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Abstract

We study the impact of the need for the agent to obligato-
rily instruct the action stop in her strategies. More specif-
ically we consider synthesis (i.e., planning) for LTLf goals
under LTL environment specifications in the case the agent
must mandatorily stop at a certain point. We show that this
obligation makes it impossible to exploit the liveness part of
the LTL environment specifications to achieve her goal, effec-
tively reducing the environment specifications to their safety
part only. This has a deep impact on the efficiency of solv-
ing the synthesis, which can sidestep handling Büchi deter-
minization associated to LTL synthesis, in favor of finite-state
automata manipulation as in LTLf synthesis. Next, we add
to the agent goal, expressed in LTLf , a safety goal, expressed
in LTL. Safety goals must hold forever, even when the agent
stops, since the environment can still continue its evolution.
Hence the agent, before stopping, must ensure that her safety
goal will be maintained even after she stops. To do synthe-
sis in this case, we devise an effective approach that mixes a
synthesis technique based on finite-state automata (as in the
case of LTLf goals) and model-checking of nondeterministic
Büchi automata. In this way, again, we sidestep Büchi au-
tomata determinization, hence getting a synthesis technique
that is intrinsically simpler than standard LTL synthesis.

1 Introduction
One of the most important questions for an intelligent agent
is to reason and plan its actions to achieve its goal exploit-
ing a model of its environment. Often such environment
appears nondeterministic to the agent either because it is, or
because the model, which is an approximation of the real-
ity, is not detailed enough. This case is addressed in Plan-
ning by fully observable nondeterministic domains (FOND)
planners (Cimatti et al. 2003; Sardiña and D’Ippolito 2015;
Rodriguez et al. 2021), possibly adding fairness assump-
tions on the nondeterministic effects. More recently it has
been advocated to extend the usual reachability goals used
in Planning to goals expressed in LTLf (or variants) (Ca-
macho et al. 2017; De Giacomo and Rubin 2018; He et al.
2019). LTLf is Linear-time Temporal Logic (the most pop-
ular logic to express temporal properties in Formal Verifica-
tion (Pnueli 1977)), but interpreted on finite traces, see (De
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Giacomo and Vardi 2013).1 This logic is particularly fitting
for expressing temporally-extended goals in Planning since
it retains the fact that ultimately the goal must be achieved
and the plan terminated (Baier and McIlraith 2006).

While one can use LTLf for expressing nondeterministic
planning domains2, LTLf cannot be used to express fairness
which is indeed a property of infinite traces. More generally,
as explicitly observed in (Camacho, Bienvenu, and McIlraith
2018), the environment specifications should be expressed
in LTL over infinite traces. Indeed the agent is supposed to
finish her task and move on after a while, but the environ-
ment is not supposed to ever stop working. This has led to
study synthesis (i.e. devise a strategy or plan) for LTLf goals
under LTL environment specifications (Camacho, Bienvenu,
and McIlraith 2018; Aminof et al. 2018; Aminof et al. 2019;
Camacho, Bienvenu, and McIlraith 2019).

It is interesting to observe that synthesis for LTLf goals
under LTL environment specifications can be reduced to
standard LTL synthesis (Pnueli and Rosner 1989), as ob-
served, e.g., in (Camacho, Bienvenu, and McIlraith 2018).
Indeed this observation is just an obvious consideration,
since LTLf is a fragment of LTL as shown in (De Gia-
como and Vardi 2013), and synthesis under LTL environ-
ment specifications can be reduced to standard synthesis of
an implication of LTL formulas (although some subtleties
should be considered (Aminof et al. 2019)). However, syn-
thesis for LTL does not scale in general due to the deter-
minization of nondeterministic Büchi automata, for which
we do not have good algorithms, see e.g., (Finkbeiner 2016).
Notably, synthesis in LTLf (De Giacomo and Vardi 2015;
Zhu et al. 2017) does not suffer from the same problem,
because determinization is done through the standard sub-
set construction which is easy to implement and often (af-

1In this paper we will focus on LTLf , but all results still hold
if we use instead LDLf (De Giacomo and Vardi 2013), which is a
more expressive variant that captures monadic-second order logic
on finite traces, instead of first-order logic on finite traces as LTLf .

2Fully observable nondeterministic planning domains can be
seen as safety properties in LTL: the environment forever reacts
to actions as specified by the planning domain. Safety properties
are properties on infinite traces, but if they can be broken at all,
they can be broken with a finite prefix. This allows for capturing
safety environment specification (but not safety goals) in LTLf (De
Giacomo et al. 2020a).
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ter minimization) does not give rise to the typical exponen-
tial blowup of determinization (Tabakov and Vardi 2005;
Tabakov, Rozier, and Vardi 2012).

For these reasons, several specific forms of LTL environ-
ment specifications have been considered, for example, al-
lowing only for safety or co-safety properties (Camacho,
Bienvenu, and McIlraith 2018), or only simple form of fair-
ness and stability (Zhu et al. 2020), or using in the environ-
ment specifications both LTLf (e.g., for representing node-
terministic planning domains or other safety properties) and
LTL (e.g., for liveness/fairness), but separating the contri-
butions of the two by limiting the second one as much as
possible (De Giacomo et al. 2020a).

In this paper we consider synthesis for LTLf goals under
LTL environment specifications without any restriction on
the form of the specifications themselves, but with a funda-
mental requirement on the kind of strategies/plans that the
agent can adopt: the agent needs to obligatorily instruct the
action stop in her strategies. The impact of this require-
ment is notable: the agent cannot wait for the environment
to spontaneously bring about conditions that would allow to
fulfil the goal. For example, if an agent in a shared kitchen
wants to have the dish washed, and waiting guarantees that
eventually somebody else will do the dishes, then waiting
until somebody does the dishes would not be a good strat-
egy for the agent. This is because when the dishes are done,
and the agent can stop, would not be controlled by the agent
itself. We show that adding this mandatory stop requirement
has a deep impact: every LTL environment specification re-
duces to only its safety part (remember that all LTL formulas
can be considered formed by a safety part and a liveness
part (Alpern and Schneider 1987)). This allows us to devise
a synthesis technique based on finite-state automata, which
essentially reduces to LTLf synthesis only.

Next, we add to the LTLf goal, a safety goal expressed
in LTL. While the LTLf goal will be satisfied after a finite
number of steps, the safety goal needs to remain true forever,
even after the agent has stopped and cannot act to keep it true
anymore. Indeed, when the agent stops, the liveness part of
the environment specifications is still active and the environ-
ment can freely evolve, possibly breaking the agent safety
goal. So the agent before stopping must put the system in
a situation where whatever the environment does after, will
not break the agent safety goal. To handle this case, we de-
vise a synthesis technique that mixes a synthesis technique
based on finite-state automata, as in the case of LTLf goals,
and model-checking of nondeterministic Büchi automata. In
this way, again, we sidestep the difficulty of Büchi automata
determinization, hence getting a synthesis technique that is
intrinsically simpler than standard LTL synthesis.

Outline. The rest of the paper is organized as follows. In
Section 2 we give some preliminary notions. In Section 3
we introduce our problem of synthesis with mandatory stop
actions, giving a formal definition and illustrating it with ex-
amples. In Section 4 we present a correct and optimal syn-
thesis technique for this case which is basically similar to
the one used for LTLf synthesis. In Section 5 we add safety
goals, and in Section 6 we present a correct and optimal

technique to handle this case, which although uses Büchi au-
tomata, avoids their determinization. We conclude the paper
with a short discussion.

2 Preliminaries
LTL and LTLf . LTL is one of the most popular logics for

temporal properties (Pnueli 1977). Given a set of proposi-
tions Prop, the formulas of LTL are generated by the follow-
ing grammar:

ϕ ::= p | (ϕ1 ∧ ϕ2) | (¬ϕ) | (©ϕ) | (ϕ1 U ϕ2)

where p ∈ Prop. We use common abbreviations for eventu-
ally 3ϕ ≡ true U ϕ and always as 2ϕ ≡ ¬3¬ϕ.

LTL formulas are interpreted over infinite traces π ∈
(2Prop)ω . A trace π = π0π1 . . . is a sequence of propo-
sitional interpretations (sets), where for every i ≥ 0, πi ∈
2Prop is the i-th interpretation of π. Intuitively, πi is inter-
preted as the set of propositions that are true at instant i.
Given π, we define when an LTL formula ϕ holds at position
i, written as π, i |= ϕ, inductively on the structure of ϕ, as
follows:

• π, i |= p iff p ∈ πi (for p ∈ Prop);
• π, i |= ϕ1 ∧ ϕ2 iff π, i |= ϕ1 and π, i |= ϕ2;
• π, i |= ¬ϕ iff π, i 6|= ϕ;
• π, i |= ©ϕ iff π, i+ 1 |= ϕ;
• π, i |= ϕ1 U ϕ2 iff there exists i ≤ j such that π, j |= ϕ2,

and for all k, i ≤ k < j we have that π, k |= ϕ1.

We say π satisfies ϕ, written as π |= ϕ, if π, 0 |= ϕ.
LTLf is a variant of LTL interpreted over finite traces in-

stead of infinite traces (De Giacomo and Vardi 2013). The
syntax of LTLf is the same as the syntax of LTL. We define
π, i |= ϕ, stating that ϕ holds at position i, as for LTL, except
that for the temporal operators we have:

• π, i |= ©ϕ iff i < last(π) and π, i+ 1 |= ϕ;
• π, i |= ϕ1 U ϕ2 iff there exists j such that i ≤ j ≤ last(π)

and π, j |= ϕ2, and for all k, i ≤ k < j we have that
π, k |= ϕ1.

where last(π) denotes the last position (i.e., index) in the
finite trace π. In addition, we define the weak next oper-
ator • as abbreviation of •ϕ ≡ ¬©¬ϕ. Note that, over
finite traces, it does not holds that ¬©ϕ 6≡ ©¬ϕ, but instead
¬©ϕ ≡ •¬ϕ. We say that a trace satisfies an LTLf formula
ϕ, written as π |= ϕ, if π, 0 |= ϕ.

Automata. A nondeterministic automaton (NA, for short)
is a tuple N = (Σ, Q, q0, δ, α), where Σ is a finite al-
phabet, Q is a finite set of states, q0 ∈ Q is the initial
state, δ : Q × Σ → 2Q is the transition function, and
α ⊆ Qω is an acceptance condition. Given an infinite word
w = a0a1a2 . . . ∈ Σω , a run of A on w is a sequence
r = q0q1q2 . . . ∈ Qω starting at the initial state q0 and
qi+1 ∈ δ(qi, ai) for i ≥ 0. An automatonN is deterministic
(DA, for short), if |δ(q, a)| = 1 for every (q, a) ∈ Q × Σ,
and we denote it by D. A run r is accepting if r ∈ α.
The language of A, denoted by L(A), is the set of words
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accepted by A, that is, for which there exists an accepting
run. For a given infinite sequence r ∈ Qω , by inf(r) ⊆ Q
we denote the set of symbols that occur infinitely often in
r. In this work we specifically consider Büchi, reachability,
safety, and reachability-safety conditions:

• Büchi. Given a set T ⊆ Q, Büchi(T ) = {r ∈ Qω |
inf(r) ∩ T 6= ∅}.
• Reachability. Given a set T ⊆ Q, Reach(T ) =
{q0q1q2 . . . ∈ Qω | ∃k ≥ 0 : qk ∈ T}.
• Safety. Given a set T ⊆ Q, Safe(T ) = {q0q1q2 . . . ∈
Qω | ∀k ≥ 0 : qk ∈ T}.
• Reachability-Safety. Given two sets T1, T2 ⊆ Q corre-

sponding to reachability and safety conditions, respec-
tively, Reach–Safe(T1, T2) = {q0q1q2 . . . ∈ Qω | ∃i ≥
0 : qi ∈ T1 and ∀j, 0 ≤ j ≤ i : qj ∈ T2} requires that
a state in T1 is visited at least once, and until then only
states in T2 are visited.

Notably, a DA with reachability condition defines a deter-
ministic finite automaton (DFA), and a NA with Büchi con-
dition defines a nondeterministic Büchi automaton (NBA).

We define the complement of a DA D = (Σ, Q, q0, δ, α)
as D = (Σ, Q, q0, δ, Q

ω \ α). Note that L(D) = Σω \
L(D). Note also that Qω \ Reach(T ) = Safe(Q \ T ) and
Qω \ Safe(T ) = Reach(Q \ T ). Therefore, the comple-
ment of a DA with a reachability acceptance condition is
a DA with a safety acceptance condition, and vice-versa.
We also define the bounded intersection of two DAs D =
(Σ, Q, q0, δ,Reach(R)) and D̂ = (Σ, Q̂, q̂0, δ̂, Safe(S)) as
D ∩ D̂ = (Σ, Q × Q̂, (q0, q̂0), δ′, α′), where δ′((q, q̂), a) =

(δ(q, a), δ̂(q̂, a)) and α′ = Reach–Safe(R′, S′) such that
R′ = {(q, q̂) | q ∈ R} and S′ = {(q, q̂) | q̂ ∈ S}.
Games over DAs. Two-player games over DA are games
consisting of two players, the environment and the agent.
X and Y are disjoint sets of environment Boolean variables
and agent Boolean variables, respectively. The specification
of the game arena is given by a DA D = (2X∪Y , Q, q0, δ, α),
where δ : Q× Σ ⇀ Q is a partial transition function.

A position in the game is a state q ∈ Q. At first, the
environment moves by setting X ∈ 2X , then the agent
moves by setting Y ∈ 2Y , and the next position is up-
dated to the state δ(q,X ∪ Y ). An agent strategy is a func-
tion σag : (2X )+ → 2Y , and an environment strategy is
a function σenv : (2Y)∗ → 2X . A trace is a sequence
π = (X0 ∪ Y0)(X1 ∪ Y1) · · · ∈ (2X∪Y)ω over the alpha-
bet 2X∪Y . A trace π is compatible with an agent strat-
egy σag if σag(X0X1 · · ·Xi) = Yi for every i ≥ 0. A
trace π is compatible with an environment strategy σenv if
σenv(ε) = X0 and σenv(Y0Y1 · · ·Yi) = Xi+1 for every
i ≥ 0. The unique trace compatible with strategies σag and
σenv is a play and denoted as play(σag, σenv). For a given
play π, by πk = (X0 ∪ Y0) · · · (Xk ∪ Yk) we denote the
prefix of π up to the k-th iteration. Sometimes, for simplic-
ity, we write σag(πk) in place of σag(X0X1 · · ·Xk). An
agent strategy σag is winning if for every environment strat-
egy σenv, we have that play(σag, σenv) ∈ L(D). By Winag

(resp., Winenv) we denote the set of states from which the

agent (resp., the environment) has a winning strategy. De-
pending on the actual winning condition α we get Büchi,
reachability, safety, or reachability-safety games.

Safety and Liveness. A safety property excludes traces
whose “badness” follows from a finite prefix. To define
safety properties, we need to introduce the concept of bad
prefix. Consider a property P ⊆ Σω over an alphabet Σ. A
finite word x ∈ Σ∗ is a bad prefix for P if and only if for all
infinite words y ∈ Σω , we have x · y 6∈ P . A property P is a
safety property iff every w 6∈ P has a bad prefix. A formula
ϕ is a safety formula iff ϕ specifies a safety property.

A property P is a liveness property if for every word x ∈
Σ∗ there exists a word y ∈ Σω such that x·y ∈ P . A formula
ϕ is a liveness formula iff ϕ specifies a liveness property.

Partitioning into Safety and Liveness. As shown in
(Alpern and Schneider 1987; Kupferman and Vardi 2001),
an NA in which every state has been made into a safe state,
i.e., N = (Σ, Q, q0, δ, Safe(Q)), is able to capture a safety
property. This is because it only rejects an input by attempt-
ing an undefined transition, which terminates the run. In-
deed, the following theorem holds:
Theorem 1 ((Alpern and Schneider 1987)). Let N =
(Σ, Q, q0, δ,Büchi(T )) be an NA with Büchi condition and
N ′ = (Σ, Q, q0, δ, Safe(Q)). Then, N specifies a safety
property if and only if L(N ) = L(N ′).

Note that an NA with safety condition can be determinized
by applying the standard subset construction (Rabin and
Scott 1959; Kupferman and Vardi 2001), thus a safety for-
mula can be recognized by a DA with safety condition.

In (Alpern and Schneider 1987), it is also shown that
every formula specified by an NA with Büchi condition is
equivalent to the conjunction of two automata specifying a
safety property and a liveness property. Formally, we have:
Theorem 2 ((Alpern and Schneider 1987)). Let N =
(Σ, Q, q0, δ,Büchi(T )), thenL(N ) = L(Nsafe)∩L(Nlive)
where Nsafe specifies a safety property and Nlive specifies
a liveness property.

Specifically, by Theorem 2, we can extract from an
NA N = (Σ, Q, q0, δ,Büchi(T )) the NA Nsafe =
(Σ, Q, q0, δ, Safe(Q)) that recognizes the safety part of N .
In particular, for every prefix x ∈ Σ∗ that is not a bad prefix
of L(Nsafe), there always exists y ∈ Σω , such that x · y ∈
L(N ). This is because by definition, N and Nsafe share
the same automaton structure. Moreover, x · y ∈ L(Nlive),
since L(N ) = L(Nsafe) ∩ L(Nlive).

Synthesis under Environment Specifications. In stan-
dard synthesis the environment is free to choose an arbitrary
move at each step, but in AI typically the agent has some
knowledge of how the environment works, which it can ex-
ploit in order to enforce the goal, specified as an LTLf for-
mula ϕa

task. Here, we specify the environment behaviour by
an LTL formula ϕe and call it environment specification. In
particular, ϕe specifies the set of environment strategies that
ensure ϕe. Moreover, we require that ϕe must be environ-
ment realizable, i.e., the set of environment strategies that
enforce ϕe is nonempty.
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Given an LTL formula ϕ, we say that an agent strategy
(resp., environment strategy) enforces ϕ, written σag � ϕ
(resp., σenv � ϕ), if for every environment strategy σenv
(resp., agent strategy σag), we have play(σag, σenv) |= ϕ.

The problem of synthesis under environment specifica-
tions is to find an agent strategy σag such that

∀σenv � ϕe, play(σag, σenv)
k |= ϕa

task for some k ∈ N.
As shown in (Aminof et al. 2019), this can be reduced to
solving the synthesis problem for the implication ϕe →
ltl(ϕa

task), with ltl(ϕa
task) being a suitable LTLf -to-LTL

transformation (De Giacomo and Vardi 2013), which is
2EXPTIME-complete (Pnueli and Rosner 1989).

3 Synthesis with Mandatory Stop Actions
In this paper we study synthesis under environment specifi-
cations in which the agent at a certain point of the trace must
stop performing any action. Hence, based on this condition,
the agent must achieve her goal and then stop the execution
of any action from that point on. However, this mandatory
choice to stop leads the agent to not consider the part of the
environment specifications that require some progress, i.e.,
specified as liveness formulas, as they do not constraint the
finite behaviour but require a certain condition on the infi-
nite behaviour, and the stop can occur, in a finite number of
steps, before this constraint is satisfied.

In order to define the synthesis problem with mandatory
stop actions, we first need to include into the agent strategy
this stop condition. More specifically, we assume that ev-
ery action of the agent is an assignment over Y , and stop
is one of them. In particular, wlog, stop is encoded as an
assignment where all variable in Y are set to false, i.e.,
stop =

∧
y∈Y ¬y.

We redefine agent strategies as follows. An agent strategy
σag is stopping iff, for every play π ∈ (2X∪Y)ω there ex-
ists k ∈ N such that σag(πj) = stop for every j ≥ k and
σag(π

h) 6= stop for every h < k. That is, for each play
compatible with σag, the action stop is eventually executed
and held forever. From now on, we restrict agent strategies
to be stopping strategies and therefore reconsider the synthe-
sis problem for the agent goal ϕa

task under the environment
specification ϕe accordingly.
Definition 1 (Synthesis with mandatory stop actions).
1. The problem is described as a tuple P =
〈X ,Y, ϕe, ϕa

task〉, where X and Y are two disjoint
sets of Boolean variables, controlled respectively by the
environment and the agent, ϕa

task is an LTLf formula,
and ϕe is an LTL formula.

2. An agent strategy σag realizes ϕa
task under environment

specification ϕe if for all environment strategies σenv �

ϕe, π = play(σag, σenv) has a prefix πk such that
σag(π

k) = stop and πk |= ϕa
task, and for all h < k

we have σag(πh) 6= stop.
3. Solving P consists in finding an agent strategy that real-

izes ϕa
task under specification ϕe.

This class of synthesis problem naturally reflects the
structure of many reactive systems in practice. We illustrate
this with an example.

Example 1. A cleaning robot is deployed in a shelter on
Mars. The robot is sent to clean the dust in lab whenever it is
needed. The agent’s goal is to clean the lab and leave. This
scenario can be represented by the following specification.

The robot controls the actions: robot wait, get out,
clean dust. The environment controls the fluents: RobotOut
and Dust.

The environment specification can be written as:

ϕe =¬RobotOut ∧ Dust
∧2((¬RobotOut ∧ clean dust)

→ (©(¬RobotOut ∧ ¬Dust)))
∧ (23robot wait→ 23¬Dust)
∧2(robot wait→ (RobotOut ≡ ©RobotOut))
∧2(get out→ (Dust ≡ ©Dust))
∧2((¬RobotOut ∧ get out)→ ©RobotOut)

The agent goal is:

ϕa
task = 3(RobotOut ∧ ¬Dust).

A possible plan for the robot is given by:

(robot wait)?; clean dust; get out.

However, in order to achieve its goal, the robot cannot wait
forever such that relying on the environment to clean the lab,
as the environment can make this happen after the robot per-
forms its mandatory stop action.

Reduction to LTL Synthesis. A naive approach to solve P
is to reduce it to standard LTL synthesis, see e.g. (Camacho,
Bienvenu, and McIlraith 2018; Zhu et al. 2020). This is be-
cause LTLf can be viewed as a fragment of LTL, as shown
in (De Giacomo and Vardi 2013), and thus the agent goal
ϕa
task can be translated to LTL formula ltl(ϕa

task) by intro-
ducing a new agent variable alive. Intuitively, this variable
indicates the satisfaction of ϕa

task, hence it stays true until
ϕa
task is satisfied, and stays false since then.
It should be noted that the reduction technique introduced

in (Camacho, Bienvenu, and McIlraith 2018; Zhu et al.
2020) can not be directly applied here, since we restrict the
agent strategy to be stopping. In addition to the translation
of ltl(ϕa

task), we need to restrict the agent behaviour to con-
sider the mandatory stop action. To do so, we need to add
the LTL formula (¬stopU 2stop). Moreover, we also need
to relate alive to stop by having 2(alive ≡ ¬stop), since
both indicate the satisfaction of ϕa

task. In particular, express-
ing the mandatory stop action should be independent from
synthesizing agent goal under environment specifications.
Therefore, ((¬stopU 2stop)∧2(alive ≡ ¬stop)) is applied
to restrict the complete implication of (ϕe → ltl(ϕa

task)),
rather than ltl(ϕa

task) itself. As a consequence, the reduced
LTL formula is ψ = (ϕe → ltl(ϕa

task))∧ (¬stopU 2stop)∧
2(alive ≡ ¬stop)).
Theorem 3. Let P = 〈X ,Y, ϕe, ϕa

task〉 be a synthesis prob-
lem with mandatory stop actions and PLTL = 〈X ,Y ∪
{alive}, ψ〉 be the reduced LTL synthesis problem, where
ψ = (ϕe → ltl(ϕa

task)) ∧ ((¬stopU 2stop) ∧ 2(alive ≡
¬stop)). We have P is realizable if and only if PLTL is
realizable.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

240



Following (Camacho, Bienvenu, and McIlraith 2018;
Zhu et al. 2020; De Giacomo et al. 2020b), it is trivial to
show that every agent winning strategy of P is also an agent
winning strategy of PLTL, and vice-versa.

However reducing to LTL synthesis has not shown promis-
ing results. Hence specific techniques have been proposed
that try to avoid, if possible, the Büchi determinization and
the solution of parity games, see e.g., (Camacho, Bienvenu,
and McIlraith 2018; De Giacomo et al. 2020b). This is what
we will do for our case as well.

An important implication of dealing with the need of the
agent to stop is that, when solving the synthesis problem P ,
we can reduce the environment LTL specification ϕe to its
safety part only, due to the fact that the agent cannot ex-
ploit the liveness part to achieve her goal, since satisfying
the liveness part can happen after the agent has executed the
action stop. Indeed, we know by Theorem 2 that every N
with Büchi condition recognizing an LTL formula can be de-
composed into a safety partNsafe and a liveness partNlive,
i.e., ϕe = ϕe

safe ∧ ϕe
live, where L(ϕe

safe) = L(Nsafe), and
L(ϕe

live) = L(Nlive). It is important to note that, ϕe
safe and

ϕe
live are not independent from each other. Instead, both are

related to the original LTL formula ϕe. More specifically, for
every prefix x ∈ Σ∗ that is not a bad prefix of L(ϕe

safe), there
always exists y ∈ Σω , such that x · y ∈ L(ϕe

live ∧ ϕe
safe).

We show next that in the case of LTLf goals, we can dis-
regard ϕe

live from ϕe and use only ϕe
safe as environment spec-

ification.

Theorem 4. Let P = 〈X ,Y, ϕe, ϕa
task〉 be the synthesis

problem with mandatory stop actions and σag an agent
strategy. Then, σag realizes P if and only if σag realizes
P̂ = 〈X ,Y, ϕe

safe, ϕ
a
task〉.

Proof. We prove the two implications separately.
(⇒) We prove this direction by contradiction. Assume

that there exists an agent strategy σag that realizes P but
does not realize P̂ . Therefore, there exists an environment
strategy σ′env�ϕ

e
safe such that π′ = play(σag, σ

′
env)

k 6|= ϕa
task

for k being the first iteration on which σag plays the action
stop. Now, since σ′env � ϕe

safe, it holds that play(σag, σ
′
env)

k

is not a bad prefix for ϕe
safe and thus there exists a strategy

σenv �ϕe = ϕe
safe ∧ϕe

live such that πk = play(σag, σenv)
k =

play(σag, σ
′
env)

k = π′k. Therefore, it holds that πk 6|= ϕa
task,

which is a contradiction as σenv � ϕe and σag realizes P ,
which implies πk |= ϕa

task.
(⇐) This direction is a direct consequence of the fact that

ϕe implies ϕe
live. Indeed, assume that σag realizes P̂ . Con-

sider now an environment strategy σenv such that σenv �ϕe.
In particular, it holds that σenv�ϕe

safe and so, since σag real-
izes P̂ , that play(σag, σenv)

k |= ϕa
task, with k being the last

iteration in which the agent does not execute the action stop,
which proves the statement.

As shown in Theorem 2, given the NA N e =
(Σ, Q, q0, δ,Büchi(T )) of ϕe we can extract from N e the
NA with safety condition N e

s = (Σ, Q, q0, δ, Safe(Q)) that
recognizes ϕe

safe, andN e
s can be determinized using the sub-

set construction instead of the more complex Büchi deter-

minization. Hence, Theorem 4, together with Theorem 2,
can be exploited to define a specific synthesis technique with
a deep impact on the efficiency of solving the problem P .

4 Synthesis Technique
To solve the problem P̂ we first observe that the agent’s goal
is to satisfy ¬ϕe

safe ∨ ϕa
task. However, being ϕe

safe environ-
ment realizable, i.e., the set ξ of environment strategies that
realize ϕe

safe is nonempty, we can narrow down to ξ when
solving P̂ . Moreover, we know that ϕe

safe can be represented
by a DA with safety condition (see Section 3), and ϕa

task can
be represented by a DA with reachability condition (De Gi-
acomo and Vardi 2015). Therefore, we devise a synthesis
technique for P which (i) restricts to considering only the
set ξ of environment strategies by computing the safe region
for the environment, (ii) builds the DA ofϕa

task, and (iii) com-
bines the two DAs and solves the reachability game over the
resulting automaton.

Hence, given synthesis problem P̂ = 〈X ,Y, ϕe
safe, ϕ

a
task〉,

we can solve P̂ by taking the following stages.

Stage 1: Compute the safe region for the environment.
Given the environment specification ϕe, we first build the
NA with Büchi condition N e = (Σ, Qe, qe0, δ

e,Büchi(T ))
of ϕe, such that L(N e) = L(ϕe). Then, by Theorem 2, we
can extract fromN e the NAN e

s = (Σ, Qe, qe0, δ
e, Safe(Qe))

that recognizes the safety part of ϕe. At the end, we de-
terminize N e

s , by using the subset construction, into De
s =

(Σ, Qe
s ∪ {qsink}, q0

e
s, δ

e
s , Safe(Qe

s)) that accepts a trace π
if and only if π |= ϕe

safe. Now, we solve a safety game
for the environment over De

s by computing the environment
winning states Winenv , and then restrict De

s with Winenv ,
obtaining D′es = (Σ,Winenv, δ

′e
s , Safe(Winenv)), where

for (q, a) ∈ Winenv × Σ, δ′es (q,X ∪ Y ) is undefined if
there exists Y ′ ∈ 2Y such that δes(q,X ∪ Y ′) 6∈ Winenv ,
δ′es (q,X ∪ Y ) = δes(q,X ∪ Y ) otherwise.

Stage 2: Compute DA for the goal. Here we build
the DA of ϕa

task that is with reachability condition Da
t =

(Σ, Qa
t , q0

a
t , δ

a
t ,Reach(Ra

t )), we have that π ∈ L(Da
t ) if

and only if π |= ϕa
task.

Stage 3: Solve the synthesis for ϕa
task under ϕe

safe. Having
D′es andDa

t , we do the intersection betweenD′es andDa
t thus

obtainingD = (Σ,Winenv×Qa
t , (q0

e
s, q0

a
t ), δ,Reach(R)),

where for q ∈ Winenv , q̂ ∈ Qa
t , and a ∈ Σ,

δ((q, q̂), a) = (δ′es (q, a), δat (q̂, a)), and Reach(R) =
{(q0

e
s, q0

a
t )(q1

e
s, q1

a
t ) . . . ∈ (Winenv×Qa

t )ω| q0
a
t , q1

a
t , . . . ∈

Ra
t }. Finally, we solve a reachability game for the agent over
D which returns an agent winning strategy, if one exists.

Correctness. Now we prove the correctness of the algo-
rithm above. By Theorem 4 it suffices to show that, follow-
ing the stages above, we are able to obtain an agent winning
strategy for the problem P̂ , if one exists.

Theorem 5. Let P̂ = (X ,Y, ϕe
safe, ϕ

a
task) be a synthesis

problem with mandatory stop actions. Then, P̂ can be re-
duced to solving the reachability game for the agent over
D.
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Proof. Observe that D is obtained as the intersection of D′es
which is in turn obtained by keeping fromDe

s only the states
from which the environment can ensure ϕe

safe. This means
thatD can only accept plays that are induced by environment
strategies σenv such that σenv � ϕe

safe.
Now, consider agent winning strategy σag in D. It holds

that play(σag, σenv) is fully contained inD. Moreover, being
σag winning, it holds that play(σag, σenv)

k |= ϕa
task, for some

k ∈ N. As this holds for every environment strategy σenv �
ϕe
safe, we obtain that σag realizes P̂ .

Computational properties. We now discuss the compu-
tational properties of our synthesis algorithm. Specifically,
Stage 1 builds the corresponding DA with safety condition
for ϕe

safe in double exponential time in the size of ϕe. This
allows us to exploit subset construction and minimization
rather than Büchi determinization, making it more scalable
in practice, as for LTLf synthesis. Moreover, it solves a
safety game that takes polynomial time in the size of the
game. Stage 2 builds the DA with reachability condition
in double exponential time in the size of ϕa

task, again, go-
ing through subset construction and minimization. Finally,
Stage 3 just requires solving adversarial reachability, com-
pared to solving parity games in the case of general LTL en-
vironment specifications. Then, the overall complexity of
the algorithm is given by the following.
Theorem 6. The above algorithm solves synthesis with
mandatory stop actions problem P = (X ,Y, ϕe, ϕa

task) in
2EXPTIME (the problem is indeed 2EXPTIME-complete).

Note that LTLf synthesis (without environment specifica-
tions) is a special case of our problem. Indeed in this case
the mandatory stop action requirement is irrelevant. This
provides a matching lower-bound to the complexity speci-
fied in the theorem above.

5 Adding Agent Safety Goals
We now introduce agent safety goals into the framework.
Safety goals are constraints that can be applied to the agent
such that its behaviour always remains in the desired bound-
aries. We enrich our synthesis framework by adding safety
goals for the agent. We use ϕa

safe to denote the safety prop-
erties specified in LTL that the agent is required to fol-
low. Therefore, we are interested in solving the synthesis
for 〈ϕa

task, ϕ
a
safe〉 under environment specification ϕe, where

ϕa
task is expressed as an LTLf formula, while ϕa

safe and ϕe

are LTL formulas.

Agent Safety Goals. The agent goal 〈ϕa
task, ϕ

a
safe〉 requires

the agent to satisfyϕa
task over a finite prefix andϕa

safe over the
entire (infinite) play. If we consider them separately, ϕa

task
specifies the goal that the agent needs to reach in a finite
number of steps, and ϕa

safe, nevertheless, requires that “bad
things” never happens in an infinite number of steps. First
of all, ϕa

safe should not be violated until ϕa
task gets accom-

plished. What about after that? We illustrate this concern
with an example.
Example 2. The cleaning robot clearly has a peaceful life in
the shelter. Being secured but also trapped in such a shelter,

the robot wants to escape to explore the universe. However,
once the airlock is open with emergency core off, the shelter
will be air outage in 2 time steps. The robot is also able
to manually activate the emergency core to keep it running.
For security, the shelter itself also activates the emergency
core from time to time to pump some air. This scenario can
be represented by the following specification.

The robot can take actions: robot wait, open airlock,
act emergency core, and robot escape. The environment
controls the fluents: F = {AirLockIsOpen,AirOutage,
EmergencyCoreOn,RobotFree}.

The environment specification ϕe can be written as:

ϕe = ¬AirLockIsOpen ∧ ¬AirOutage
∧ ¬RobotFree ∧ ¬EmergencyCoreOn

∧2(robot wait→
∧
f∈F

f ≡ ©f)

∧2(open airlock→ (©AirLockIsOpen∧∧
f 6=AirLockIsOpen

f ≡ ©f))

∧2((AirLockIsOpen ∧ ¬EmergencyCoreOn) ≡
©©AirOutage)

∧2(act emergency core→ (©EmergencyCoreOn∧∧
f 6=EmergencyCoreOn

f ≡ ©f))

∧2(robot escape→ ©RobotFree)

∧23EmergencyCoreOn

The robot task goal is

ϕa
task = 3RobotFree

The robot safety goal is

ϕa
safe = 2¬AirOutage∧2(robot escape→ AirLockIsOpen)

If the robot only cares about AirOutage before it gets free,
it can just open the airlock without activating the emergency
core, and then get out, which specifies the plan:

(robot wait)?; open airlock; robot escape.

But this might lead to an inevitable damage to all the hu-
mans in the shelter, due to the air outage in 2 time steps.
Moreover, it cannot rely on the shelter to activate the emer-
gency core for pumping air, since this can happen after it
leaves. Being a responsible robot, it better takes the plan:

(robot wait)?; open airlock;

act emergency core; robot escape.

Note that once the robot leaves the shelter, it is not able
to do anything to prevent the air outage anymore.

As this example illustrates, it is not enough for an agent
to only care about the satisfaction of its safety goal until ac-
complishing its task. Instead, the agent still needs to main-
tain it forever. Nevertheless it can not perform any other
actions rather than stop.

Adding Agent Safety Goals. We formulate the problem
setting described above as follows.
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Definition 2 (Synthesis with mandatory stop actions and
agent safety goals).
1. The problem is described as a tuple P =
〈X ,Y, ϕe, Goal〉, where X and Y are two disjoint
sets of Boolean variables, controlled respectively by the
environment and the agent, ϕe in an LTL formula, and
Goal = 〈ϕa

task, ϕ
a
safe〉 is defined as a pair where ϕa

task is
an LTLf formula and ϕa

safe is a safety LTL formula.
2. An agent strategy σag realizes Goal under environment

specification ϕe if for all environment strategies σenv �

ϕe, π = play(σag, σenv) has a prefix πk such that
σag(π

k) = stop and πk |= ϕa
task, and for all h < k

we have σag(πh) 6= stop. Moreover, π |= ϕa
safe.

3. Solving P consists in finding an agent strategy that real-
izes 〈ϕa

task, ϕ
a
safe〉 under specification ϕe.

Reduction to LTL Synthesis. Despite that the enriched syn-
thesis problem includes agent safety goals, the alternative
approach of reducing to LTL synthesis still works. Based on
the reduction technique presented in Section 3, we can re-
duce the synthesis problem P = 〈X ,Y, ϕe, Goal〉, where
Goal = 〈ϕa

task, ϕ
a
safe〉, to LTL synthesis as well.

Theorem 7. Let P = 〈X ,Y, ϕe, Goal〉 be a synthe-
sis problem with mandatory stop actions, where Goal =
〈ϕa

task, ϕ
a
safe〉 and PLTL = 〈X ,Y ∪ {alive}, ψ〉 be the re-

duced LTL synthesis problem, whereψ = (ϕe → ltl(ϕa
task)∧

ϕa
safe) ∧ (¬stopU 2stop) ∧ 2(alive ≡ ¬stop)). We have P

is realizable if and only if PLTL is realizable.
In Section 3, we pointed out how to translate ϕa

task to LTL.
Regarding the agent safety goal ϕa

safe, since it is specified in
LTL, it can be directly conjuncted with ltl(ϕa

task) thus having
ltl(ϕa

task) ∧ ϕa
safe on the rightside of the implication. Then

we can show that every agent winning strategy of P is also
an agent winning strategy of PLTL, and vice-versa, which
is analogous to Theorem 3.

6 Synthesis Technique
Due to the unsatisfying scalability of its algorithms, the re-
duction to LTL synthesis is not a promising direction for
solving synthesis with agent’s safety goals. In this section,
we propose a different approach that again circumvents the
difficulties of Büchi automata determinization. We first give
an overview of our proposed technique, and then present it
in full details.

Given a synthesis problem P = 〈X ,Y, ϕe, Goal〉, where
Goal = 〈ϕa

task, ϕ
a
safe〉, as defined in Section 5. A strat-

egy σag for the agent is winning if, for every environment
strategy σenv such that σenv � ϕe, it holds that the play
π = play(σag, σenv) satisfies ϕa

safe and has a finite prefix
πk that satisfies ϕa

task. To synthesize such a strategy, besides
the finite prefix until ϕa

task holds, we should also consider
the infinite suffix since ϕa

task gets satisfied, such that ϕa
safe

never gets violated. Therefore, we split such synthesis prob-
lem into two phases. In phase I we focus on the satisfaction
of ϕa

task that does not violate ϕa
safe, that is, no bad prefixes

of the safety condition are reached. In phase II we concen-
trate on the remainder of the execution, that is, after ϕa

task
has been accomplished and the agent worries only about the

non-violation of ϕa
safe. Note that in phase II the agent is only

allowed to play the stop action, and so it needs to enter such
phase after making sure that such obligation will be enough
to prevent the environment to violate ϕa

safe.
We devise a synthesis technique that addresses the two

phases in reverse order. Specifically, we first compute a
set of so-called “Non-stop” states, from which if the agent
plays action stop forever, the environment is able to break
ϕa
safe in the future. Then we make use of these “Non-stop”

states to solve a suitable reachability game, which allows
the agent to satisfy ϕa

task while not violating ϕa
safe thus ad-

dressing phase I, and switching to phase II avoiding these
“Non-stop” states.

In particular, we perform the following stages: (i) com-
pute the safe region for the environment, where the environ-
ment is guaranteed to satisfy ϕe

safe; (ii) collect “Non-stop”
states for the agent, from which if the agent plays action
stop, the environment is able to ultimately break ϕa

safe; (iii)
compute the DA for the agent goal, which expresses the sat-
isfaction of ϕa

task and ϕa
safe, and considers the “Non-stop”

states for the agent to avoid; (iv) solve the synthesis forGoal
under ϕe, which can be done by solving a reachability game
for the agent. We now present each stage in detail.

Stage (i): Compute the safe region for the environment.
Consider the environment specification ϕe. Following the
approach of the first stage described in Section 3, we ob-
tain the NA N e such that L(N e) = L(ϕe), the DA De

s such
that L(De

s) = L(ϕe
safe), and the DA D′es consisting of states

where the environment is guaranteed to satisfy ϕe
safe.

Stage (ii): Collect “Non-stop” states for the agent. The set
of “Non-stop” states of the agent are those from which the
environment can satisfy ϕe, but violate ϕa

safe, assuming that
the agent plays stop forever. Being a safety property, the
violation of ϕa

safe must happen in a finite number of steps,
that is to say, violated by a finite bad prefix. Therefore, we
can build a DA that captures all the bad prefixes of ϕa

safe,
with a pure reachability condition. To do so, we first ob-
tain the DA Da

s = (Σ, Qa
s ∪ {qsink}, q0

a
s , δ

a
s , Safe(Qa

s)) of
ϕa
safe. Intuitively, Da

s rejects a trace π if it has a bad pre-
fix, i.e., whose run leads to qsink. We thus complement
Da

s and obtain an automaton defined as Dbad = Da
s =

(Σ, Qa
s ∪ {qsink}, q0

a
s , δ

a
s ,Reach({qsink})).

Lemma 1. Let D = (Σ, Q ∪ {qsink}, q0, δ, Safe(Q)) be a
DA of a safety property ϕ. We have that π ∈ L(D) iff π is a
bad prefix of ϕ.

Proof. Let r be the corresponding run of π on L(D). By
definition, π ∈ L(D) such that there exists i ≥ 0, ri =
qsink. Due to the fact that the automata structure of D and
D is the same. Therefore, r corresponds to the run of π on
D as well, such that r /∈ Safe(Q). That is to say, π is a bad
prefix of ϕ.

Consider an agent strategy σag and an environment strat-
egy σenv such that σenv � ϕe, and let π = play(σag, σenv).
Suppose there exists k ≥ 0, such that i > k, Yi = stop,
πk |= ϕa

task and no prefix πh, with, h < k, is a bad pre-
fix of ϕa

safe. Thus, as described in above, π is split in two
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parts: prefix πk with non-stop actions that satisfies ϕa
task

while not violating ϕa
safe and the remaining suffix in which

the action stop is executed forever after. Regarding the suf-
fix, the agent wins on this play only if a bad prefix of ϕa

safe
never occurs. The environment, in contrast, aims at obtain-
ing a bad prefix of ϕa

safe, while ultimately satisfying ϕe, that
is π |= ϕe ∧ ¬ϕa

safe.
Observe that the formula ϕe ∧ ¬ϕa

safe mentions variables
both in X ∪ Y , and so its synthesis is as usual a two-player
game between the environment and the agent, controlling X
and Y , respectively. However, in this phase, the agent is
obliged to play the action stop, thus having only one assign-
ment over Y at every iteration. This means that only one
strategy is available to the agent, and the two-player game
problem reduces to model-checking the subgame where only
such strategy is available to the agent. Clearly, this has a sig-
nificant impact on the complexity of the problem, as we need
to solve model-checking instead of synthesis. As a matter of
fact, although dealing with Büchi automata, we are reducing
to their non-emptiness, which does not require their deter-
minization and sidesteps the consequent difficulties.

Consequently, we first restrict both automata
N e = (Σ, Qe, qe0, δ

e,Büchi(T )) and Dbad =
(Σ, Qbad, q0bad, δbad,Reach({qsink})), namely, N e

|stop =
(Σ, Qe, qe0, δ

e
|stop,Büchi(T )) and Dbad|stop = (Σ, Qbad, q0,

δbad|stop,Reach({qsink})), in a way that they reject when-
ever a non-stop action is performed by the agent. This is
obtained by removing from them all transitions of the form
(q, a, d) where a 2 ¬stop.

We then compute their product NA defined as N ′ =
(Σ, Q′, q′0, δ

′,Büchi(T ′)) where

• q′0 = (qe0, q0bad);

• (d, d̂) ∈ δ′((q, q̂), a) if d ∈ δe|stop(q, a) and d̂ =
δbad|stop(q̂, a);

• (q, qsink) ∈ T ′ if q ∈ T .

The following lemma holds.

Lemma 2. Consider NA N = (Σ, Q, q0, δ,Büchi(T )), DA
Dbad = (Σ, Qbad, q0bad, δbad,Reach({qsink})), and the
product NA N ′ constructed as above. Then, it holds that
L(N ′) ⊆ L(N ) ∪ L(Dbad).

Proof. Consider a π ∈ L(N ′) and let r′ = (r, rbad) =
(qe0, q0bad), (qe1, q1bad), . . . be an accepting run in N ′, with
r = qe0, q

e
1, . . ., and rbad = q0bad, q1bad, . . . be the first and

second projections of r′, respectively. Note that r and rbad
are runs of π over N and Dbad, respectively.

Therefore, from r′ being accepting in N ′, it holds that
inf(r) ∩ T 6= ∅ and so that π ∈ L(N ). In addition, it holds
that qsink occurs at least once in rbad. From the definition
of Dbad it follows that qsink holds indefinitely over rbad and
therefore it is accepting in Dbad, from which we conclude
that π ∈ L(Dbad).

Clearly, the automatonN ′ accepts all and only those plays
π that satisfy ϕe ∧ ¬ϕa

safe while the agent only plays stop.
By employing the nonemptiness checking over N ′ we then
compute the set Qacc ⊆ Q′ of accepting states. We denote

by Nstop = {q̂ ∈ Qbad | ∃q, (q, q̂) ∈ Qacc} the set of states
in Dbad that are part of some accepting state in N ′.

The set of “Non-stop” states essentially tells that if a
play π enters phase II through them, then π is an environ-
ment winning play, regardless of the agent accomplishing
the ϕa

task in phase I. Therefore, it is important for the agent to
avoid “Non-stop” states when accomplishing ϕa

task while not
violating ϕa

safe, which can be considered as a reachability-
safety condition.

Stage (iii): Compute the DA for the agent goal. We start
with constructing a DA that only encodes accomplishing
ϕa
task while not violating ϕa

safe until then, which intuitively
corresponds to the reachability-safety condition defined in
Section 2. On the one hand, the language of ϕa

task can
be recognized by a DA Da

t = (Σ, Qa
t , q0

a
t , δ

a
t ,Reach(R))

with a reachability condition that accepts all and only
the executions with a finite prefix satisfying ϕa

task. On
the other hand, the language of ϕa

safe can be recognized
by a DA Da

s = (Σ, Qa
s ∪ {qsink}, q0

a
s , δ

a
s , Safe(Qa

s))
with a safety condition. Therefore, we can take the
bounded intersection of these automata, thus obtaining
Da

t,s = (Σ, Qa
t,s, q0

a
t,s, δ

a
t,s,Reach–Safe(Ra

t,s, S
a
t,s)) with a

reachability-safety condition.
Then, the language of such intersection is given by those

infinite plays π for which there exists k ≥ 0 such that πk |=
ϕa
task, and all prefixes of πk are not bad prefixes of ϕa

safe.
Next, we show that such automaton can be equivalently

turned into an DA with a pure reachability condition.

Reachability-Safety to Reachability. Consider a DA
D = (Σ, Q, q0, δ,Reach–Safe(R,S)) with a reachability-
safety condition. We describe a reduction to a D′ =
(Σ, Q, q0, δ

′,Reach(T )) with a pure reachability condition
such that L(D′) = L(D). The new automaton has the same
set of states but a different transition relation, which is de-
fined as follows:

δ′(q, a) =

{
δ(q, a) if q ∈ S
q if q 6∈ S.

Intuitively, the only change we make is to turn all non-safe
states (states not in S) into sink states. We then define the
reachability condition as T = R∩S. Intuitively, we want to
reach a goal state (a state in R) that is also safe (i.e., it is in
S). The two automata are indeed equivalent.

Lemma 3. Let D and D′ be as above, then L(D) = L(D′).

Proof. Consider an infinite trace π ∈ Σω and the corre-
sponding runs r and r′ in D and D′, respectively. Two cases
are possible. If r is fully contained in S, then by the defi-
nition of D and D′, it holds that r = r′ and so clearly π is
accepted by D if and only if it is accepted by D. The other
case is that r is not fully contained in S and let k + 1 be the
minimum index for which rk+1 /∈ S. Note that π then is ac-
cepted by D iff there is h ≤ k such that rh ∈ T . Moreover,
again by the definition of D′, it holds that the prefix rk up to
k of r equals the prefix r′k up to k. In particular, if a state
rh ∈ R∩S is reached in rk, then the same state is reached in
r′k ∈ R∩S = T , and therefore iff π is accepted by D′.
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By applying Lemma 3 to Da
t,s, we can turn it into a

DA Dag = (Σ, Qa
t,s, q0

a
t,s, δag,Reach(Tag)) with a simple

reachability condition that accepts those traces π for which
there exists a prefix πk that satisfies ϕa

task while not violating
ϕa
safe up to k. In order to keep ϕa

safe hold even after accom-
plishing ϕa

task, the agent needs to make sure that the second
phase of the execution, i.e., the one starting with the action
stop executed forever after. In other words, following the
discussion earlier, the agent should avoid landing in those
accepting states in Dag that do not ensure ϕa

safe when exe-
cuting the action stop forever. As noted above, this piece
of information is carried in the set Nstop precomputed as the
emptiness of N ′.

We defineD′ag = (Σ, Qa
t,s, q0

a
t,s, δ

′
ag,Reach(T ′ag)), where

T ′ag = {(q, q̂) | (q, q̂) ∈ Tag and q̂ /∈ Nstop}.
Lemma 4. Let D′ag = (Σ, Qa

t,s, q0
a
t,s, δag,Reach(T ′ag)) be

as above. Then π ∈ L(D′ag) iff there exists k such that πk |=
ϕa
task and for all f ∈ (2Σ)ω , where f [i] |= stop, ∀i ≥ 0,

πk · f |= (ϕe → ϕa
safe).

Proof. The proof proceeds by double implication. First as-
sume that π ∈ L(D′ag) and let r be its accepting run. From
the acceptance condition of the automaton, this holds if and
only if there exists k ∈ N such that rk = (q, q̂) ∈ T ′ag,
which in turns holds iff (q, q̂) ∈ Tag and q̂ /∈ Nstop. Now,
following the definition of Dag this holds if and only if q is
an accepting state for Da

t and Da
s , respectively. This means,

on the one hand, that πk |= ϕa
task and, on the other hand,

that πk does not contain bad prefixes for ϕa
safe. Moreover,

from the fact that q̂ /∈ Nstop it follows that any sequence
f ∈ Σω with f [i] |= stop is such that f ∈ L(N ′) and so
that f |= (ϕe → ϕa

safe). By combining this with the fact that
πk does not contain bad prefixes for ϕa

safe, it easily follows
that πk · f |= (ϕe → ϕa

safe). This concludes the proof, as all
the steps presented hold in double implication.

Stage (iv): Solve the synthesis for Goal under ϕe. Fol-
lowing the stages detailed in Section 3, we now construct
the product automaton D between D′es and D′ag. Solving the
reachability game for the agent over D returns us an agent
winning strategy if one exists.

Theorem 8. The problem of realizing P =
〈X ,Y, ϕe, Goal〉, with Goal = 〈ϕa

task, ϕ
a
safe〉 can be

reduced to solving the reachability game in D′es ∩ D′ag.

Proof. First, note that from Theorem 4, the problem of
realizing P is equivalent to the one of realizing P̂ =
〈X ,Y, ϕe

safe, Goal〉, with ϕe = ϕe
safe ∧ ϕe

live. Therefore, we
can focus on the latter instead.

Now, consider a strategy σ̂ag that is winning inD′es∩D′ag.
Moreover, let σenv be an environment strategy such that
σenv � ϕe

safe and π = play(σ̂ag, σenv). Being σenv satisfy-
ing the environment specification and σ̂ag winning, it holds
that π ∈ L(D′es ∩ D′ag) and so its run r(π) is such that
r(π)k ∈ T ′ag for some k ∈ N. Observe that, from Lemma 4,
it holds that πk |= ϕa

task and πk · f |= (ϕe → ϕa
task). There-

fore, we need to adjust σ̂ag in a way that it produces plays of

that form. This can be done by considering the strategy σag
defined as

σag(x) =

{
stop, if r(x ∪ σ̂ag(x)) is accepting in D′ag
σ̂ag(x), otherwise.

Intuitively, σag imitates σ̂ag until it wins the reachability
game in D′ag and then switches to executing stop forever.
Then, we have that σag realizes P̂ and so does with P .

Referring to the agent safety goal, one might question
whether it is natural to always interpret it on infinite traces,
due to the fact that the task specified in LTLf is achieved in
a finite number of steps. In fact, our solution is also able to
manage the case where only ensuring the safety goal until
task is accomplished. In that case, there is no “Non-stop”
states for the agent, we can just skip Stage (ii) and proceed
with Stage (iii), considering the set of “Non-stop” states as
empty.

Computational properties. We study the computational
properties of the synthesis technique presented in this sec-
tion. We first consider the overall complexity, as stated by
the following theorem.
Theorem 9. The above algorithm solves synthesis with
mandatory stop actions problemP = (X ,Y, ϕe, Goal) with
safety goals in 2EXPTIME (the problem is indeed 2EXPTIME-
complete).

We now analyze the operations required in our synthesis
technique in detail. As stated in Section 4, reducing ϕe to
only considering the safety part ϕe

safe allows us to perform
standard subset construction and minimization instead of
Büchi automata determinization to obtain DADe

s . Moreover,
reducing non-violation of ϕa

safe after ϕa
task to non-emptiness

checking on nondeterministic Büchi automata brings us an
exponential advantage, which allows us, again sidestep the
Büchi automata determinization. Later in Stage (iii), being
a safety formula, the DA Da

s can be obtained by using the
subset construction and minimization to maximally shrink
the state space. At the end, we only need to solve an adver-
sarial reachability game instead of a parity game. We thus
believe that our technique is intrinsically simpler and easier
to implement than standard LTL synthesis.

7 Conclusion
In this paper we have studied mandatory stop actions in
agent strategies. We have seen this has a deep impact on the
efficiency of solving the synthesis under LTL environment
specifications, since the liveness part of the LTL environment
specifications becomes irrelevant, and hence we can adopt a
synthesis technique based on finite-state automata manipula-
tion as in LTLf synthesis. We have also studied adding safety
goals for the agent. Safety goals must hold forever. Hence,
before stopping, the agent must ensure her safety goal will
be maintained anyway. While we have studied synthesis in
this case under the requirement of mandatory stop actions, it
is of interest to study these kinds of goals independently of
such a requirement. Possibly the insight gained here can be
of help also when lifting such a requirement.
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