
On Eventual Applicability of Plans in Dynamic Environments with Cyclic
Phenomena

Lukáš Chrpa1 , Martin Pilát2 , Jakub Med1

1Faculty of Electrical Engineering, Czech Technical University in Prague
2Faculty of Mathematics and Physics, Charles University

chrpaluk@fel.cvut.cz, Martin.Pilat@mff.cuni.cz, medjaku1@fel.cvut.cz

Abstract

Planning and acting in dynamic environments deals with non-
deterministic events that might change the state of the envi-
ronment without consent of the agent. In the worst case, some
events might cause the agent to become “trapped” in a dead-
end state, which in practice might mean damage or destruc-
tion of the agent. Presence of non-deterministic events often
considerably increases the number of alternatives that might
occur in a single step and hence traditional non-deterministic
planning techniques might not scale. In this paper, we address
a class of problems where non-deterministic events represent
“cyclic phenomena”. If they interfere with the agent, they
might be dangerous for it (e.g. ships cruising through the
area of AUV operations). We present techniques that initially
analyse the problem whether it falls within this class by con-
sidering the notion of event reversibility and if so, these tech-
niques generate a plan such that encountered unsafe states, in
which the “cyclic phenomena” might interfere with the agent,
can be eventually crossed without any risk of “falling” into a
dead-end state. Our approach is evaluated in the AUV and
Perestroika domains.

1 Introduction
Automated planning seeks to find a sequence of actions
transforming an environment from a given initial state to a
desired goal state (Ghallab, Nau, and Traverso 2004). Plan-
ning and acting in real-world scenarios (Ingrand and Ghal-
lab 2017) poses a challenge as plan execution might not go
as planned as, for example, exogenous events might occur
during the plan execution (e.g. change of the weather).

The concept of exogenous events in planning is not
new (Dean and Wellman 1990) and was used in some sys-
tems such as Circa (Musliner, Durfee, and Shin 1993).
These systems, however, reason with a very small state
space. Markov Decision Process (MDP)-based approaches
consider events (Mausam and Kolobov 2012) and provide a
policy with the most promising action in each state. Monte-
Carlo Tree Search (MCTS) approaches provide similar ben-
efits, however, the success rate tends to drop for problems
with dead-ends (Patra et al. 2019).

Fully Observable Non-Deterministic (FOND) planning
which assumes non-deterministic action effects (Cimatti et
al. 2003) can also be leveraged to tackle problems with non-
deterministic events (Chrpa, Pilát, and Gemrot 2019). For
instance, the well known PRP planner (Muise, McIlraith,

and Beck 2012) handles non-determinism by attempting to
“close” states from which there does not yet exist a plan.
However, if any subset of applicable independent events can
occur in a single step, it makes non-deterministic branch-
ing exponential with respect to the number of events. Hence
such an approach usually does not scale beyond very small
problems (Chrpa, Pilát, and Gemrot 2019).

Addressing the problem by relaxing non-deterministic
events, i.e., by leveraging classical planning techniques such
as FF-replan (Yoon, Fern, and Givan 2007), where if the
agent is in an unexpected state it re-plans, is efficient but
prone to dead-ends. Reasoning about “dangerous states” im-
proves the success rate of FF-replan-like approaches, yet it
does not guarantee avoiding dead-ends (Chrpa, Gemrot, and
Pilát 2017; Chrpa, Gemrot, and Pilát 2020).

To tackle the dead-end proneness, one has to enhance
classical planning (and re-planning) techniques by a mecha-
nism that prohibits the agent to get into a dead-end state in
spite of event occurrence. Chrpa, Gemrot, and Pilát (2020)
adapted the notion of safe states (Cserna et al. 2018) for
planning tasks with non-deterministic events, where a state
is safe if no sequence of events can transform it to a dead-end
state. If such an event sequence exists, the state is unsafe.
The technique proposed by Chrpa, Gemrot, and Pilát (2020)
generates a (reference) plan while minimising the number
of consecutive unsafe actions since, following the rule of
thumb, the shorter the sequence of unsafe states is the higher
chance to safely passing it is. The (reference) plan is then
followed such that unsafe states can only be traversed by ro-
bust plans connecting one safe state to another. Robust plans
are guaranteed to always succeed despite event occurrence.
The main drawback of the technique is that it tries to find
robust plans between safe states online which might not al-
ways be possible. If there is no way of transiting an unsafe
area via a robust plan, the agent gets stuck forever (albeit
in a safe state). Hence, the technique of Chrpa, Gemrot, and
Pilát (2020) works only on a subclass of planning tasks and it
might not be known up front whether the agent has a chance
to reach its goal, or whether it gets stuck somewhere.

In this paper, we define a notion of an eventually applica-
ble reference plan that, under the fairness assumption that
any event can occur if applicable, guarantees that unsafe
states might be eventually safely transited without the need
of replanning. Specifically, we focus on problems where

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

184

non-deterministic events represent “cyclic phenomena” that
might be dangerous for the agent. For example, weather
might change in areas where a robot performs a surveil-
lance. The robot might be damaged while being outdoors
during the rain. Or ships might be cruising in corridors
through an area in which an AUV performs scientific ob-
servations. If a ship collides with the AUV, the AUV is de-
stroyed. In a nutshell, cyclic phenomena are embodied by
sequences of reversible events. However, if the agent in-
terferes with some cyclic phenomenon, then an irreversible
event (damaging the agent) might occur. We introduce tech-
niques for analysing the problem and determining reversible
and possibly irreversible events (possibly unsafe ones), that
is, identifying cyclic phenomena and possible consequences
of agent’s interference with them. Then, we show under
which conditions a state is safe, so safe states do not have
to be specified on top of domain and problem specifica-
tion (as required by the technique of Chrpa, Gemrot, and
Pilát (2020)). We also show under which conditions it is
possible that a sequence of actions traversing through un-
safe states, denoted as an unsafe bridge, might eventually
become a robust plan and hence safely applicable. Then,
finally, we will present a method that generates eventually
applicable reference plans, where all unsafe bridges can be
eventually passed (under the fairness assumption). Hence,
our method alleviates two drawbacks of the approach of
Chrpa, Gemrot, and Pilát (2020), i.e., the necessity of speci-
fying safe states upfront and lack of guarantee that the agent
can eventually reach its goal. Our approach is evaluated on
variants of the AUV and Perestroika domains (Chrpa, Gem-
rot, and Pilát 2020).

2 Preliminaries
This section introduces the terminology used in the paper.

2.1 Classical Planning
Classical planning, in particular, assumes a static, deter-
ministic and fully observable environment; a solution plan
amounts to a sequence of actions. Let V be a set of variables
where each variable v ∈ V is associated with its domain
D(v). An assignment of a variable v ∈ V is a pair (v, val),
where its value val ∈ D(v). Hereinafter, an assignment
of a variable is also denoted as a fact. A (partial) variable
assignment p over V is a set of assignments of individual
variables from V , where vars(p) is a set of all variables in
p and p[v] represents a value of v in p. A state is a complete
variable assignment (over V). We say that a (partial) vari-
able assignment q holds in a (partial) variable assignment p,
denoted as p |= q, if and only if vars(q) ⊆ vars(p) and for
each v ∈ vars(q) it is the case that q[v] = p[v].

An action is a pair a = (pre(a), eff (a)), where pre(a) is
a partial variable assignment representing a’s precondition
and eff (a) is a partial variable assignment representing a’s
effects. We say that an action a is applicable in state s if and
only if s |= pre(a). The result of applying a in s, denoted
as γ(s, a), is a state s′ such that for each variable v ∈ V ,
s′[v] = eff (a)[v] if v ∈ vars(eff (a)) while s′[v] = s[v] oth-
erwise. If a is not applicable in s, γ(s, a) is undefined. The

notion of action application can be extended to sequences of
actions, i.e., γ(s, 〈a1, . . . , an〉) = γ(. . . γ(s, a1) . . . , an).

A classical planning task is a quadruple P =
(V,A, I,G), where V is a set of variables, A a set of ac-
tions, I a complete variable assignment representing the
initial state and G a partial variable assignment represent-
ing the goal. A solution plan (for a classical planning
task), π = 〈a1, . . . , an〉, is a sequence of actions such that
γ(s, π) |= G (i.e., an application of π in the initial state re-
sults in a goal state). A sequence of states visited during the
execution of the solution plan is called state trajectory.

2.2 Non-deterministic Events
Similarly to the definition of an action, a (non-deterministic)
event is a tuple e = (pre(e), eff (e)), where pre(e), eff (e)
are partial variable assignments representing e’s precondi-
tion and effects respectively. Applicability of an event in
a state as well as the result of an application of an event
is defined in the same way as for actions (we can also ex-
tend γ to consider event application). In contrast to actions
that are executed by agents, events can occur regardless of
agent’s consent. Technically, an event can (but does not nec-
essarily have to) occur in a state where event’s preconditions
are met and modify the state of the environment according
to event’s effects. A planning task, in this case, is a tuple
P = (V,A,E, I,G), where V is a set of variables, A a set
of actions, E is a set of events, I a complete variable assign-
ment representing the initial state and G a partial variable
assignment representing the goal.

Next, we define the relation of event independence which
consequently allows to apply independent events simultane-
ously as they do not interfere with each other. Independence
of actions can be defined analogously.

Definition 1. We say that events ei and ej are independent
if and only if vars(eff(ei)) ∩ vars(pre(ej) ∪ eff(ej)) = ∅,
vars(eff(ej)) ∩ vars(pre(ei) ∪ eff(ei)) = ∅ and for each
v ∈ vars(pre(ei))∩vars(pre(ej)) it holds that pre(ei)[v] =
pre(ej)[v].

Now, we define the event only Domain Transition
Graph (eoDTG) which differs from the standard defini-
tion of Domain Transition Graph given by Jonsson and
Bäckström (1998) by considering only events as modifiers
of the variables.

Definition 2. Let P = (V,A,E, I,G) be a planning task.
For each variable v ∈ V we define an event only Do-
main Transition Graph as a labelled directed graphGEv =
(D(v), TEv), where D(v) is a set of nodes and TEv set of
labelled edges such that for all x, y ∈ D(v) and e ∈ E,
(x, e, y) ∈ TEv iff eff(e)[v] = y and either pre(e)[v] = x or
v 6∈ vars(pre(e)).

The following assumption introduced by Chrpa, Gem-
rot, and Pilát (2020) simplifies the reasoning by consider-
ing single-agent scenario such that actions of the agent and
events of the environment alternate like in two-player games
(e.g. Chess). The process hence follows the pattern in which
the agent can apply an action (not necessarily has to), then
the environment can trigger (apply) a set of independent

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

185

events (not necessarily has to), and so on. The reason for se-
lecting only events that are independent with each other is to
avoid conflicts between preconditions and effects of events
that are simultaneously applied. We consider the fairness as-
sumption, i.e., each set of independent events applicable in a
given step has a chance to be selected and applied. In order
words, we assume that events are acts of nature or actions of
non-cooperative agents (that are not adversarial).
Assumption 3. Let P = (V,A,E, I,G) be a planning task.
Let noop be an action and an event such that pre(noop) =
eff(noop) = ∅. In a current state s, the agent can apply an
action a ∈ A ∪ {noop} such that a is applicable in s. After
that, a (randomly selected) set of independent events Ei ⊆
E ∪ {noop}, applicable in γ(s, a), is applied resulting in a
state s′ = γ(γ(s, a), Ei) which will become a new current
state. We denote s′ as a successor state of s, a.

The set of all resulting states of application
of an action a in a state s (a is applicable in s)
under Assumption 3, denoted as δ(s, a), is de-
termined as δ(s, a) = {γ(γ(s, a), Ei) | Ei ⊆
E ∪ {noop}, Ei is a set of independent events applicable
in γ(s, a)}. If a is not applicable in s, then
δ(s, a) = ⊥. Note that in ⊥ no action or event (in-
cluding noop) is applicable. We can generalise the
notion of resulting states for sequences of actions, i.e.,
δ(s, 〈a1, . . . , an−1, an〉) =

⋃
s′∈δ(s,〈a1,...,an−1〉) δ(s

′, an).
We say that a state s′ is reachable from a state s with
respect to P and Assumption 3 if and only if there exists a
sequence of actions π such that s′ ∈ δ(s, π). Otherwise, we
say that s′ is unreachable from s.

We define a function dist(s, g) representing the minimum
number of steps required to reach g from s while the agent
does no action, i.e., performs noops. Formally, dist(s, g) =
min{k | sg |= g, sg ∈ δ(s, noopk)} (noopk represents a
sequence of k noop actions).

2.3 FOND Planning
Fully Observable Non-Deterministic (FOND) planning as-
sumes a fully observable and static environment but in con-
trast to classical planning actions have non-deterministic ef-
fects (Cimatti et al. 2003; Ghallab, Nau, and Traverso 2016).
In particular, the result of application might be one of the
sets of effects. Formally a non-deterministic action is a
tuple a = (pre(a), eff 1(a), . . . , eff k(a)), where pre(a) its
precondition, and eff 1(a), . . . , eff k(a) its non-deterministic
effects, respectively. Action applicability is the same as for
classical planning. The result of applying a in s (if possi-
ble) is a set of states with each state corresponding to one of
a’s effects. The FOND planning problem definition is anal-
ogous to the classical planning problem definition.

Plans (or solutions) in FOND planning are in form
of policies mapping states to actions, i.e., π : S →
A. From these policies we can construct a di-
rected graph G = (S,E) whose nodes S are states
and edges are defined as E = {(s, s′) | π(s) =
a, s′ is the resulting state of applying a in s}. Weak plans
are policies whose graph has a path from the initial state
to some goal state. Strong (cyclic) plans are policies which

form acyclic (resp. cyclic) graphs such that from all states,
reachable from the initial states, there is a path to some goal
state. In plain words, strong plans always guarantee reach-
ing the goal while strong cyclic plans guarantee eventually
reaching the goal under the fairness assumption, i.e., each
action outcome has a chance to occur (Cimatti et al. 2003).

Analogously to FOND planning, we can define weak
plans and strong (cyclic) plans for tasks with non-
deterministic events.

2.4 Relations between Actions and Events
Actions as well as events influence each other by setting val-
ues of variables that are required by other actions/events,
or, in contrast, by changing values of variables such that
other actions/events become inapplicable. Inspired by Chap-
man (1987) who studied relations between actions such as
being an “achiever” (i.e., one action sets a variable for an-
other actions) or being a “clobberer” (i.e., an action changes
a variable to a different value than is required by another
action) we define the notions for both actions and events.
Definition 4. Let P = (V,A,E, I,G) be a planning task.
We say that an action/event x ∈ A ∪ E is an achiever of a
fact (v, val) (v ∈ V, val ∈ D(v)) for an action/event y ∈
A ∪ E if (v, val) ∈ eff(x) ∩ pre(y). We also say that an
action/event x ∈ A ∪ E is a clobberer of a fact (v, val)
for an action/event y ∈ A ∪ E if (v, val′) ∈ eff(x), val 6=
val′, (v, val) ∈ pre(y).

2.5 Dead-end and Safe States
In classical planning, dead-end states are those from which
no goal state is reachable. With non-deterministic events
in play, we define dead-end states as those from which the
agent cannot reach the goal by any means (even if events can
maximally help). Practically speaking, if the agent (robot)
reaches a dead-end state, it might get damaged, or destroyed.
Definition 5. Let P = (V,A,E, I,G) be a planning task.
We say that a state s is a dead-end state if and only if every
goal state sG (sG |= G) is unreachable from s.

A specific type of events that we do not want to occur are
dead-end events, i.e., those whose application might result
in a dead-end state.
Definition 6. Let P = (V,A,E, I,G) be a planning task, S
be a set of states reachable from I and e ∈ E be an event. If
there exists a state s ∈ S such that s is not a dead-end state
and s |= pre(e), where γ(s, e) is a dead-end state, then e is
a dead-end event.

From the opposite perspective, we can define safe states
that cannot be transformed into dead-end state only by ap-
plying events.
Definition 7. Let P = (V,A,E, I,G) be a planning task.
We say that a state s is a safe state if for each sequence of
events πe from E it is the case that no γ(s, πe) is a dead-end
state.

Straightforwardly, if no dead-end event can become even-
tually applicable in a given state, the state is safe (i.e., if no
sequence of events applied in a given state can satisfy a pre-
condition of some dead-end event, the state is safe). The

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

186

following proposition considers possible unreachability of
dead-end event preconditions, which can be understood as
a relaxation of the above (as Definition 6 considers a pes-
simistic assumption of existence of one non-dead-end state
turned into a dead-end one by a dead-end event).
Proposition 8. Let P = (V,A,E, I,G) be a planning task
and let Ed ⊆ E be the set of dead-end events. If for a state
s it is the case that s is not a dead-end state and for each
e′ ∈ Ed it holds that (s ∪

⋃
e∈E\Ed eff(e)) 6|= pre(e′), then

s is a safe state.

Proof. From the assumption we know that s is not a dead-
end state and hence only the eventual application of a dead-
end event might transform s to a dead-end state. The as-
sumption also states that a precondition of any dead-end
event cannot be satisfied as some of the facts are neither
present in s nor can be achieved by any (non-dead-end)
event. Hence, s is a safe state.

2.6 Reference and Robust Plans
As reference plans we consider sequences of actions that
under the favourable circumstances lead the agent towards
its goal. Note that reference plans are also weak plans.
Definition 9. Let P = (V,A,E, I,G) be a planning task.
Let ψ be a sequence of actions and events (from A and E,
respectively) such that γ(I, ψ) |= G. We say that a sequence
of actions π obtained from ψ by removing events is a refer-
ence plan for P .

Robust plans are sequences of actions which if applied,
the goal is always reached despite event occurrence. Effec-
tively, the key feature of robust plans is that they evade event
effects. Note that strong plans can be constructed from ro-
bust plans.
Definition 10. Let P = (V,A,E, I,G) be a planning task.
Let π = 〈a1, . . . , an〉 be a sequence of actions. If ∀s ∈
δ(I, π) : s |= G, then we say that π is a robust plan for P .

Note that computing robust plans according to the above
definition is impractical as all the alternatives (resulting
states of action application) have to be considered. On the
other hand, with a pessimistic assumption how events can
modify the environment1, robust plans can be computed
or verified in a similar fashion like classical plans (Chrpa,
Gemrot, and Pilát 2020).

Safe execution of a reference plan accounts for iteratively
executing a sequence of actions forming a robust plan and
finishing in a safe state from the remainder of the reference
plan until the goal is reached. If no such a sequence exists,
the agent waits (applies noop) until it does. Here, in contrast
to Chrpa, Gemrot, and Pilát (2020), the agent does not try to
generate an alternative robust plan to the next safe state.

3 Case Studies
This section describes case studies that were adapted from
those introduced by Chrpa, Gemrot, and Pilát (2020).

1facts possibly achieved by events are considered as true for
events while facts possibly invalidated by events are considered as
false for actions

$ $ $

Figure 1: A sample AUV problem (left) and two different reference
plans (middle and right).

3.1 The AUV Domain
The AUV domain simulates an AUV operation in which the
AUV has to perform sampling of given objects of interest
while there might be ships passing by that might endanger
the AUV. We have a 4-grid environment, an AUV, ships and
several resources. Resources can be found on given cells.
Each cell is either free, has the AUV on it, or the ship on it
(presence of a resource does not interfere with any cell sta-
tus). The AUV can move to an adjacent cell, if the cell is
free. The AUV can sample a resource if it is at the same
cell. The task for the AUV is to sample the resources and
return back to the place of origin. Ships, however, are not
controlled by the agent, i.e., ships are controlled by the en-
vironment. Ships can move only on some cells from the grid
or might not be present in the area. We consider two variants
of problem depending of ship movement.

The wandering ship variant considers that each ship
moves on specific grid cells. Two “move” events are con-
sidered, move-ship-to-free and move-ship-to-auv. Both
require that the ship can move to the destination cell. The
effect of both events is that the ship moves to the destina-
tion cell. If the ship moves to a free cell, then besides the
cell becoming not free for a moment, nothing else happens.
However, if the ship moves to the cell with the AUV, then the
AUV is destroyed (and can no longer perform any action).

The cruising ship variant considers that each ship moves
in one direction on a specific corridor. Each ship might be
on a cell which is a part of the corridor or be “out of area”. A
ship can enter the area at its entry cell, can move to adjacent
cells of its corridor, and leave the area at its exit cell. The
move events are the same as in the wandering ship variant.
On top of that, a ship can enter in its entry cell as long as
the ship is out of the area, and a ship can leave the area, if
it is in its exit cell. The enter event has, analogously, to the
move event two variants – one where the entry cell is free
and one the entry cell is occupied by the AUV. In the latter
case, the AUV gets destroyed.

Figure 1 shows an example of an AUV problem with one
wandering ship (for sake of simplicity, the goal is only to
sample the resource). The reference plan in the middle, how-
ever, does not allow the AUV to safely cross the ship area as
the ship either blocks the middle cell or is at most one cell far
and thus able to destroy the AUV right after it moves to the
middle cell. The reference plan on the right (Fig. 1) allows
the AUV to safely cross the ship area such that the AUV
might have to wait in the bottom-left corner until the ship
is at the top row. Then the ship needs two steps to endan-
ger the AUV at the bottom row, so the AUV can safely pass
to the bottom-right corner. Although both reference plans

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

187

contain at most one unsafe action in a row, the latter one is
“eventually applicable” (under the fairness assumption).

3.2 The “Perestroika” Domain
The Perestroika domain is inspired by the well known Per-
estroika game (also known as Toppler)2. In our domain, an
agent has to navigate through a 4-grid of solid and shrink-
ing platforms and collect all resources that can be placed
on solid platforms. Solid platforms remain stable, i.e., they
neither change its size nor disappear. On the contrary, the
shrinking platforms can gradually shrink in shape and then
disappear completely. Each shrinking platform can then
reappear in its maximum size, which for each platform is
constant and between 1 to 5, in contrast to the Perestroika
domain introduced by Chrpa, Gemrot, and Pilát (2020),
where each shrinking platform had maximum size of 3.

The agent can perform two types of actions. It can move
to a neighbouring platform (if it has not disappeared) and/or
collect a resource if the resource is on the same platform
as the agent. Each shrinking platform is affected by four
events. One event changes the shape of the platform by one
“step”. Two events make the platform disappear if it is in
its smallest shape – the difference is whether the platform is
empty or the agent is on it. In the former case, the platform
only disappears whereas in the latter case it also kills the
agent. The last event allows the platform to reappear to its
maximum size.

4 Unsafe Bridges
Informally speaking, safe states are those in which the agent
has a chance to achieve its goal while not interfering with
“phenomena” controlled by events and thus not enabling
dead-end events. If the AUV is in a cell into which no ship
can enter it is in a safe state. The Perestroika agent if stand-
ing on the solid platform is in the safe state as well. Dead-
end events, on the other hand, are those, where the ship runs
over the AUV and destroys it or where the shrinking plat-
form disappears beneath the agent, who is standing on it.

During plan execution the agent might have to cross an
unsafe area in which dead-end events might be enabled. We
define a notion of unsafe bridge which represents a sequence
of actions in which some actions might be achievers for
dead-end events while other actions applied later in the se-
quence are clobberers for these dead-end events. A good
example of an unsafe bridge is when the agent crosses one
or more shrinking platforms as stepping on a shrinking plat-
form is an achiever of an event “disappear with agent” while
leaving the shrinking platform is a clobberer for the “disap-
pear with agent” event.
Definition 11. Let P = (V,A,E, I,G) be a planning task
and Ed ⊆ E be the set of dead-end events. Let π =
〈a1, . . . , an〉 (a1, . . . , an ∈ A) be an action sequence such
that a1 is an achiever of some fact for some dead-end event.
For each 1 ≤ i ≤ n such that ai is an achiever of some fact
f for some dead-end event e ∈ Ed it holds that there exists
aj , where i < j ≤ n, such that aj is a clobberer of f for e.
Then, we say π is an unsafe bridge.

2https://en.wikipedia.org/wiki/Perestroika (video game)

Now, we show that a successful application of an unsafe
bridge in a safe state results in another safe state. For exam-
ple, let an unsafe bridge refer to crossing several shrinking
platforms. If the Perestroika agent starts from a solid plat-
form, it finishes on a solid platform if the application of all
the actions from the unsafe bridge is successful.
Lemma 12. Let P = (V,A,E, I,G) be a planning task.
Let π = 〈a1, . . . , an〉 (a1, . . . , an ∈ A) be an unsafe bridge.
For each safe state s in which 〈a1, . . . , an〉 is applicable, it
is the case that γ(s, π) is also a safe state.

Proof. As s is a safe state, no dead-end event can eventually
become applicable by applying only events. Since the action
sequence is an unsafe bridge, it is the case that for each ac-
tion achieving a fact f required by a dead-end event, there
is another action later in the sequence that deletes f . Hence
the resulting state is also a safe state.

The following theorem presents conditions under which
an unsafe bridge is a robust plan. In particular, events that
might invalidate preconditions of some action from the un-
safe bridge have to be far enough, so even in the worst
case scenario none of those events can occur before the af-
fected action is applied. Also, dead-end events have to be
far enough, so each action that invalidates precondition of
some dead-end event has to be applied, even in the worst
case, before the dead-end event can occur.
Theorem 13. Let P = (V,A,E, I,G) be a planning task.
Let I be a safe state and π = 〈a1, . . . , an〉 (a1, . . . , an ∈ A)
be an unsafe bridge such that γ(I, π) |= G and for each e ∈
E which is not a dead-end event, it holds that vars(eff(e))∩
vars(G) = ∅. We define:
• c1(ai, I) = min{dist(I, pre(e) ∩ (I ∪

⋃
e′∈E eff(e′)))

| e is a clobberer for ai}
• c2(aj , I) = min{dist(I, pre(e′) ∩ (I ∪

⋃
e∈E eff(e)))

| aj is a clobberer for a dead-end event e′}.
If the following conditions

(1) for each ai ∈ π: c1(ai, I) ≥ i− 1

(2) for each aj ∈ π: c2(aj , I) ≥ j
hold, then π is a robust plan for P .

Proof Sketch. The idea of the proof is in showing that the
conditions are sufficient conditions for π being a robust plan
from P . The first condition refers to the situation that each
action in the sequence (e.g. ai) has to be applied before
events have a chance to invalidate its precondition. The sec-
ond condition refers to the situation that no dead-end event
can become applicable before an action (e.g. aj) invalidates
its precondition. Hence, it is the case that all actions from
π are applicable (in the given order), no dead-end event can
occur during the execution of π and since no other event can
delete a goal atom, the goal will be reached after π is exe-
cuted. So, π is a robust plan for P .

Theorem 13, in a nutshell, provides information about
whether or not some actions in an unsafe bridge might in-
terfere with events in the worst case scenario. As indicated
in the proof sketch, condition (1) accounts for situations in

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

188

Algorithm 1 Determining event reversibility from eoDTG
Require: A set of variables V , a set of events E, an event

e0 ∈ E
Ensure: A selected variable v and a partial state s′ if e0 is

identified as reversible
1: function REVERT(V,E, e0)
2: Non-deterministically select

v ∈ argmaxv′∈vars(eff (e0)) |D(v′)|
3: Construct eoDTG GEv = (D(v), TEv)
4: Let x, y ∈ D(v) be such that (x, e0, y) ∈ TEv
5: Non-deterministically select a path from y to x in
GE – let e1, . . . , en be a sequence of labels on the path

6: s′ ← {(v′,⊥) | v′ ∈ V }
7: for i← 0 to n do
8: for all v′ ∈ pre(ei) with s′[v′] = ⊥ do s′[v′]←

pre(ei)[v′]
9: if s′ 6|= pre(ei) then return NULL

10: for all v′ ∈ eff (ei) do s′[v′]← eff (ei)[v′]
11: end for
12: if s′ 6|= pre(e0) then return NULL
13: return v, s′
14: end function

which events have no chance to invalidate precondition of
the action (e.g. the shrinking platform cannot disappear
before the agent wants to step on it) while condition (2)
accounts for situations in which no dead-end event has a
chance to become applicable (e.g. no shrinking platform can
disappear beneath the agent).

5 Event Reversibility
Action reversibility (or undoability) is the problem of find-
ing a sequence of actions such that it reverses effects of a
given action (Daum et al. 2016; Morak et al. 2020). Ac-
tion reversibility that applies for a restricted set of states S
is called S-reversibility (Morak et al. 2020). We can define
event S-reversibility analogously.
Definition 14. Let P = (V,A,E, I,G) be a planning tasks
and S be a set of states. We say that an event e0 ∈ E is S-
reversible if and only if for each s ∈ S, where s |= pre(e0),
there is a sequence of events from E, 〈e1, . . . , ek〉, such that
s = γ(s, 〈e0, e1, . . . , ek〉).

In our domains, we can see that if the AUV does not in-
terfere, the ship movement is reversible (in both wandering
and cruising ship variants). Similarly, if the agent does not
stand on a shrinking platform, the events modifying the size
of their shape are also reversible (as the shrinking platform
after it disappears can reappear in its largest shape).

Deciding whether an event is S-reversible in PSPACE-
complete (Morak et al. 2020). Event reversibility can be de-
termined by adapting the tool of Daum et al. (2016), which
leverages contingent planning.

To provide a tractable method to identify some classes of
event S-reversibility we leverage eoDTG. An eoDTG might
indicate that some variable value modified an event might
no longer be achievable, which compromises reversibility of
that events in state having the former value of the variable.

Lemma 15. Let P = (V,A,E, I,G) be a planning task
and e ∈ E be an event. If there exists an eoDTG GEv =
(D(v), TEv) for a variable v ∈ V such that (x, e, y) ∈ TEv
and there is no path from y to x in GEv , then e is not S-
reversible for such S in which there exists s ∈ S such that
s |= pre(e) and s[v] = x.

Proof. Whenever e is applied, the value of v is changed
from x to y, and there does not exist a sequence of events
that can change the value of v back to x (otherwise there
would be a path from y to x in GEv).

Another way to leverage eoDTGs for identifying a pos-
sible event reversibility is to look for cycles in the relevant
eoDTGs. Algorithm 1 summarises a method that leverages
eoDTGs to identify some reversible events. In particular,
for a given event e0 we non-deterministically select a vari-
able v from eff (e0) with the largest domain (Line 1). Then,
we construct an eoDTG DE

v (Line 2), identify how e0 mod-
ified the value of v (say from x to y) and after that we non-
deterministically select a path inDE

v reverting the value of v
(for y to x) (Lines 3–4). Then, we verify whether a sequence
of events on that path is a reverting sequence of e0 (Lines 6–
11). Note that we consider partial states, where variables
that are not (or not yet) “touched” by the events are set to a
“wildcard” value ⊥. In particular, in each step the precon-
dition of an event ei has to be met in the partial state, i.e.,
each precondition variable has either the same value or the
⊥ value in the current partial state. If the precondition of ei
is not met, then the algorithm returns NULL (which can be
understood as e0 being deemed as not reversible in any state
in which it is applicable). If ei is applicable in the current
partial state, then the partial state is updated by considering
effects of ei. Note that the set of states S, if e0 is identi-
fied as S-reversible, can be constructed from the final partial
state s′ as {s | s[v] = s′[v] ∨ s′[v] = ⊥, v ∈ V }.

6 Potentially Applicable Robust Plans
Whether a sequence of actions can eventually become a ro-
bust plan depends on whether there exists a sequence of
events which transforms the initial (or current) state, which
is safe, into another safe state in which the action sequence
becomes a robust plan. In the AUV domain, an AUV might
want to cross a few ship cruising corridors. Depending on
the current state, the AUV might wait until ships move far
enough, so they will not be able to interfere with the AUV
after it starts crossing their cruising corridors. Similarly, the
Perestroika agent might need to wait until the shrinking plat-
forms it wants to cross become large enough, so there is no
chance they will disappear underneath the agent.
Definition 16. Let P = (V,A,E, I,G) be a planning
task. We say that a sequence of actions π = 〈a1, . . . , an〉
(a1, . . . , an ∈ A) is a potentially applicable robust
plan for P if and only if I is a safe state and there ex-
ists a sequence of events 〈e1, . . . , ek〉 (e1, . . . , ek ∈ E)
such that π is a robust plan for a planning task P ′ =
(V,A,E, γ(I, 〈e1, . . . , ek〉), G).

If the agent does nothing (i.e., applies noop actions) in a
state s, which is not a dead-end state, and it is the case that

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

189

only reversible events can be applied in s or a state reachable
from s by applying only events, the agent is in the safe state.
Also, the set of reachable states remains the same for states
resulting from s by applying events (we consider the fairness
assumption).

Proposition 17. Let P = (V,A,E, I,G) be a planning task
and s be a state. Let Ss = {s′ | s′ ∈ δ(s, noopk), k ≥ 0}
be a set of states reachable from s by applying only events.
If for each s′ ∈ Ss and for each event e ∈ E it is the case
that e is {s′}-reversible, then (i) Ss

′
= Ss and (ii) if also s

is not a dead-end state, then s is a safe state.

Proof. Let s′ = γ(s, e) for some event e ∈ E applicable in
s. From the assumption e is {s}-reversible and thus there
exists a sequence of events from E reverting s′ back to s.
Since s′ is reachable by only events from s and s is reach-
able by only events from s′, then Ss

′
= Ss. Analogously,

we can derive Ss
′
= Ss for s′ being the resulting state of

application of a sequence of n events in s. From the assump-
tion that s is not a dead-end state and Ss

′
= Ss, for any s′

reachable from s by applying only events (i.e., s′ ∈ Ss), we
can immediately get that s is a safe state.

Even though the agent cannot control event occurrence, if
the conditions of Proposition 17 as well as the fairness as-
sumption hold, then a potentially applicable robust plan will
stay a potentially applicable robust plan despite any event
occurrences. Hence, there is always a chance that a po-
tentially applicable robust plan eventually becomes a robust
plan (the agent has to wait until the “right” events occur).

By leveraging Definition 16 and Proposition 17 we de-
fine eventually applicable reference plans that if “safely”
followed the agent eventually reaches its goal. To give an il-
lustration, there are two reference plans in Figure 1 (middle
and right). Only the reference plan on the right is eventu-
ally applicable as the unsafe bridge in the bottom row (from
left to right) is a potentially applicable robust plan since if
the ship is in the top row (the AUV might need to wait in
the bottom left corner until the ship moves to the top row),
the unsafe bridge becomes a robust plan. Note that strong
cyclic plans can be constructed from eventually applicable
reference plans.

Definition 18. Let P = (V,A,E, I,G) be a plan-
ning task, where I is safe according to the conditions
of Proposition 17. Let π = 〈a1 . . . , an〉 be a refer-
ence plan for P . If for each maximal subsequence of
π, πi,j = 〈ai, . . . , aj〉, forming an unsafe bridge it is
the case that πi,j is a potentially applicable robust plan
for P ′ = (V,A,E, γ(I, 〈a1, . . . , ai−1〉), G′), where G′ =
{(v, val) | (v, val) ∈ pre(aq) ∧ v 6∈ vars(eff(ar)), j < q ≤
n, j < r < q, or (v, val) ∈ G ∧ v 6∈ vars(eff(ar)), j <
r ≤ n}, then π is an eventually applicable reference plan.

Note that P ′ in the above definition represents a planning
task associated with crossing an unsafe bridge. The initial
state of P ′ takes into consideration only actions preceding
the unsafe bridge, since all applicable events alongside the
state trajectory are reversible (Proposition 17). Hence, even
if some of these events occur, there always exists a sequence

Algorithm 2 Verifying whether the initial state of a planning
task follows the condition for (i) of Proposition 17
Require: A planning task P = (V,A,E, I,G)
Ensure: A set of irreversible events Ei ⊆ E, a set of re-

versible events ER
1: Ei ← {e | e ∈ E s.t. Lemma 15 holds for P and e}
2: RE = ∅
3: for all e ∈ E \ Ei do
4: v, se ← Revert(V,E \ Ei, e)
5: if v, se = NULL then
6: Ei ← Ei ∪ {e}
7: else
8: RE ← RE ∪ {(e, v, se)}
9: end if

10: end for
11: if ∃e′ ∈ Ei : pre(e′) ⊆ (I ∪

⋃
e∈E\Ei eff (e)) then

12: return fail
13: end if
14: if ∃(e, v, se) ∈ RE and ∃(e′, v′, se′) ∈ RE with v 6∈

vars(eff (e′)) and e′ being a clobberer for e then
15: return fail
16: end if
17: Er ← {e | (e, v, se) ∈ RE}
18: for all v ∈ {v | (e, v, se) ∈ RE} do
19: Construct eoDTG GE

r

v = (D(v), TE
r

v)
20: for all x ∈ D(v) and all paths πx from I[v] to x in

GE
r

v do
21: if ∃e′ s.t. (x, e′, y) ∈ TE

r

v , (e′, v, se
′
) ∈ RE

and se
′ 6|= γ(I, πx) then

22: return fail
23: end if
24: end for
25: end for
26: return Ei, Er, RE

of events reverting their effects, so the property of being a
potentially applicable robust plan for the unsafe bridge is
not affected. The goal of P ′, i.e., G′, consists of the variable
assignments that have to be true after the unsafe bridge is
applied in order to successfully execute the rest of the refer-
ence plan and achieve the goal (of P).

7 Generating Eventually Applicable
Reference Plan

Enumerating a complete set of dead-end events is gener-
ally intractable and while some tools such as the “trapper”
tool (Lipovetzky, Muise, and Geffner 2016) work in polyno-
mial time, they can identify only a subset of dead-end states,
so we cannot directly apply Proposition 8 in practice.

We can, on the other hand, leverage Proposition 17 to
identify whether an initial state is a safe state and, conse-
quently, what actions of the agent ensure or compromise
safe states. Given a planning task P = (V,A,E, I,G),
Algorithm 2 verifies whether the condition (i) of Proposi-
tion 17 is met for the initial state. Initially, as in Lemma 15
we identify events that modify some variable in such a way

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

190

Algorithm 3 Generating Eventually Applicable Reference
Plan
Require: A planning task P = (V,A,E, I,G), Ei,Er
Ensure: Eventually Applicable Robust Plan π

1: s← I , π ← 〈〉, en = ∅
2: while s 6|= G do
3: if en = ∅ then
4: un← 0
5: non-deterministically select a ∈ A∪Er s.t. s |=

pre(a)
6: else
7: un++
8: non-deterministically select a ∈ A s.t. s |=

pre(a), c1(a, s) ≥ (un− 1) and c2(a, s) ≥ un
9: end if

10: if no a was selected then return fail
11: s = γ(s, a)
12: if a ∈ A then
13: en← en ∪ {ei | a is an achiever for ei}
14: en← en \ {ei | a is a clobberer for ei}
15: π ← π.a
16: end if
17: end while
18: return π

that no other event can restore its previous value (Line 1).
Then, the rest of events are sorted according to the result of
Algorithm 1 to those possibly irreversible, or those that are
reversible (for the latter set we remember the variable which
was used to identify reversibility) (Lines 3–10). Then, we
check that no possibly irreversible event (from Ei) might
become applicable without agent’s actions (Line 11) (note
that a similar condition is in Proposition 8). The follow-
ing check rules out a possible interference of two (or more)
reversible events that were identified by using different vari-
ables (Line 14). Note that such interferences might lead to
deadlocks and thus compromise reversibility (e.g. two ships
might block each other if they can only move to a location
occupied by the other ship). The last check (Lines 18–25)
ensures that all reachable reversible events from the initial
state are reversible in that state reached from the initial state
by applying other (reversible) events.

Potentially unsafe actions are those that are achievers for
some irreversible event (that might potentially be a dead-
end event) and also those that are clobberers for some re-
versible event. The latter case, in fact, makes some re-
versible events irreversible, which might potentially become
dead-end events. For the sake of clarity, we will consider
scenarios in which the latter case is subsumed by the former
one, i.e., actions that are clobberers for reversible events are
also achievers for irreversible events and vice versa (it is the
case for both AUV and Perestroika domains). Note that con-
sidering scenarios in which the latter case does not subsume
the former one would require to generalise the definition of
unsafe bridge (Def. 11).

To leverage Theorem 13, we need to calculate the value
of the dist function. To do so, we exploit eoDTGs

GE
r

v = (D(v), TE
r

v), constructed for each variable v ∈
{v | (e, v, se) ∈ RE} (as in Line 19 of Alg. 2). For a
given variable v ∈ V and its values x, y ∈ D(v) we de-
fine dv(x, y) as the length of the shortest path from x to
y in GE

r

v , or 0 if GE
r

v is not defined. Then for a state s
and a partial variable assignment g we calculate dist(s, g) as
max({dv(s[v], g[v]) | v ∈ V }). Note that it underestimates
the actual value of dist(s, g) as we focus on a projection to
a variable v whose values s[v] and g[v] are the most distant.

To generate an eventually applicable reference plan for a
planning task P = (V,A,E, I,G), we run Algorithm 2 and
if it does not fail, we run Algorithm 3 (Ei and Er are passed
from Algorithm 2). A standard planning routine is enhanced
in two aspects. The minor aspect considers selecting of a re-
versible event fromEr (Line 5) that can (favourably) change
the state of the environment (e.g. reappearing of a shrinking
platform), which might be essential for finding a reference
plan. The other (major) aspect deals with unsafe bridges. Ir-
reversible events that might possibly become applicable are
stored in en (Lines 13 and 14 show how the en set is mod-
ified according to the properties of the selected action a).
Line 8 ensures that while being on an unsafe bridge the se-
lected action a follows the conditions of Theorem 13. Note
that un represents how many actions on the unsafe bridge
has been applied so far.

8 Experimental Evaluation
The aim of the experimental evaluation is to compare our ap-
proach for finding eventually applicable reference plan (de-
noted as APP) with the state-of-the-art approach that gen-
erates reference plans with minimum number of consecu-
tive unsafe actions (denoted as LIMIT) (Chrpa, Gemrot, and
Pilát 2020) and the approach compiling the planning tasks
with events to FOND planning tasks (Chrpa, Pilát, and Gem-
rot 2019). Note that we compiled constraints from Algo-
rithm 3 into the preconditions and effects of affected actions
(and events), similarly as the LIMIT approach does. We
specified 8 tasks for each domain such that for each task
we can find an eventually applicable reference plan. For
plan generation, we used the LAMA planner (Richter and
Westphal 2010) and for solving the compiled FOND tasks
we used the PRP planner (Muise, McIlraith, and Beck 2012;
Muise et al. 2016). Time limit for planning was set to 10
minutes. Each reference plan was executed such that only
safely applicable subsequences of actions were applied, i.e.,
the (sub)sequences forming robust plans and after they were
applied the agent arrived in a safe state (if no irreversible
event can become applicable, the agent is in a safe state). If
no such subsequence in the current state existed, the agent
had to wait (applied noop). The limit for the number of exe-
cution steps was set to 1000 to identify situations where the
agent is stuck and cannot proceed to the next safe state un-
der any circumstances. For each problem and approach, we
simulated plan execution 10 times. The experiments were
run on Intel Core-i7 1.8GHz, 16GB RAM.3

3Our implementation and benchmarks problems can
be found here: https://gitlab.com/ctu-fee-fras/public/
server-client-simulator-kr-2021

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

191

https://gitlab.com/ctu-fee-fras/public/server-client-simulator-kr-2021
https://gitlab.com/ctu-fee-fras/public/server-client-simulator-kr-2021

AUV
Structure APP LIMIT FOND

N #S #R Pt RPL St Pt Pl St Pt St
1 3 1W 1 130 9 17 FAIL - Act 18711 26
2 3 1C 1 129 7 11 400 7 11 13827 31
3 5 3C 3 200 29 136 2210 21 144 FAIL - Plan
4 10 5C 5 1953 41 61 FAIL - Plan FAIL - Plan
5 15 7C 7 59073 93 117 FAIL - Plan FAIL - Plan
6 5 2W 2 152 16 29 545 16 30 FAIL - Plan
7 10 6W 5 909 87 154 229401 41 116 FAIL - Plan
8 15 12W 7 1231 85 114 FAIL - Act FAIL - Plan

Table 1: Results of the comparison between our approach (APP), the approach limiting the number of consecutive unsafe actions (LIMIT)
and the (FOND) approach. Structure of the problem consists of N – size of the square grid, #R – number of resources, and #S – number of
(C)ruising or (W)andering ships. Pt – runtime in ms for generating Reference Plan (including preprocessing), RPL – reference plan length,
and St – average number of execution steps.

Perestroika
Structure APP LIMIT

N #S #R Pt RPL St Pt Pl St
1 5 16E 5 181 17 29 747 17 25
2 5 16E 8 778 32 52 FAIL - Act
3 9 56E 14 7179 66 118 FAIL - Act
4 9 56E 24 7709 114 298 FAIL - Act
5 5 10R 9 161 33 39 FAIL - Act
6 5 19R 5 1000 17 24 FAIL - Plan
7 9 40R 22 3257 74 102 FAIL - Act
8 9 37R 43 7603 167 223 FAIL - Act

Table 2: Results of the comparison between APP and LIMIT (see
Table 1 for details). Structure of the problem consists of N – size
of the square grid, #R – number of resources, and #S – number of
(E)venly (on all even rows and columns) or (R)andomly distributed
shrinking platforms. Pt, RPL and St are the same as in Table 1

Tables 1 and 2 show the results of the comparison for the
AUV and Perestroika domains, respectively. Note that the
FOND approach did not solve any problem in Perestroika, so
we excluded its results from Table 2. It can be seen that APP
was able in most cases to generate a reference plan within
a few seconds (except AUV-5) while LIMIT was generally
slower and even failed three times to generate a reference
plan in the 10 minutes time limit (see “FAIL - plan” records
in Tables 1 and 2). The reason is that LIMIT tries to generate
a robust plan first, and then tries to generate reference plans
by incrementally increasing the number of allowed consec-
utive unsafe actions (starting with 1) (Chrpa, Gemrot, and
Pilát 2020). Hence, plan generation might fail several times
before a reference plan can be generated, which consumes
a lot of computational time. Also, LIMIT does not take
into account whether some unsafe states are passable or not,
which might cause that the agent gets stuck (see “FAIL - act”
records in Tables 1 and 2). In Perestroika, it happened six
times, since reference plans often went via shrinking plat-
forms with maximum size of 1, which, however, might dis-
appear right after the agent steps on them. In contrary, APP
is able to avoid these platforms. The FOND approach man-
aged to solve only the two simplest problems in the AUV
domain. Also, the number of execution steps was consider-

ably higher than for both APP and LIMIT.
Note that the difference between reference plan length and

the number of execution steps refer to the number of times
the agent had to wait (apply noop). The difference is rather
large in the AUV-3 problem with unsafe bridges consisting
of 5 actions and hence it might take a while before ships are
“appropriatelly” arranged so the agent can safely pass.

9 Conclusion
Planning and acting in environments with non-deterministic
events poses a challenge, specifically in situations in which
events can cause dead-ends that in practice might mean dam-
age or destruction of the agent (or robot). We focused
on classes of problems where events represent “cyclic phe-
nomena” that might endanger the agent (e.g. ships pass-
ing through the area an AUV performs observations might
destroy the AUV if they collide with it). In such problem
classes, events can be divided to reversible and irreversible
such that the latter ones are considered as “dangerous” as
they might possibly cause dead-ends. Also, if irreversible
events cannot become applicable in a given state, we know
that we are in a safe state (if the goal is still reachable).
We introduced methods for dividing events to reversible and
irreversible and for identifying whether an initial state is
possibly safe. Then, we introduced the concept of “unsafe
bridges” that account for sequences of actions crossing un-
safe states, in which irreversible events might become appli-
cable. We have shown (in Theorem 13) that unsafe bridges
can be safely passed if “problematic” events are far enough.
Based on this observation, we proposed a method that gener-
ate “eventually applicable” reference plans in which all un-
safe bridges can be eventually passed (assuming the fairness
assumption). The experimental results have shown that our
approach outperforms the state-of-the-art one (Chrpa, Gem-
rot, and Pilát 2020) both in plan generation time and success
rate in plan execution.

In future, we plan to focus on limitations of the method –
that sometimes safe states cannot be connected by (possibly
applicable) robust plans while there exists a strong (cyclic)
plan that can do so. Also, we would like to focus on multi-
agent and temporal settings.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

192

Acknowledgements
This Research was funded by the Czech Science Foun-
dation (project no. 18-07252S), by AFOSR award
FA9550-18-1-0097 and by the OP VVV funded project
CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Center for
Informatics”.

References
Chapman, D. 1987. Planning for conjunctive goals. Artif.
Intell. 32(3):333–377.
Chrpa, L.; Gemrot, J.; and Pilát, M. 2017. Towards a safer
planning and execution concept. In Proceedings of the 29th
IEEE International Conference on Tools with Artificial In-
telligence (ICTAI), 972–976.
Chrpa, L.; Gemrot, J.; and Pilát, M. 2020. Planning and act-
ing with non-deterministic events: Navigating between safe
states. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence (AAAI-20). in press.
Chrpa, L.; Pilát, M.; and Gemrot, J. 2019. Compiling plan-
ning problems with non-deterministic events into FOND
planning. In Proceedings of the RCRA International Work-
shop.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P.
2003. Weak, strong, and strong cyclic planning via sym-
bolic model checking. Artif. Intell. 147(1-2):35–84.
Cserna, B.; Doyle, W. J.; Ramsdell, J. S.; and Ruml, W.
2018. Avoiding dead ends in real-time heuristic search. In
Proceedings of the Thirty-Second AAAI Conference on Arti-
ficial Intelligence, New Orleans, Louisiana, USA, February
2-7, 2018.
Daum, J.; Torralba, Á.; Hoffmann, J.; Haslum, P.; and We-
ber, I. 2016. Practical undoability checking via contingent
planning. In Proceedings of the Twenty-Sixth International
Conference on Automated Planning and Scheduling, ICAPS
2016, London, UK, June 12-17, 2016., 106–114.
Dean, T., and Wellman, M. 1990. Planning and Control.
Morgan Kaufmann Publishers.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
planning, theory and practice. Morgan Kaufmann Publish-
ers.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2016. Automated
Planning and Acting. Cambridge University Press.
Ingrand, F., and Ghallab, M. 2017. Deliberation for au-
tonomous robots: A survey. Artif. Intell. 247:10–44.
Jonsson, P., and Bäckström, C. 1998. State-variable plan-
ning under structural restrictions: Algorithms and complex-
ity. Artif. Intell. 100(1-2):125–176.
Lipovetzky, N.; Muise, C. J.; and Geffner, H. 2016. Traps,
invariants, and dead-ends. In ICAPS 2016, 211–215.
Mausam, and Kolobov, A. 2012. Planning with Markov
Decision Processes: An AI Perspective. Synthesis Lectures
on Artificial Intelligence and Machine Learning. Morgan &
Claypool Publishers.
Morak, M.; Chrpa, L.; Faber, W.; and Fišer, D. 2020. On
the reversibility of actions in planning. In Proceedings of the

17th International Conference on Principles of Knowledge
Representation and Reasoning (KR 2020), 652–661.
Muise, C. J.; Felli, P.; Miller, T.; Pearce, A. R.; and So-
nenberg, L. 2016. Planning for a single agent in a multi-
agent environment using FOND. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial In-
telligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016,
3206–3212.
Muise, C. J.; McIlraith, S. A.; and Beck, J. C. 2012. Im-
proved non-deterministic planning by exploiting state rele-
vance. In Proceedings of the Twenty-Second International
Conference on Automated Planning and Scheduling, ICAPS
2012, Atibaia, São Paulo, Brazil, June 25-19, 2012.
Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1993.
CIRCA: a cooperative intelligent real-time control archi-
tecture. IEEE Trans. Systems, Man, and Cybernetics
23(6):1561–1574.
Patra, S.; Ghallab, M.; Nau, D. S.; and Traverso, P. 2019.
Acting and planning using operational models. In The
Thirty-Third AAAI Conference on Artificial Intelligence,
7691–7698.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research (JAIR) 39:127–177.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. FF-Replan: A
baseline for probabilistic planning. In ICAPS 2007, 352–
359.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

193

	Introduction
	Preliminaries
	Classical Planning
	Non-deterministic Events
	FOND Planning
	Relations between Actions and Events
	Dead-end and Safe States
	Reference and Robust Plans

	Case Studies
	The AUV Domain
	The ``Perestroika'' Domain

	Unsafe Bridges
	Event Reversibility
	Potentially Applicable Robust Plans
	Generating Eventually Applicable Reference Plan
	Experimental Evaluation
	Conclusion

