕωi and ωh 6|= ϕωi )
and πhk − πkh = 1 (since by hypothesis d(ωh, ϕωi) <
d(ωk, ϕωi)). So, βh > 0. Therefore, βh > βi, i.e.
ωh ≺βE ωi.
On the other hand, by hypothesis d(ωi, ϕ¬ωi) = d(ωi, ωh)
and as ωi is the only model of ϕωi , then d(ωh, ϕωi) =
d(ωi, ωh). Therefore (d(ωi, ϕωi), d(ωi, ϕ¬ωi)) =
(d(ωh, ϕ¬ωi), d(ωh, ϕωi)). Thus, for any anonymous ag-
gregation function f used to compute the distance of ωi and
ωh to E, we have the same output, i.e. ωi '∆d,f ωh.
This proves that the preorders generated by the β-Borda op-
erator and by the ∆d,f operators may be different, and then
the result holds.

Lemma 3. The drastic operator ∆dD,f is based on pairwise
comparisons.

Proof. Consider a profile E = (ϕ1, . . . ϕn) of n bases and
a set of m interpretations {ω1, . . . , ωm}. We denote by
E�dD = (�dD1 , . . . �dDn ) the profile of preorders obtained
from E with the drastic distance dD.
∀j, k ∈ {1, . . . ,m}, πjk(E�dD ) represents the number of

preorders in E�dD which (strictly) prefer ωj to ωk. As the
drastic distance dD is used, we know that ωj ≺ϕ ωk if and
only if dD(ωj , ϕ) < dD(ωk, ϕ) i.e. if and only if ωj |= ϕ
and ωk 6|= ϕ. As a consequence:
πkj(E�dD ) = |{i ∈ {1, . . . n} : ωk |= ϕ ∧ ωj 6|= ϕ}|.
βk(E�dD ) = Σmj=1,j 6=kπkj(E�dD )− πjk(E�dD )

= Σmj=1,j 6=k|{i ∈ {1, . . . n} : ωk |= ϕi ∧ ωj 6|= ϕi}| −
|{i ∈ {1, . . . n} : ωj |= ϕi ∧ ωk 6|= ϕi}|

= Σmj=1,j 6=k|{i ∈ {1, . . . n} : ωk |= ϕi ∧ ωj 6|= ϕi}| −
Σmj=1,j 6=k|{i ∈ {1, . . . n} : ωj |= ϕi ∧ ωk 6|= ϕi}|

= Σni=1,ωk|=ϕiΣ
m
j=1,j 6=k,ωj 6|=ϕi1−

Σni=1,ωk 6|=ϕiΣ
m
j=1,j 6=k,ωj |=ϕi1

= Σni=1,ωk|=ϕi |[[¬ϕi]]| − Σni=1,ωk 6|=ϕi |ϕi|
We have ∀i, |ϕi| = m− |[[¬ϕi]]|, so we obtain:
βk(E�dD ) = Σni=1,ωk|=ϕi |[[¬ϕi]]| − Σni=1,ωk 6|=ϕi(m −
|[[¬ϕi]]|)

= Σni=1,ωk|=ϕi |[[¬ϕi]]| − Σni=1,ωk 6|=ϕim +

Σni=1,ωk 6|=ϕi |[[¬ϕi]]|
= (Σni=1,ωk|=ϕi |[[¬ϕi]]| + Σni=1,ωk 6|=ϕi |[[¬ϕi]]|) −

Σni=1,ωk 6|=ϕim

= Σni=1|[[¬ϕi]]| − Σni=1,ωk 6|=ϕim

And |{i ∈ {1, . . . , n} : ωk 6|= ϕi}| =
Σni=1dD(ωk, ϕi) = ddD,Σ(ωk, E).

Finally, we get:
βk(E�dD ) = Σni=1|[[¬ϕi]]| −m ∗ ddD,Σ(ωk, E)

Note that the term Σni=1|[[¬ϕi]]| is the same for all inter-
pretations ωk, and that the multiplication by −m reverses
the scale, but does not change the relation given by the com-
parison of the distances ddD,Σ(ωk, E).

So the preorders obtained by �dD,Σ and by the compu-
tation of the Borda scores β (the pairwise comparisons) are
the same. This completes the proof of Theorem 3.

So the drastic merging operator is the only operator in
the class of distance-based operators to be identical to its β-
Borda version (i.e. to be a pairwise comparison operator).
In the next section we will show a more general characteri-
zation of this drastic merging operator.

8 Cancellation
In this section we would like to introduce and discuss the
notion of cancellation in belief merging.

In the characterization of the Borda rule, the cancellation
property can be interpreted as requiring that a relation a < b
between two alternatives, can be cancelled by the converse
relation b < a (given by another individual). Please look at
the formal definition of cancellation given in section 4.
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We will now explore this general idea in order to define
cancellation properties in belief merging. The idea is to state
that a base in the profile can be cancelled by some other
input. The exact definition of the “other input” will lead us
to different cancellation properties.

Definition 11. A merging operator ∆ satisfies the (¬ϕ-Can)
property if for every formula ϕ, and every integrity con-
straint µ,

(¬ϕ-Can) ∆µ(ϕ t ¬ϕ) ≡ µ
It is easy to verify the following:

Proposition 4. Let ∆ be an IC merging operator. Then ∆
satisfies (¬ϕ-Can) if and only if it satisfies (¬E-Can)
(¬E-Can) ∆µ(E t ¬E) ≡ µ

Now we can provide a characterization of the drastic
merging operator ∆dD,f in terms of cancellation :

Theorem 4. An IC merging operator ∆ satisfies the (¬ϕ-
Can) cancellation property if and only if ∆ = ∆dD,f .

Proof. To prove this theorem, we first prove the following
proposition. We do not present this result as a lemma, be-
cause this proposition is interesting by itself and not only as
a technical tool in a proof.

Proposition 5. The generating function / associated with an
IC merging operator ∆ generates only 2-strata preorders if
and only if ∆ = ∆dD,Σ.

Proof. (⇒) Suppose that the generating function / associ-
ated with an IC merging operator ∆ generates only 2-strata
preorders.

Consider a profile E, and two interpretations ω1 and ω2.
Suppose, without loss of generality, that the number of bases
in E entailed by ω1 is greater than the number of bases in E
entailed by ω2 (i.e. that ddD,Σ(ω1, E) < ddD,Σ(ω2, E)).
To compare the two interpretations, we can distinguish and
separate the bases into 4 cases:

Case 1: The bases ϕ1
i such that ω1 |= ϕ1

i and ω2 |= ϕ1
i

Case 2: The bases ϕ2
i such that ω1 6|= ϕ2

i and ω2 6|= ϕ2
i

Case 3: The bases ϕ3
i1

and ϕ3
i2

, associated by pairs, such
that ω1 |= ϕ3

i1
, ω2 6|= ϕ3

i1
and ω1 6|= ϕ3

i2
and ω2 |= ϕ3

i2
.

Case 4: The remaining bases ϕ4
i , such that ω1 |= ϕ4

i and
ω2 6|= ϕ4

i .

From (IC2), we know that ω1 'ϕ1
i
ω2.

There are exactly two levels in the preorders associated
with the ϕ2

i . As ω1 6|= ϕ2
i and ω2 6|= ϕ2

i , ω1 and ω2 belong
to the same level for each�ϕ2

i
. In other words, ∀ϕ2

i , ω1 'ϕ2
i

ω2. So ω1 'ϕ2
i
ω2.

For the case 3, if ω1 ≺ϕ3
i1
tϕ3

i2
ω2 or ω1 �ϕ3

i1
tϕ3

i2
ω2, it

contradicts (IC4). So ω1 'ϕ3
i1
tϕ3

i2
ω2.

For the case 4, it is clear that ω1 ≺ϕ4
i
ω2.

By (IC5) and (IC6), we get ω1 'ϕ1
itϕ2

itϕ3
i1
tϕ3

i2
ω2. As

furthermore ω1 ≺ϕ4
i
ω2, we get ω1 ≺E ω2.

We just showed that if ddD,Σ(ω1, E) < ddD,Σ(ω2, E)),
then ω1 ≺E ω2.

Through the same reasoning, we can show that if
ddD,Σ(ω1, E) = ddD,Σ(ω2, E)), then ω1 'E ω2. So the
preorder obtained from ∆ for E coincides with the preorder
obtained from ∆dD,Σ.

(⇐) This part is clear: if ∆ = ∆dD,Σ, then the generat-
ing function / associated with ∆dD,Σ contains only 2-strata
preorders.

An interesting corollary of Proposition 5 is the following
one:

Corollary 1. If ∆dD,f is a merging operator then ∆dD,f ≡
∆dD,Σ.

Let us turn now to the proof of the main theorem.
(⇒:) Suppose that ∆ 6≡ ∆dD,f . Then, by proposition 5,
we know that there is at least one base ϕ such that the as-
signment �ϕ defines a preorder with more than two strata.
So there are three interpretations ω1, ω2 and ω3 such that
ω1 |= ϕ, ω2 6|= ϕ, ω3 6|= ϕ and ω2 ≺ϕ ω3.

We consider ϕ′ = ¬ϕ, and as ∆ satisfies (¬ϕ-Can),
∆(ϕ t ϕ′) ≡ >.

As ω2 6|= ϕ and ω3 6|= ϕ, we have that ω2 |= ϕ′ and
ω3 |= ϕ′, so ω2 'ϕ′ ω3.

From condition 6 of the syncretic assignment, as ω2 ≺ϕ
ω3 and ω2 'ϕ′ ω3, then ω2 ≺{ϕ,ϕ′} ω3: this contradicts the
fact that ∆(ϕ t ϕ′) ≡ >. So ∆ ≡ ∆dD,f .
(⇐:) We have to prove that ∆dD,f satisfies the (¬ϕ-Can)
property. First, we know from Corollary 1 that ∆dD,f ≡
∆dD,Σ. Now, we have to show that ∆dD,Σ satisfies the (¬ϕ-
Can) property. Consider a profile E = {ϕ1, . . . , ϕn}, its
negation ¬E = {¬ϕ1, . . . ,¬ϕn} and an integrity constraint
µ.

Consider an interpretation ω.
ddD,Σ(ω,E) = Σi=ni=1dD(ω, ϕi)) = k, where 0 ≤ k ≤ n.
ddD,Σ(ω,¬E) = Σi=ni=1dD(ω,¬ϕi)) = n− k.
ddD,Σ(ω,E t ¬E) = k + (n− k) = n.
As ∀ω, ddD,Σ(ω,E t ¬E) = n, all the interpretations of

µ are equivalent and ∆µ(E t ¬E) ≡ µ.

In fact, after a careful reading of the proof, one can see
that Theorem 4 may be expressed in a more general way. To
make this Theorem true, we need:

• a generating function /

• an assignment associated with the merging process, satis-
fying Condition 6 of the syncretic assignment.

We know that a distance d between interpretations is a
way to define a generating function, as it defines naturally a
preorder on interpretations. So an interesting question arises
about the expression of Theorem 4 when a distance d and an
aggregation function f are available.

Proposition 6. If the aggregation function f is anonymous
and not decreasing, the merging operator ∆d,f satisfies the
(¬ϕ-Can) cancellation property if and only if d = dD.

Proof. Suppose that a merging operator ∆d,f satisfies the
(¬ϕ-Can) property, and that d 6= dD.

As d 6= dD, there is at least one base k and three
interpretations ω1, ω2, ω3 such that ω1 |= k, ω2 6|= ϕ,
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d(ω1, ω2) is minimal among all the interpretations of ¬ϕ
(i.e. d(ω1, ω2) = minωk|=¬ϕ(d(ω1, ωk))) and d(ω2, ϕ) <
d(ω3, ϕ).

Consider E = 〈ϕω1
, ϕ¬ω1

〉. By the (¬ϕ-Can) property,
∆(〈ϕω1

, ϕ¬ω1
〉) ≡ >, so ω3 'E ω1.

But as 0 = d(ω1, ϕ) < d(ω2, ϕ) < d(ω3, ϕ)
And 0 = d(ω2, ϕ¬ω1) = d(ω3, ϕ¬ω1) < d(ω1, ϕ).
As d(ω1, ω2) = minωk|=¬ϕ(d(ω1, ωk)) = d(ω1, ϕ¬ω1

),
and d(ω1, ω2) = d(ω2, ϕω1), we have d(ω1, ϕ¬ω1) =
d(ω2, ϕω1).

As the aggregation function f is not decreasing and
anonymous, d(ω1, {ϕω1 , ϕ¬ω1}) = d(ω2, {ϕω1 , ϕ¬ω1}) <
d(ω3, {ϕω1 , ϕ¬ω1})

This contradicts ∆(ϕω1 t ϕ¬ω1) ≡ >.

We can stress that in Proposition 6, no assumption is made
on the assignment associated with ∆d,f . In particular, we do
not suppose that ∆d,f is an IC merging operator.

The (¬ϕ-Can) cancellation property is interesting for ob-
taining the above characterization, but it is a very particular
instance of a larger family of cancellation properties that we
would like to introduce and discuss now, and that could lead
to other characterization results.

Definition 12 (Cancellation 1).

(¬ϕ-Can) ∀ϕ∆µ(ϕ t ¬ϕ) ≡ µ
(ϕ-Can) ∀ϕ ∃ϕ′∆µ(ϕ t ϕ′) ≡ µ
(ϕ-Can) ∀ϕ∆µ(ϕ t ϕ) ≡ µ

We group here three related definitions, that share the fact
that a base can be cancelled by another base. We begin by
(¬ϕ-Can), which we already defined above. Note that this
is a particular case, using negation, of the (ϕ-Can) postu-
late, which states that any base can be cancelled by another
base. Another potentially interesting particular case is (ϕ-
Can), where we use the dual of ϕ, as defined in (Haret and
Woltran 2019), where ϕ is obtained by replacing every lit-
eral appearing in ϕ by its negation.

But we can be a bit more general, and accept that maybe
a single base will not be enough to cancel any base, and that
a set of such bases will be necessary. This leads to other
possible postulates :

Definition 13 (Cancellation 2).

(E-Can) ∀ϕ ∃E ∆µ(ϕ t E) ≡ µ
(fE-Can) ∀ϕ ∃E s.t. f(E) and ∆µ(ϕ t E) ≡ µ
(¬ω-Can) ∀ϕ ∃E s.t. (∀ψ ∈ E ∃ωi ψ = ϕ¬ωi)

and ∆µ(ϕ t E) ≡ µ
(¬ωn-Can) ∀ϕ if E =

⊔
i(ϕ¬ωi)

r�ϕ (ωi)

then ∆µ(ϕ t E) ≡ µ
The most general form of these cancellation postulates is

(E-Can) which states that some set of bases can cancel a
chosen base. Then (fE-Can) is a restriction, whereE cannot
be chosen freely, but must satisfy some condition f(). One
such interesting restriction is given by (¬ω-Can) where all

Figure 1: Cancellation postulates

the bases of E have to be negations of a complete base ϕω .
We further specialize this last postulate and obtain (¬ωn-
Can) that gives the exact definition of the profile E cor-
responding to a given base ϕ. This last form is related to
s-Borda operators.

Let us note that all these postulates can be generalized
for profiles not composed of a single base, but only in this
work we treat these more simple forms. Let us just give
the result for (E-Can) (but then notice that we can prove a
similar result for all the other cancellation postulates):
Proposition 7. Let ∆ be an IC merging operator. Then ∆
satisfies (E-Can) if and only if ∆ satisfies (E-CanE)
(E-CanE) ∀E′ ∀ϕ ∃E ∆µ(E′ t ϕ t E) ≡ ∆µ(E′)

Clearly some of the above postulates are more general
than others :
Proposition 8. We have the relation of figure 1, whereX →
Y means that Y is more general than X (i.e. if ∆ satisfies
X then it satisfies Y ).

We let the exploration of the different forms of Cancella-
tion for future work. We would just like to give a final result
and a final claim.
Proposition 9. Let ∆ be an operator that satisfies (IC1-IC3)
and (IC5-IC8). If ∆ is a s-Borda merging operator then ∆
satisfies (¬ωn-Can).

Our claim is that we believe that (¬ωn-Can) encodes pre-
cisely the behaviour of s-Borda merging operators, but we
do not have the formal proof yet.

So we put in grey in Figure 1 the two Cancellation pos-
tulates for which we have some links with concrete merging
operators. We are convinced that further exploration of these
links can provide us with other interesting characterizations
of operators.

9 Conclusion
In this paper, we defined two families of merging operators
inspired by the definition of the Borda voting rule. We also
introduced the notion of cancellation in belief merging, in-
spired by the axiomatization of the Borda voting rule pro-
posed by Young. This allowed us to show that the drastic
merging operator is the only IC merging operator satisfying
one variant of Cancellation, which gave us a characterization
of this operator. We are convinced that a more systematic ex-
ploration of the other variants of Cancellation proposed by
us (or other ones) can lead us to other interesting character-
izations of belief merging operators.
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Konieczny, S., and Pino Pérez, R. 1998. On the logic of
merging. In Sixth International Conference on Principles
of Knowledge Representation and Reasoning (KR’98), 488–
498.
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