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Abstract

Arithmetic circuits (AC) are circuits over the real numbers
with 0/1-valued input variables whose gates compute the
sum or the product of their inputs. Positive AC – that is,
AC representing non-negative functions – subsume many in-
teresting probabilistic models such as probabilistic sentential
decision diagram (PSDD) or sum-product network (SPN) on
indicator variables. Efficient algorithms for many operations
useful in probabilistic reasoning on these models critically
depend on imposing structural restrictions to the underly-
ing AC. Generally, adding structural restrictions yields new
tractable operations but increases the size of the AC. In this
paper we study the relative succinctness of classes of AC with
different combinations of common restrictions. Building on
existing results for Boolean circuits, we derive an uncondi-
tional succinctness map for classes of monotone AC – that is,
AC whose constant labels are non-negative reals – respecting
relevant combinations of the restrictions we consider. We ex-
tend a small part of the map to classes of positive AC. Those
are known to generally be exponentially more succinct than
their monotone counterparts, but we observe here that for so-
called deterministic circuits there is no difference between
the monotone and the positive setting which allows us to lift
some of our results. We end the paper with some insights on
the relative succinctness of positive AC by showing exponen-
tial lower bounds on the representations of certain functions
in positive AC respecting structured decomposability.

1 Introduction
Arithmetic circuits (AC) are a circuit model for represent-
ing polynomials by giving the order in which their inputs
have to be combined by sums and multiplications. Thus,
AC are not only very natural representations for real-valued
polynomials, but also give programs for computing them;
this can e.g. be traced back to (Valiant 1980) who called
them (+,×)-programs. Today AC play an important role
in artificial intelligence because they encompass several
classes of circuits with practical applications in probabilis-
tic reasoning, for instance probabilistic sentential decision
diagrams (PSDD) (Kisa et al. 2014) or sum product net-
works (SPN) with indicator variables (Poon and Domingos
2011). AC are also strongly related to concepts such as
AND/OR-circuits (Dechter and Mateescu 2007) and Cutset
Networks (Rahman, Kothalkar, and Gogate 2014). When
used in probabilistic reasoning, AC always represent non-

negative functions and are therefore called (somewhat mis-
leadingly perhaps) positive AC. Positive AC constitute a sub-
class of what in the probabilistic graphical models com-
munity is called probabilistic circuits (Choi, Vergari, and
Van den Broeck 2020). In the literature, positivity is is of-
ten syntactically enforced by assuming that all constants in
the computation are non-negative, see e.g. (Darwiche 2003;
Poon and Domingos 2011), in which case the AC are called
monotone. Essentially, compared to their monotone coun-
terparts, positive AC encode programs which allow subtrac-
tion as an additional operation. This has no impact on the
tractability of most operations performed on the AC (Dennis
2016) and it is known already since (Valiant 1980) that it can
decrease the size of AC exponentially.

While research on arithmetic circuits in complexity theory
focuses almost exclusively on trying to show lower bounds
on the size of AC representing notoriously challenging poly-
nomials like the permanent, see e.g. (Jerrum and Snir 1982;
Shpilka and Yehudayoff 2010; Raz 2009), the goals pur-
sued in artificial intelligence are often different: on the
one hand, algorithms for generating AC from other mod-
els like Bayesian networks (Chavira and Darwiche 2008;
Choi, Kisa, and Darwiche 2013; Kisa et al. 2014), or by
learning from data (Lowd and Domingos 2008; Rooshenas
and Lowd 2016), are a major focus. On the other hand, it
is studied how imposing constraints on the structure of AC
can render operations like computation of marginals or of
maximum a posteriori hypotheses (MAP) or more complex
queries tractable on them (Huang, Chavira, and Darwiche
2006; Vergari et al. 2021; Khosravi et al. 2019). In this latter
line of work, the earliest and most well-studied properties
are decomposability (also called syntactic multilinearity),
smoothness (also called completeness), and determinism.
There is an ongoing effort to find new properties: on the one
hand, more restrictive properties to allow new operations,
for example structured decomposability (Kisa et al. 2014;
Dang, Vergari, and Van den Broeck 2020), on the other
hand, more general properties that are sufficient to ensure
tractability of important operations. For instance weak de-
composability (also called consistency) is a relaxation of de-
composability which, if combined with smoothness, allows
efficient marginals computation (Peharz et al. 2015).

While the analysis of more restrictive properties is driven
by the prospect of AC to support more operations efficiently
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and therefore be more useful in practice, the quest for more
generic properties is motivated by the succinctness of result-
ing AC: while generally all classes of AC commonly consid-
ered can represent all functions, more general classes should
intuitively allow smaller representations.

The trade-off between usefulness and succinctness has
also been observed for Boolean circuits in negation nor-
mal form (NNF) and attracted a lot of attention there (Dar-
wiche and Marquis 2002; Pipatsrisawat and Darwiche 2008;
Bova et al. 2016; Amarilli et al. 2020). Indeed, all struc-
tural restrictions on AC mentioned above are also defined
for NNF, and classes of NNF respecting combinations of
restrictions have been studied almost exhaustively. In par-
ticular, for NNF, succinctness maps have been drawn that
intuitively describe the relative succinctness for the classes
of NNF one gets by applying different combinations of re-
strictions. When it comes to AC, research on lower bounds
in complexity theory focused on classes with properties
such as bounded-depth, tree-like structure, or multilinear-
ity (Grigoriev and Karpinski 1998; Raz 2009; Raz 2010;
Shpilka and Yehudayoff 2010) that have deep implications
in theory but are not particularly desirable in practice – with
the exception of syntactic multilinearity which is in fact de-
composability. In comparison to Boolean circuits, the suc-
cinctness analysis for classes of arithmetic circuits of prac-
tical interest is fairly young and far from complete (Martens
and Medabalimi 2014; Choi and Darwiche 2017).

In this paper we initiate a systematic succinctness map
for AC modeled after that proposed in (Darwiche and Mar-
quis 2002) for NNF. We focus on classes of AC with 0/1-
variables that respect decomposability or weak decompos-
ability and possibly determinism and/or smoothness. Most
of our results deal with classes of monotone AC and are ob-
tained by lifting results from the existing succinctness map
for NNF. To this end, we observe that understanding the
succinctness relations between different classes of mono-
tone AC reduces to understanding that between classes of
NNF with analogous restrictions. However, several classes
of NNF obtained with the reduction, namely those respect-
ing weak decomposability, have only recently been intro-
duced for NNF (Akshay et al. 2019) and thus their position
in the maps has not been studied. To analyze monotone AC,
we thus prove the missing succinctness relations for these
classes. From the map for NNF and the lifting technique, we
obtain the complete map linking the eight classes of mono-
tone AC one gets combining the different restrictions. In a
modest contribution to the understanding of positive AC, we
show that under particular restrictions, all including deter-
minism, the expressive power of classes of positive AC co-
incide with that of their monotone counterparts. Thus some
succinctness relations in the monotone map easily extend to
the positive map. However, for positive AC, several relations
between classes remain open.

Finally, in an effort to motivate further research on the
succinctness relations left to prove, we describe a technique
to show lower bounds on the size of positive AC. We ap-
ply it to prove lower bounds for positive AC with structured
decomposability, which is the case for e.g. PSDD (Kisa et
al. 2014). We stress that all separations between classes that

we prove are unconditional (so no “unless P = NP” or similar
assumptions) and exponential.

2 Preliminaries
2.1 AC and NNF
An arithmetic circuit (short AC) is defined to be a directed
acyclic graph with a single source whose sinks are each
labeled with a real number, a 0/1-variable, or by comple-
mented variables x, and whose internal nodes each have two
successors and are labeled by + or ×. A Boolean circuit
in negation normal form (short NNF) is defined completely
analogously to an AC, but the internal nodes are labeled with
∨ and ∧ and the only constants that can appear as sink-labels
are 0 and 1. The following definitions are the same for AC
and NNF, so we do not differentiate the two settings here.

The sinks of a circuit C are called its inputs. We say that
variable x appears with negative (resp. positive) polarity in
C if x (resp. x) labels a sink of C. If g is an internal node
then we denote by gl and gr its left and right successors. We
define the size |C| of the circuit as the number of nodes in
the underlying graph, which, since the operations are binary,
is at most twice the number of edges.

Let X be the variables appearing in C. An assignment
a to X is a mapping from X to {0, 1}. The weight of a,
denoted by w(a), is the number of variables it maps to 1.
A partial assignment is defined as an assignment to a sub-
set Y ⊆ X . In the particular case when Y = ∅, we have
the unique empty assignment denoted a∅. Given a partial
assignment a′, the circuit obtained by conditioning C on
a′, denoted by C|a′, is obtained by replacing in C for all
y ∈ Y all inputs labeled y by a′(y) and all inputs labeled y
by 1− a′(y). Given two assignments a and a′ to X and X ′
such that a and a′ are consistent on X ∩ X ′, we let a ∪ a′
denote the assignment to X ∪ X ′ whose restrictions to X
and X ′ are a and a′, respectively. For convenience, a literal
`x ∈ {x, x} will sometimes be seen as an assignment of x
to the value satisfying the literal, so we may write C|`x or
a ∪ `x.

Given an assignment a to X , C computes a value C(a)
on a in the obvious way by first conditioning C on a and
computing in a bottom-up fashion in C|a the results of the
internal nodes by computing the result of the operation they
are labeled with for the values computed by their successors.
C(a) is the value computed by the source node. The func-
tion f : X → R, resp. f : X → {0, 1}, computed by C
is defined as the function defined by f(a) = C(a) for all
assignments a.

For an NNF or AC C over variables X and a node g in C,
let var(g) denote the subset ofX such that x ∈ var(g) if and
only if x or x labels a sink reachable from g. Note that if g
is a sink labeled with x or x then var(g) = {x} and that if
g is labeled with a constant then var(g) = ∅. By extension
var(C), sometimes called the scope of C, denotes the set
var(s) where s is the source of C.

The set of assignments to var(C) for which an AC C
computes a non-zero value is called the support of C de-
noted by supp(C). For an NNF, these assignments are called
models, or satisfying assignments, and we use the more
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common notation sat(C) for that case instead of supp(C).
For a node g in C we let Cg be the sub-circuit of C con-
sisting of nodes reachable from g. We write supp(g) for
supp(Cg). Note that when g is an input labeled with a lit-
eral `x, supp(g) = {`x} and that for constant inputs there is
supp(0) = ∅ and supp(α) = {a∅} for any constant α 6= 0.

2.2 Subclasses of AC and NNF
In applications, in particular probabilistic reasoning, the
possible outputs of AC are restricted to be non-negative.
Thus we define positive AC to be the AC that compute non-
negative functions, i.e., for all assignments a of its inputs, a
positive AC must return a value greater or equal to 0. We
denote the class of all positive AC by ACp. A proper sub-
class of ACp is that of monotone AC, denoted ACm, which
are the AC whose constant inputs are all non-negative.

The classes studied in this paper correspond to circuits
whose nodes enforce one or more of the properties defined
below: smoothness (or completeness), determinism, decom-
posability and weak decomposability.
Definition 1. An internal node g in a circuit C is called
smooth when var(gl) = var(gr) holds.

An AC is called smooth (or complete) when all its +-
nodes are smooth. We denote by s-AC the class of smooth
AC.
Definition 2. An internal node g in a circuit C is called
deterministic when there is no assignment a such that al ∈
supp(gl) and ar ∈ supp(gr), where al and ar are the re-
strictions of a to var(gl) and var(gr), respectively.

An AC is called deterministic when all its +-nodes are
deterministic. We denote by d-AC the class of deterministic
AC.
Definition 3. An internal node g in a circuit C is called
decomposable when var(gl) ∩ var(gr) = ∅ holds.

An AC is called decomposable when all its ×-nodes are
decomposable. We denote by D-AC the class of decompos-
able AC.

We remark that in the complexity theory literature decom-
posable AC are often called syntactically multilinear AC.
Definition 4. An internal node g in a circuit C is called
weakly decomposable when, for all x ∈ var(gl) ∩ var(gr),
the variable x appears with a unique polarity under g, i.e.,
either x appears under g or x appears under g, but not both.

An AC is weakly decomposable when all its ×-nodes are
weakly decomposable. We denote by wD-AC the class of
weakly decomposable AC.

Weak decomposability is sometimes referred to as consis-
tency, but we avoid using this term here since for Boolean
circuits it is often used to mean satisfiability.

The classes s-NNF, d-NNF, D-NNF and wD-NNF are
defined analogously as subclasses of NNF by replacing +-
nodes by ∨-nodes, ×-nodes by ∧-nodes. However, we will
use the more common notations DNNF and wDNNF instead
of D-NNF and wD-NNF.

We will consider intersections of the classes just intro-
duced. The names for the intersection classes combine
the prefixes s-, d-, D- and wD- accordingly. For instance

the class of deterministic decomposable NNF is denoted d-
DNNF, that of smooth weakly decomposable AC is denoted
by swD-AC, and so on. Observe that weak decomposability
is a generalisation of decomposability, so the intersection of
D-AC with wD-AC (resp. DNNF with wDNNF) is just D-
AC (resp. DNNF).

Imposing specific combinations of structural restrictions
above often makes operations that are intractable on un-
constrained AC tractable. For instance, when AC are
used in probabilistic reasoning, queries such as the com-
putation of marginals, maximum a posteriori (MAP) or
marginal MAP are tractable for different combinations of
the four aforementioned constraints (Peharz et al. 2015;
Shen, Choi, and Darwiche 2016; Khosravi et al. 2019;
Choi, Vergari, and Van den Broeck 2020; Vergari et al.
2021). It turns out that, for all problems studied so far, in-
teresting combinations all include either decomposability or
weak decomposability. So, the classes studied in this paper
are summarized as followed:

{∅, s}{∅, d}{D, wD}-{ACm,ACp,NNF}.

which is interpreted as: the subclasses of positive AC,
monotone AC and NNF ({ACm,ACp,NNF}) that imple-
ment decomposability or weak decomposability ({D, wD}),
and possibly smoothness ({∅, s}) , and possibly determinism
({∅, d}). So eight classes of NNF and sixteen classes of AC.

Let X be a finite set of {0, 1} valued variables, every
function f : X → R+ has a representation in all these
classes of ACm and ACp. To see this, one can just write
f as f(X) =

∑
a∈supp(f) f(a)1a(X), where 1a(X) is the

function returning 1 on assignment a and 0 otherwise. The
terms f(a)1a(X) are easily encoded in positive AC with
only decomposable ×-nodes, then building a positive AC
computing f and implementing smoothness, determinism
and decomposability upon those terms AC is straightfor-
ward. Analogously, every Boolean functions onX has a rep-
resentation in all eight classes of NNF studied. However, in
both cases there are often more compact circuits than those
just described.

2.3 Succinctness
As just discussed, to compare the different classes of cir-
cuits considered here, expressivity is not an issue since all
classes are fully expressive in the sense that they can rep-
resent all functions. However, as we will see, the size of
representations in different classes may differ greatly. Since
the classes allow polynomial time algorithms for different
problems, it is meaningful to compare the minimum size of
a circuit computing the same function in different classes.
This naturally leads to the introduction of succinctness as a
means to compare the classes. For a class C, the size of the
minimum circuit computing f in C is called the C-size of f .
Definition 5. For two classes of circuits C1 and C2, we say
that C1 is at least as succinct as C2, written C1 ≤ C2, if there
is a polynomial p such that for all C2 ∈ C2, there exists
C1 ∈ C1 computing the same function with |C2| ≤ p(|C1|).

Equivalently, C1 ≤ C2 if, for all functions f , the C2-size
is polynomially bounded by the C1-size. We write C1 < C2
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when C1 ≤ C2 but C2 � C1, and C1 ' C2 when both C1 ≤ C2
and C2 ≤ C1 hold; in this case we say that C1 and C2 are
equally succinct. Succinctness is a transitive relation.

2.4 Term Subcircuits
For a (w)D-AC (resp. a (w)DNNF) C on variables X , we
define term subcircuits of C iteratively. Starting from the
source, whenever a ×-node (resp. ∧-node) is encountered,
its two successors are added to the subcircuit, and when-
ever a +-node (resp. ∨-node) is encountered, exactly one
arbitrary successor is added to the subcircuit. As indicated
by the name, each term subcircuit encodes a function which
is a single term α × `x1`x2 · · · `xk

where α is a constant
and `xi

∈ {xi, xi}, (xi)i∈[k] ⊆ X . By distributivity, the
sum (resp. the disjunction) of all term subcircuits of C is
equivalent to C. For DNNF, term subcircuits are more of-
ten called certificates or proof trees, but term subcircuits of
wDNNF are generally not shaped like trees. The following
easy lemma is shown in the appendix.
Lemma 1. Let C be a (weakly) decomposable AC
(resp. NNF) then:
• if C is smooth, all variables appear in all term subcircuits
• if C is deterministic, then any two distinct term subcir-

cuits T and T ′ verify T × T ′ = 0 (resp. T ∧ T ′ ≡ 0).

3 Succinctness Map for Monotone AC
3.1 From Monotone AC to NNF
One attractive approach towards understanding the succinct-
ness relations between classes of AC is lifting the corre-
sponding map for classes of NNF to classes of AC. This is
because the map for NNF is quite substantial and well un-
derstood by now, so building the map for AC upon it would
save us the trouble of many proofs. Here we will show that
we can apply this approach for classes of monotone AC. The
idea is that separating the classes of Boolean functions cor-
responding to the support of monotone AC is enough to sep-
arate these classes of AC.

Given a monotone AC C, we define a Boolean circuit
φ(C) that has the same underlying graph as C and is ob-
tained by just modifying the labels on the nodes of C. Sinks
labeled by x or x or the constant 0 are unchanged, but
sinks labeled by constants different from zero are now la-
beled by the constant 1. For internal nodes, all ×-nodes be-
come ∧-nodes and all +-nodes become ∨-nodes. Clearly
var(C) = var(φ(C)) and, since C and φ(C) have the same
graph, we have |C| = |φ(C)|. The following lemmas are
easy to derive. Proofs are deferred to the appendix.
Lemma 2. When C is a monotone AC, φ(C) is an NNF
whose models are supp(C). Moreover if C is (weakly) de-
composable, deterministic, or smooth, then φ(C) is as well.
Lemma 3. For every NNF D, there exists an AC C of size
|D| whose support are the models of D. Moreover if D is
(weakly) decomposable, deterministic, or smooth, then so
is C.

For a class C of AC, we define the class of NNF φ(C) :=
{φ(C) | C ∈ C}. Lemma 2 and Lemma 3 directly yield the
following:

wD-ACm D-ACm

dwD-ACm dD-ACm

swD-ACm

sdwD-ACm sdD-ACm

sD-ACm

Figure 1: Succinctness map for monotone AC. An arrow C1 → C2

means that C1 < C2. A double line C1 ‖ C2 means that C1 ' C2.
The absence of connector between two classes C1 and C2 means
either that the succinctness relation is derived from transitivity or
that the two classes are incomparable, i.e., C1 � C2 and C2 � C1.

Proposition 1. Let γ be any combination of properties from
{s,d,D,wD}, then φ(γ-ACm) = γ-NNF.

For instance φ(ACm) = NNF, φ(D-ACm) = DNNF,
φ(dD-ACm) = d-DNNF, etc. Moreover, since the circuit
size is preserved by φ, the following holds:

Proposition 2. Let C1 and C2 be classes of monotone AC,
then C1 ≤ C2 if and only if φ(C1) ≤ φ(C2).

Since it is known already that s-DNNF ' DNNF <
d-DNNF ' sd-DNNF (Darwiche and Marquis 2002), it fol-
lows that sD-ACm ' D-ACm < dD-ACm ' sdD-ACm,
and these relations are unconditional (so no “unless P =
NP” or other complexity theoretic assumptions are needed).
Weak decomposability has not been studied as widely as
decomposability for NNF, so we here draw the map with
the additional classes wDNNF, s-wDNNF, d-wDNNF and
sd-wDNNF. Then, using Proposition 2, we will obtain the
succinctness map for monotone AC shown in Figure 1.

Theorem 1. The results of Figure 1 hold.

Section 3.3 is dedicated to the proof of Theorem 1. But
first we will show a useful auxiliary result.

3.2 Smoothing Restricted wDNNF
It was shown by Peharz et al. (2015) that transforming gen-
eral wD-ACm into swD-ACm leads to an unavoidable ex-
ponential blow-up. By Proposition 2, the same is true for
wDNNF and s-wDNNF. Here we show that this is not the
case when all term subcircuits have the same variables.

Proposition 3. Let D be a wDNNF over n variables such
that for any two term subcircuits T and T ′, var(T ) =
var(T ′) holds. Then there is a smooth wDNNF D∗ equiv-
alent to D of size |D∗| = O(n|D|). Furthermore, if D is
deterministic, then so is D∗.

Proposition 3 will be used in the next section to prove
the succinctness map for NNF. Before we prove it, we give
some more definitions.

Definition 6. Let `x ∈ {x, x}. An (∧`x)-link is a ∧-node
whose successors include a leaf labeled by `x. Let g be
a node and let p be a predecessor of g, then inserting an
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(∧`x)-link between g and p means replacing the connection

g

p
by

g
∧

p

`x

.

We call the intermediate ∧-node in the construction above
the link node. A succession of link nodes is a chain of links.
We remark that links have already been used by Peharz et
al. (2015) to analyze the impact of smoothness on wD-ACm,
but we use them here in a different way.

For a term subcircuit T containing a node g, let Tg de-
note the sub-circuit of T under g, and let Tg be the sub-
circuit of T corresponding to all nodes accessible from the
source without passing through g. Observe that because of
weak decomposability, some nodes accessible from g may
be reached by paths in T not passing through g, so Tg and
Tg are not necessarily disjoint.

Proof (of Proposition 3). Let g be an ∨-node such that
var(gl) 6= var(gr). Let x ∈ var(gl) and x 6∈ var(gr). There
exists an ∧-node that is an ancestor of g in D, otherwise not
all term subcircuits ofD would have the same variables. So,
for all term subcircuits T ofD containing g, Tg is not empty.
Moreover x must be contained in var(Tg) for otherwise we
can construct a term subcircuit that does not contain x by
extending Tg to a term subcircuit choosing gr as the child
of g.

We claim that x appears with unique polarity under gl. To
see this, assume first that x appears positively in Tg . Now
if x appeared below gl as the label of a node g∗. Then, we
could extend Tg to a term subcircuit T ∗ containing g∗ and
thus the variable x. But then T ∗ would contain both x and
x which is impossible because C is weakly decomposable.
If x appears negatively in Tg , we reason analogously. So
in any case, x appears with unique polarity under gl; we
assume in the remainder that it appears positively, the other
case is completely analogous.

Analogously to above, one sees that for all term subcir-
cuits T ′ containing g, we have that T ′g contains x. So, for
all T ′ passing through g, we have T ≡ T ∧ x. Now insert
an (∧x)-link between g and gr and let D′ be the resulting
wDNNF. We write (g, gr) ∈ T when the wire from g to
gr is in the term subcircuit T of D. There is a bijection ϕ
between the term subcircuits of D and those of D′: for a
term subcircuit T of D, set ϕ(T ) = T if (g, gr) 6∈ T , and
let ϕ(T ) be the term subcircuit of D′ we get from T by in-
serting the (∧x)-link between g and gr otherwise. Clearly,
when (g, gr) ∈ T , then ϕ(T ) ≡ T ∧ x, and we have already
seen that T ∧ x ≡ T in that case. So

D′ ≡
∨

T :(g,gr)∈T

ϕ(T ) ∨
∨

T :(g,gr)6∈T

ϕ(T )

≡
∨

T :(g,gr)∈T

T ∨
∨

T :(g,gr)6∈T

T ≡ D

Observe that var(g) is identical in D and D′ since x was
already in var(gl) in D. Observe also that the ∧-link node
is decomposable. So D′ is a wDNNF. Now in D′ the vari-
able x appears under both successors of g. We repeat that
process until the successors of g have the same set of vari-
ables, so until g is smooth. Doing this for all non-smooth

wDNNF DNNF

d-wDNNF d-DNNF

s-wDNNF

sd-wDNNF sd-DNNF

s-DNNF

Figure 2: Succinctness map for different subclasses of NNF.

∨-nodes yields a wDNNF D∗ that is smooth. The construc-
tion only adds chains of links between nodes that were orig-
inally in D, and since there are n variables, at most n links
are inserted between any two connected nodes of D, hence
|D∗| = O(n|D|).

Finally we argue that if D is deterministic, then so is D∗.
We just need to prove this for D′, i.e., one single addition
of an (∧x)-node. Assume that g is deterministic in D. Let
g′r be the ∧-node inserted between g and gr in D′. The suc-
cessors of g′r are x and gr. Assume there is an assignment a′
to var(g) whose restrictions a′l and a′r to var(gl) and var(g′r)
are in sat(gl) and sat(g′r) respectively. Then a′r satisfies gr
so g is not deterministic in D. This is a contradiction, so g
remains deterministic in D′ and D′ is deterministic.

3.3 Proof of Theorem 1
By Proposition 2, Theorem 1 is equivalent to proving the
correctness of the corresponding map for subclasses of
wDNNF that for the convenience of the reader is given in
Figure 2. So we will exclusively work on that map here and
Theorem 1 follows directly.

It was shown by Darwiche and Marquis (2002) that
s-DNNF and DNNF are equally succinct, and that sd-DNNF
and d-DNNF are equally succinct, the paper also contains
the statement DNNF < d-DNNF conditioned on standard
complexity theoretic assumptions. The result was made un-
conditional in (Bova et al. 2016). So we already have the
right face of the cube-like succinctness map of Figure 2.

Lemma 4. wDNNF < DNNF.

Proof. Since DNNF ⊆ wDNNF there only is DNNF �
wDNNF to prove. It is readily verified that monotone NNF,
that is, NNF with non-negative literal inputs, are wDNNF.
In (Bova et al. 2014), see also (Capelli 2016), the separation
DNNF � CNF is shown finding an infinite class of mono-
tone 2-CNF that have polynomial size but whose equiva-
lent DNNF all have exponential size. Monotone CNF are
wDNNF so this proves DNNF � wDNNF.

Peharz et al. (2015) give an algorithm to transform any
smooth weakly decomposable monotone AC into an equiv-
alent smooth decomposable monotone AC in polynomial
time1. Careful examination of the algorithm shows that it

1Peharz et al. work on sum product networks (SPN) with in-
dicator variables inputs. Their SPN differ from our monotone AC
in that the non-negative constants are not inputs of the circuit but
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can be adapted to turn any s-wDNNF into an equivalent
s-DNNF in polynomial time (the existence of the transfor-
mation actually derives from Lemmas 2 and 3). Examining
the algorithm even further, one sees that it preserves deter-
minism, so the adapted variant for NNF also gives a polyno-
mial time transformation from sd-wDNNF to sd-DNNF.

Lemma 5. s-wDNNF ' s-DNNF and sd-wDNNF '
sd-DNNF. But wDNNF < s-wDNNF.

Proof sketch. The proof that s-DNNF ≤ s-wDNNF and
sd-DNNF ≤ sd-wDNNF is an adaptation of the techniques
in (Peharz et al. 2015) to the case of Boolean circuits. The
reverse succinctness relations holds since decomposability
is a particular kind of weak decomposability.

As for wDNNF < s-wDNNF, wDNNF ≤ s-wDNNF
comes from s-wDNNF being a subclass of wDNNF, and
s-wDNNF � wDNNF holds for otherwise DNNF �
wDNNF would be violated by transitivity.

Lemma 6. d-wDNNF � DNNF.

Proof. Consider the class F of functions introduced by
Sauerhoff (2003) and used in (Bova et al. 2016). All f ∈ F
on n variables have DNNF-size polynomial in n but d-
DNNF-size at least 2Ω(

√
n). For an integer k, let Dk(f)

be the smallest d-DNNF representing f ∧ [w(·) = k], i.e.,
the function whose models are exactly the models of f of
weight k. Since the circuit

∨n
k=0Dk(f) is d-DNNF repre-

senting f , there must be a function κ : F → N such that
|Dκ(f)(f)| = 2Ω(

√
|var(f)|) holds for all f . Define the class

F∗ = {f ∧ [w(·) = κ(f)] | f ∈ F}.
We claim that in any wDNNF representing a satisfiable

function in F∗, all term subcircuits have the same variables.
Consider a wDNNF representing f ∧ [w(·) = k]. Let T be
one of its term subcircuit and assume var(f) \ var(T ) 6= ∅.
Let x ∈ var(f) \ var(T ), T has a model a with x set to 0
and another model a′ identical to a but with x set to 1. But
w(a) 6= w(a′) so a and a′ cannot both satisfy f∧[w(·) = k],
a contradiction. So all term subcircuits contain all variables.

Combining the above and Proposition 3 for F∗, we
get that there is a polynomial relating the d-DNNF- and
d-wDNNF-sizes of functions of F∗. So all functions of
F∗ have exponential d-wDNNF-size. Since DNNF support
polynomial time restriction to models of fixed-weight – see
for instance the proof of (Amarilli et al. 2017, Proposition
4.1) which can easily be adapted to DNNF – the functions
in F∗ also have polynomial DNNF-size. So the class F∗
gives us d-wDNNF � DNNF.

Lemma 7. DNNF � d-wDNNF.

Proof. We consider the class F of monotone 2-CNF used
in (Bova et al. 2014) to prove DNNF � CNF. Let F
be a monotone 2-CNF from F on n variables x1, . . . , xn,
F =

∧m
k=1(xk0 ∨ xk1). The size of F is polynomial in n

while its equivalent DNNF have size exponential in n. Now

weights on the connectors of the +-nodes. Such SPN are con-
verted into our monotone AC in polynomial time by replacing each
weighted edge by a ×-node whose successors include the weight.

consider m fresh variables Z = {z1, . . . , zm} and define
F ′ =

∧m
k=1((¬zk ∧ xk0) ∨ (zk ∧ xk1)). F ′ is a d-wDNNF,

and ∃Z.F ′ ≡ F (F equals F ′ after forgetting variables Z,
see (Darwiche and Marquis 2002) if needed). Since DNNF
support polynomial time variables forgetting (Darwiche and
Marquis 2002), DNNF circuits equivalent to F ′ have expo-
nential size. Thus the class of the circuits {F ′|F ∈ F}
proves the separation DNNF � d-wDNNF.

Lemma 8. wDNNF < d-wDNNF.

Proof. d-wDNNF ⊂ wDNNF implies wDNNF ≤
d-wDNNF. For d-wDNNF � wDNNF observe that oth-
erwise we would have d-wDNNF ' wDNNF, which
would imply d-wDNNF ≤ DNNF, thus contradicting
Lemma 6.

Lemma 9. d-wDNNF < d-DNNF and d-wDNNF <
sd-wDNNF.

Proof. d-DNNF is a subclass of d-wDNNF so d-wDNNF ≤
d-DNNF. And d-DNNF � d-wDNNF holds for otherwise
DNNF � d-wDNNF would be violated by transitivity.

sd-wDNNF is a subclass of d-wDNNF so d-wDNNF ≤
sd-wDNNF. Since sd-wDNNF, sd-DNNF and d-DNNF are
equally succinct, there must be sd-wDNNF � d-wDNNF
otherwise d-DNNF � d-wDNNF would be violated by tran-
sitivity.

This last lemma finishes the proof of Theorem 1.

4 Beginning the Map for Positive AC
In this section, we will start drawing a succinctness map
for positive AC. Recall that positive AC compute non-
negative functions but allow for negative constant inputs or
equivalently subtraction. It is known that adding subtrac-
tion to arithmetic circuits can decrease their size exponen-
tially (Valiant 1980), so ACp < ACm.

Since there is no apparent mapping between positive AC
and a class of Boolean circuits similar to the mapping φ in-
troduced in Section 3.1, we do not obtain a succinctness map
for positive AC in the same way we did for monotone AC.
We here solve some of the relations on the corresponding
map, leaving its completion for future work.

Lemma 10. Let C be a (smooth) (weakly) decompos-
able deterministic positive AC. Switching the signs of
all negative constants in C yields an equivalent (smooth)
(weakly) decomposable deterministic monotone AC. There-
fore the relation d-γ-ACp ' d-γ-ACm holds for any γ ∈
{D,wD,sD,swD}.

Proof. Smoothness and (weak) decomposability are clearly
preserved by the transformation. Recall that no two term
subcircuits of C can compute an non-zero value on the same
assignment, and that the sum of the functions they compute
is that computed by C. So each term subcircuit T com-
putes a positive function, therefore the negative constants
in T must be in even number. But then switching the signs
of negative constants inC does not change the function com-
puted by any term subcircuit. Thus the monotone AC we get
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wD-ACp D-ACp

dwD-ACp dD-ACp

swD-ACp

sdwD-ACp sdD-ACp

sD-ACp

?

?

?

Figure 3: Partial succinctness map for subclasses of positive AC

is equivalent to C and, since its term subcircuits still have
pairwise disjoint support, it is deterministic.

Lemma 11. γ-ACp < d-γ-ACp for any γ ∈
{D,w,sD,swD}.

Proof. Monotone AC are positive AC so γ-ACp ≤ γ-ACm.
Using Lemma 10 and Theorem 1, we get γ-ACp ≤
γ-ACm < d-γ-ACm ' d-γ-ACp and hence the result.

Lemma 12. D-ACp ' sD-ACp ' swD-ACp.

Proof sketch. The algorithm of (Peharz et al. 2015) works
on AC with non-negative constants but remains sound (with
no change) when negative constants are allowed. So smooth
weakly decomposable positive AC can be made smooth
and decomposable in polynomial time, hence sD-ACp ≤
swD-ACp. Since sD-ACp is also a subclass of swD-ACp,
the second succinctness equivalence holds.

D-ACp ' sD-ACp: there only is sD-ACp ≤ D-ACp to
prove. Let C ∈ D-ACp, if g ∈ C is a +-node such that
x ∈ var(gr) and x 6∈ var(gl), then add a ×-node between
gl and g whose successors are gl and +

x x
This does

not impact decomposability. Inserting ×-nodes this way for
each non smooth +-nodes yields a smooth decomposable
AC equivalent to C of size at most O(|var(C)| × |C|).

The above lemmas are summarized in Figure 3. Three
relations, indicated by question marks in the figure are open.
Note that the known relations between classes of positive AC
coincide with the corresponding relations between classes of
monotone AC, which motivates the following question:
Open Question 1. Do all succinctness relations between
classes of monotone AC shown Figure 1 hold for the corre-
sponding classes of positive AC as well?

Note that completing the map for positive AC might be
very hard: in fact, it would in particular require showing
strong lower bounds for D-ACp, a well-known open prob-
lem in complexity theory for which the best current result
is a recent nearly quadratic lower bound (Alon, Kumar, and
Volk 2020). Another question is the relations between the
map of monotone AC and that of positive AC: when impos-
ing determinism, the expressive power of positive AC is ex-
actly that of monotone AC, while for unrestricted circuits it
is known that positive AC are more succinct than monotone
AC (Valiant 1980).

Open Question 2. For which γ ∈ {D,wD,sD,swD} do we
have γ-ACp < γ-ACm?

5 Lower Bounds for Positive AC
5.1 Sum of Decomposable Products
In this section we describe a technique to show lower bounds
on the size of structured-decomposable positive AC. For
NNF, structured decomposability is defined with help of a
v-tree (variable tree) (Pipatsrisawat and Darwiche 2008) but
the definition usually assumes that constant inputs have been
propagated away in the circuit. This is impossible in our
model, so we use the v-tree-free definition from (Vergari et
al. 2021). The definition assumes smoothness for simplicity.
Definition 7. An AC C is called smooth structured-
decomposable when it is smooth and decomposable and, for
all Y ⊆ var(C) there is a partition Y = Y0 ∪ Y1 such that,
the successors of all×-nodes g in C with var(g) = Y verify
var(gl) = Yi and var(gr) = Y1−i for some i ∈ {0, 1}.
Definition 8. Let Z be a set of variables. A decomposable
product over Z is a function from Z to R that can be written
as a product f(X)× h(Y ) where (X,Y ) is a partition of Z
and f and h are functions to R. The decomposable product
is called balanced when |Z|3 ≤ |X|, |Y | ≤

2|Z|
3 .

A common approach to proving lower bounds for de-
composable AC analyzes representations of the function it
computes in terms of sums of balanced decomposable prod-
ucts. Roughly put, the idea is that when more summands are
needed in such a representation, AC for it need to be larger.
This technique has been used in recent and not so recent
articles, see e.g. (Valiant 1980; Raz and Yehudayoff 2011;
Martens and Medabalimi 2014). Translated to Boolean cir-
cuits, decomposable products correspond to combinatorial
rectangles, a tool from communication complexity used in
the context of DNNF (Bova et al. 2016).

Variations of the next theorem have been shown sev-
eral times independently in the literature, see for in-
stance (Martens and Medabalimi 2014, Theorem 38). The
structured case comes from an easy modification of that
proof, the rough idea is that each decomposable product is
built from a different node of the circuit and, thanks to struc-
turedness, all these nodes have the same set of variables,
which eventually yields the same partition for the decom-
posable products.
Theorem 2. Let F be a non-negative function on 0/1-
variables computed by a decomposable smooth AC C .
Then F can be written as a sum of N balanced decompos-
able products over var(F ), with N ≤ |C| in the form2.

F =
N∑
i=1

fi(Xi)× hi(Yi).

IfC is structured, theN partitions (Xi, Yi) are all identical.
2Note that (Martens and Medabalimi 2014, Theorem 38) is

stated with N ≤ |C|2 because the internal nodes in their AC (or
SPN) do not have exactly two successors, as do ours. However,
they reduce to AC with that property and the square comes from
the quadratic size increase in this reduction.
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5.2 Lower Bounds for Structured Decomposable
Positive AC

In this section we prove the following lower bound.
Proposition 4. There is a class of positive functions F such
that, for all F ∈ F , the smallest AC computing F has size
polynomial in |var(F )| but the smallest smooth structured
decomposable AC computing F has size 2Ω(|var(F )|).

By Theorem 2, the smallest N for which one can write F
as F =

∑N
i=1 fi(X) × hi(Y ) where fi(X) × hi(Y ) are

balanced decomposable products for the unique partition
(X,Y ) of var(F ), is a lower bound on the size of all smooth
structured decomposable AC computing F . Thus, proving
Proposition 4 boils down to finding non-negative functions
where the smallest such N depends exponentially on the
number of variables.

Let us fix a function F and a partition (X,Y ). The value
matrix of F with respect to (X,Y ) is a 2|X| × 2|Y | ma-
trix MF whose rows (resp. columns) are uniquely indexed
by assignments to X (resp. Y ) and such that, for each pair
of indices (aX , aY ), the entry of MF at the aX row and aY
column is F (aX ∪ aY ).

Lemma 13. Let F =
∑N
k=1 fk(X)×hk(Y ) where for all k

we have fk×hk 6= 0. LetMF be the value matrix for F and
let Mi denote the the value matrix for fi × hi with respect
to partition (X,Y ). Then

rk(MF ) ≤
N∑
k=1

rk(Mk) = N.

Proof. By construction, MF =
∑N
k=1Mk, so rk(MF ) ≤∑N

k=1 rk(Mk) holds by sub-additivity of the rank. We now
show that rk(Mk) = 1 holds for each k. Since fk×hk 6= 0,
there is a row in Mk which is not a 0-row. Say it is the row
indexed by aX . Then the entries in that row are fk(aX) ×
hk(aY ) for varying aY . In any other rows indexed by a′X ,
the entries are fk(a′X) × hk(aY ) = (fk(a′X)/fk(aX)) ×
fk(aX) × hk(aY ) for varying aY . Consequently, all rows
are multiples of the aX -row, in other words, all rows of Mk

are linearly dependent, hence rk(Mk) = 1.

Using Lemma 13, one sees that proving Proposition 4
boils down to finding functions whose value matrices with
respect to any balanced partition (X,Y ) have rank exponen-
tial in the number of variables.

The functions we construct are based on graphs. Let G =
(V,E) be a graph, denote n = |V | and, for each vertex vi
in V , create a Boolean variable xi. We consider the function

FG(x1, . . . , xn) =
∏

(vi,vj)∈E

(1 + max(xi, xj)) (1)

Essentially, for each edge of G, if at least one of its end-
points is assigned 1 in the assignment, then the edge con-
tributes a factor 2 to the product, otherwise it contributes
a factor 1. Regardless of the choice of G, the function FG
has a small positive AC: one just has to write max(xi, xj) =
xi+xj−xixj and see that the number of× and + operations
needed to compute FG is polynomial in n.

Recall that an induced matching is a set E′ ⊆ E of edges
with pairwise disjoint endpoints, whose set we denote V ′,
such that all edges of G connecting vertices in V ′ are in E′.

Lemma 14. Let FG be as described by (1), let (X,Y ) be
a partition of var(FG) and (VX , VY ) be the corresponding
partition of V . If there is an induced matching m in G be-
tween vertices Vl and Vr such that Vl ⊆ VX and Vr ⊆ VY ,
then

rk(MFG
) ≥ 2|m|

where MFG
is the value matrix of FG for the partition

(X,Y ) and |m| is the number of edges in m.

Proof. Rename M := MFG
. Identify each vertex with its

variable in var(FG) and let (xi, yi)i∈[|m|] be the edges ofm,
with xi ∈ X and yi ∈ Y . Order the variables in X as X =
(x1, . . . , x|X|) and the variables in Y as Y = (y1, . . . , y|Y |),
so that the |m| first variables in each set correspond to the
nodes in the matching. Permutations of rows or columns
do not change the rank of a matrix so we assume that the
assignments indexing the rows and the columns are ordered
so that, when seeing the assignments as tuples of 0 and 1, the
integers encoded in binary by the tuples are ordered. More
formally aX is before a′X if and only if

∑
k a(xk)2k−1 <∑

k a
′(xk)2k−1. Now consider all 22|m| truth assignments

to var(FG) where variables corresponding to vertices not in
Vl ∪ Vr are set to 0. Let M∗ be the 2|m| × 2|m| sub-matrix
of M obtained by keeping only rows and columns indexed
by these assignments. The rank of a sub-matrix is always
at most that of the matrix, so rk(M∗) ≤ rk(M). To prove
the lemma, it is enough to show that rk(M∗) = 2|m|, which
holds if and only if det(M∗) 6= 0. For 0 ≤ i ≤ |m|, let M∗i
be the matrix containing the first 2i rows and first 2i columns
of M∗. We prove by induction on i that all M∗i have non-
zero determinant, which will prove thatM∗ (which isM∗|m|)
has non-zero determinant, and therefore full rank. For the
base case, M∗0 = (1) has determinant 1. For the general
case, assume that det(M∗i ) 6= 0 and observe that M∗i+1 =(

M∗i 2M∗i
2M∗i 2M∗i

)
. The determinant of M∗i+1 is

det

(
M∗i 2M∗i
2M∗i 2M∗i

)
= det

(
−M∗i 2M∗i

0 2M∗i

)
= det(−M∗i ) det(2M∗i ) = (−2)2i

det(M∗i )2 6= 0.

So if, for every balanced partition of V , we have a large
enough induced matching M between the two sides, then
the rank of the value matrix for FG for any balanced parti-
tion is large, thus many balanced decomposable products are
needed in a sum representing FG. The only thing left is to
find graphs G with this “large enough matching” property,
which turn out to be expander graphs. A d-regular graph is
a graph whose vertices all have degree d. A (c, d)-expander
graph on vertices V is a d-regular graph such that for any
S ⊆ V of size |S| ≤ |V |/2, it holds that |N(S)| ≥ c|S|,
where N(S) = {v ∈ V \ S | (u, v) ∈ E, u ∈ S}.
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Theorem 3. (Alon and Spencer 2000, Section 9.2) There
is, for some c > 0, an infinite sequence of (c, 3)-expander
graphs (Gi)i∈N.

We use these expander graphs for our lower bound.

Lemma 15. Let G = (V,E) be a (c, 3)-expander graph
with n = |V |, and let V = V1 ] V2 be a balanced partition
of V , then there exists an induced matching m of size Ω(n)
between V1 and V2.

Proof. V1 or V2 has size at most n/2, say |V1| ≤ n/2. There
is N(V1) ⊆ V2 and |N(V1)| ≥ c|V1| ≥ cn/3 where the last
inequality comes from the partition being balanced. So at
least cn/3 edges connect V1 to V2. Since G is 3-regular, at
least a third of these edges form an matching in G, and a
third of these matching edge share no endpoint in V1, and
finally a third of these edges share no endpoint in V2 either.
So we obtain a induced matching between V1 and V2 of size
at least cn/81.

Combining Theorems 2 and 3 with Lemmas 13, 14 and
15 yields Proposition 4.

6 Conclusion
We have started drawing succinctness maps for arithmetic
circuits modeled after that proposed for NNF in (Darwiche
and Marquis 2002). Due to great amount of recent work
on practical applications of AC with specific structural re-
strictions, we have studied classes of AC for combinations
of four key restrictions. Using a mapping between mono-
tone AC and NNF, we have drawn the full succinctness map
for monotone AC by lifting the existing map for NNF and
extending it to incorporate new classes defined with weak
decomposability. In certain cases we could show that pos-
itive and monotone AC have the same expressive power,
which gave us some succinctness results between classes of
positive AC for free. We leave the challenging task of de-
termining the remaining relations between classes of posi-
tive AC as an open question. Finally, we have also intro-
duced techniques to prove lower bounds on structured posi-
tive AC and applied them to the case of smooth structured-
decomposable AC.

Appendix
Lemma 1. Let C be a (weakly) decomposable AC
(resp. NNF) then:

• if C is smooth, all variables appear in all term subcircuits
• if C is deterministic, then any two distinct term subcir-

cuits T and T ′ verify T × T ′ = 0 (resp. T ∧ T ′ ≡ 0).

Proof. We only show the lemma for AC, as the proof for
NNF is completely analogous. The two points are shown
by induction on the depth of C, i.e., the number of nodes
in a longest directed path in C. AC of depth 1 are single
variable nodes or constant nodes, and thus the statement of
the lemma is straightforward. Now assume the lemma holds
for all (w)D-AC of depth at most k and consider an (w)D-
AC C of depth k+ 1. Let g be the source node of C. Let Cl
and Cr be the (w)D-AC under gl and gr.

If g is a ×-node then the term subcircuits of C are prod-
ucts T = Tl×Tr where Tl and Tr are term subcircuits of Cl
and Cr. If C is smooth, then var(T ) = var(Tl)∪ var(Tr) =
var(Cl) ∪ var(Cr) = var(C) holds by induction. If C is
deterministic, then let T = Tl × Tr and T ′ = T ′l × T ′r
be distinct term subcircuits of C. We have T ′l 6= Tl or
T ′r 6= Tr and thus by induction, for every assignment a, we
have Tl(a)×T ′l (a) = 0 or Tr(a)×T ′r(a) = 0, so T ′×T = 0.

If g is a +-node, then every term subcircuit T of C is
either equivalent to a term subcircuit Tl of Cl or to a term
subcircuit Tr of Cr. Assume C is smooth, then var(C) =
var(Cl) = var(Cr), but then var(T ) is either var(Tl) or
var(Tr), which by induction equals var(C). Now when C is
deterministic there is Cl × Cr = 0, so any term subcircuits
T = Tl and T ′ = T ′r verify T × T ′ = 0. And by induction
any two distinct subcircuits T = Tl and T ′ = T ′l verify
T × T ′ = Tl × T ′l = 0 (likewise for Tr and T ′r).

Lemma 2. When C is a monotone AC, φ(C) is an NNF
whose models are supp(C). Moreover if C is (weakly) de-
composable, deterministic, or smooth, then φ(C) is as well.

Proof. The graph of φ(C) is that of C and φ contains only
∧- and ∨-nodes, thus φ(C) is an NNF. It is easy to see
that for each node g in C we have var(g) = var(φ(g)), so
smoothness and (weak) decomposability are preserved.

We prove that by induction on the depth of C that (1)
sat(φ(C)) = supp(C) and (2) if C is deterministic, then
so is φ(C). If C has depth 1, then it is either a constant
input or a literal input. In the case C = α, if α > 0 then
supp(C) = {a∅} = sat(1) = sat(φ(C)). If α = 0 then
supp(C) = ∅ = sat(0) = sat(φ(C)). In the case C = `x
there is φ(C) = C so we are done. Now assume (1) and (2)
hold for all AC of depth at most k and suppose C has depth
k + 1. Let g be its source node.

If g is a ×-node, then C(a) = 0 if and only if gl(al) = 0
or gr(ar) = 0, where al and ar denote the restrictions of
a to var(gl) and var(gr) respectively. So a 6∈ supp(C) if
and only if al 6∈ supp(gl) or ar 6∈ supp(gr). By induction
supp(gl/r) = sat(φ(gl/r), so a 6∈ supp(C) if and only if
a 6∈ sat(φ(gl) ∧ φ(gr)) = sat(φ(C)). So (1) holds.

If g is a +-node, then C(a) = 0 iff gl(al) = 0 and
gr(ar) = 0. So a 6∈ supp(C) iff al 6∈ supp(gl) and
ar 6∈ supp(gr). By induction supp(gl/r) = sat(φ(gl/r),
so a 6∈ supp(C) iff a 6∈ sat(φ(gl)∨φ(gr)) = sat(φ(C)). So
(1) holds. As for (2), if ar ∈ supp(gr) implies al 6∈ supp(gl)
and vice-versa, then supp(gl/r) = sat(φ(gl/r) yields that the
source ∨-node of φ(C) is deterministic.

Lemma 3. For every NNF D, there exists an AC C of size
|D| with supp(C) = sat(D). Moreover if D is (weakly)
decomposable, deterministic, or smooth, then so is C.

Proof. It suffices to replace each ∧-node in D by a ×-node
and each ∨-node by +-node. Let ψ(D) be that AC. Clearly
|D| = |ψ(D)|, and it is easy to see that for each node g in
D, var(g) = var(ψ(g)), so smoothness and (weak) decom-
posability are preserved by ψ. Moreover φ(ψ(D)) = D,
so sat(D) = supp(ψ(D)). Determinism is preserved since
sat(g) = supp(ψ(g)) holds for all nodes g in D.
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