
Closed- and Open-world Reasoning in DL-Lite for Cloud Infrastructure Security

Claudia Cauli1 , Magdalena Ortiz2 , Nir Piterman1

1University of Gothenburg
2TU Wien

Abstract

Infrastructure in the cloud is deployed through configuration
files, which specify the resources to be created, their settings,
and their connectivity. We aim to model infrastructure before
deployment and reason about it so that potential vulnerabil-
ities can be discovered and security best practices enforced.
Description logics are a good match for such modeling ef-
forts and allow for a succinct and natural description of cloud
infrastructure. Their open-world assumption allows captur-
ing the distributed nature of the cloud, where a newly de-
ployed infrastructure could connect to pre-existing resources
not necessarily owned by the same user. However, parts of
the infrastructure that are fully known need closed-world rea-
soning, calling for the usage of expressive formalisms, which
increase the computational complexity of reasoning. Here,
we suggest an extension of DL-LiteF that is tailored for cap-
turing such cloud infrastructure. Our logic allows combining
a core part that is completely defined (closed-world) and in-
teracts with a partially known environment (open-world). We
show that this extension preserves the first-order rewritability
of DL-LiteF for knowledge-base satisfiability and conjunc-
tive query answering. Security properties combine universal
and existential reasoning about infrastructure. Thus, we also
consider the problem of conjunctive query satisfiability and
show that it can be solved in logarithmic space in data com-
plexity.

1 Introduction
Complex cloud infrastructure is managed through code files
that are compiled into atomic deployment instructions as
part of a process known as Infrastructure as Code, IaC.
As of 2021, known IaC frameworks include AWS Cloud-
Formation, Terraform, Microsoft Azure Resource Manager,
Google Cloud Deployment Manager, Chef, and Puppet, to
name a few. Unfortunately, though, the same features that
make IaC a convenient and powerful deployment tool—
reusability, modularity, and shareability—also threaten the
security of the cloud. IaC files are often recycled and com-
bined, with little consideration of whether the original busi-
ness context and security requirements apply to the new us-
age scenario. The security vulnerabilities arising from such
a practice are subtle and widespread and need to be detected
early, at the level of configuration files, before potentially-
vulnerable infrastructure is deployed.

For such reasons, we research the application of knowl-
edge representation formalisms to the modeling and reason-
ing of IaC files and work towards a comprehensive frame-
work that fits into the scene set by existing tools (such as
static analysis, linters, and rule-based recommendation sys-
tems) to secure cloud infrastructure pre-deployment. De-
scription logics are a good match for such modeling ef-
forts. They allow us to succinctly and unambiguously de-
scribe cloud infrastructures, and to leverage decidable rea-
soning services, often implemented in efficient off-the-shelf
engines, when reasoning about their security.

By the distributed nature of the cloud, users can config-
ure their infrastructure to connect to resources that are run-
ning elsewhere but not declared in their accounts. This hap-
pens frequently; for instance, when users have permission
to perform operations on resources that they do not own,
such as write or read permissions on a shared storage in-
stance. As a consequence, IaC files may combine objects
for which we have full knowledge, as declared in the con-
figuration file, with objects for which we only have par-
tial knowledge, as referenced by the configuration file. Al-
though the structural specifications are known for both types
of resources, the actual configuration of objects that are not
declared in the IaC file is not known. Is the shared stor-
age encrypted? Is it accessible through a web server? Is
it publicly readable or writable? To answer these ques-
tions, we need to combine closed- and open-world rea-
soning in a way that enables verification and refutation of
queries representing potential vulnerabilities. In previous
work (Cauli et al. 2021a), we introduced the idea of us-
ing DL-based reasoning techniques for cloud infrastructure
security, and used the expressive ALCOIQ to model and
reason about AWS CloudFormation, Amazon Web Services
proprietary IaC framework. We simulated closed-world rea-
soning on selected nodes using the rich constructors avail-
able in ALCOIQ, such as nominals, universal restrictions,
and counting quantifiers. However, reasoning about se-
curity using this logic was not efficient, as basic services
like satisfiability are NEXPTIME-complete (Tobies 1999;
Baader et al. 2017) and the encoding of vulnerability queries
turned out to be non-trivial for users that are not versed in
description logic. This work highlighted the need for a for-
malism that scales to the size of cloud deployments, offers
a more transparent and straightforward modeling language,

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

174

and does not require cumbersome specifications of security
properties to catch the desired interpretation.

In this paper, we instead introduce a lightweight descrip-
tion logic that is tailored to model cloud infrastructure, at the
same time ensuring tractable reasoning. We extend the pop-
ular DL-LiteF with specification predicates whose interpre-
tation is closed over a core part of the knowledge base (KB)
but open elsewhere. We call such KBs core-closed knowl-
edge bases. We show that this specific way of combining
open and closed interpretations of the same predicates does
not incur complexity penalties. Indeed, we show that satisfi-
ability and query entailment over core-closed KBs are first-
order reducible. To reason about mitigations and vulnerabil-
ities to security threats, and in analogy to the terminology
used for 3-valued reasoning in the model-checking com-
munity, we introduce MUST and MAY conjunctive queries
and devise a simple logical language for the specification of
such properties. Technically, properties that must hold are
resolved via query entailment and properties that may hold
are resolved via query satisfiability. We show that comput-
ing whether a tuple ~t is a sat-answer of a given query can be
solved in logarithmic space in the core portion of the KB.

The paper is structured as follows. In Sec. 2 we motivate
the choices made in the contributions put forth by this paper.
In Sec. 3 we review the background on DL-LiteF and con-
junctive queries. In Sec. 4 and 5 we introduce core-closed
KBs and study KB satisfiability. In Sec. 6 and 7 we discuss
conjunctive query entailment and satisfiability. In Sec. 8 we
present our security queries. We then discuss related work
(Sec. 9) and conclude in Sec. 10. Results and proofs that are
omitted in this paper are found in the full version.

2 Motivation
In this section, we emphasize how the application of descrip-
tion logic to cloud security drives the two main contributions
of this paper: core-closed KBs and MUST/MAY queries.

IaC Modeling In the Infrastructure as Code paradigm, the
creation of resources is managed through configuration files
that declare types and settings of the resource instances to be
created, and are automatically compiled into atomic deploy-
ment instructions. Configuration files must validate against
specification files, supplied by the cloud provider to describe
how each type of resource can be declared and configured.
In addition to the usual TBox and ABox, we introduce here
two dedicated sets of assertions and axioms, denoted asM
and S respectively, and use them to encode resources config-
uration and specification according to the IaC paradigm. The
following is an example of how these could be used to model
the structural specification of the resource type Bucket (S)
and the actual configuration of an instance called “data”
(M); and how these relate to the higher-level concept of
Storage (T), which could further have external entities (A).

S = { ∃logsStore v Bucket, ∃logsStore− v Bucket }
M = { Bucket(data), logsStore(data, logs) }
T = { Bucket v Storage }
A = { Storage(externalStorage) }

Resources that are declared in an IaC configuration file are
in the process of being deployed but do not yet exist. We
informally call these the template resources. These form
an infrastructure that can be connected to other external
resources—not declared in the current deployment template
but already running elsewhere. We call these the boundary
resources, as they lie at the boundaries of the known core in-
frastructure. In the example above, data is a template node
and logs is a boundary node. Boundary and external nodes
are not part of our deployment. We may not own these cloud
resources and have no knowledge of their configuration, but
still, have permission to use them. However, we do know
that these must have some configuration that conforms to
the specifications too; therefore, we adopt an open-world
assumption when it comes to boundary resources configu-
ration w.r.t. the general system specifications. In contrast,
we assume to have complete information about the config-
uration of our template resources w.r.t. the specifications
and, thus, apply closed-world reasoning over these. In our
example, where logs is a boundary node, although we do
not own its configuration we certainly know that it must be
a bucket and that it may have a logsStore property config-
ured. Regarding the data object, which is a template node,
we exclude the possibility of it being involved in additional
relations (such as being the source or target of a logsStore
property). In fact, had there been any further properties they
would have been declared, and since this resource instance
does not yet exist it cannot be pointed to by any node that is
external to the current deployment. We call the pair 〈S,M〉
the core of our system, and refer to the richer KBs described
above as core-closed KBs.

Querying for Vulnerabilities and Mitigations In secu-
rity, we seek query languages to express that mitigations to
security threats must be present (vs. may be absent) and vul-
nerabilities may be present (vs. must be absent). Such a
requirement calls for efficient decision procedures for query
satisfiability, in addition to query entailment. In our usage
scenario, Boolean combinations of so-called MUST/MAY
queries serve that purpose. We define MUST/MAY queries
by nesting regular conjunctive queries within the scope of a
MUST or MAY operator and resolve these via query entail-
ment and query satisfiability, respectively.

This implementation allows us, for example, to query for
potentially vulnerable instances such as “Buckets that may
store their own logs”, encoded as

qv[x] = MAY logsStore(x, x),
and to query for instances where mitigations to security
threats are in place such as “Buckets that must be server-
side encrypted”, expressed as
qm[x] = MUST (∃y,z. encrypt(x, y) ∧ sseConfig(y, z)) .
In addition, through Boolean combinations of MUST/MAY
queries we combine multiple properties into one single
check; e.g., the following query witnessing the breach of the
mitigation “Buckets that may store logs must be encrypted”:
q[x] = MUST Bucket(x) ∧ MAY (∃y. logsStore(y, x))

∧ ¬MUST (∃y,z. encrypt(x, y) ∧ sseConfig(y, z)) .

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

175

We note that the combination of core closed-world reason-
ing and MUST/MAY queries enables a very precise frame-
work for the verification and refutation of security proper-
ties. Importantly, such precision allows us to reduce the
rate of false-positive results that would clutter the quality
of the findings presented to users and security engineers.
For instance, the set of answers to the vulnerability query qv
over the sample model introduced in the previous paragraph
would contain the logs node but would not contain the data
node. The data bucket is already known to store its logs in
a distinct bucket and is assumed to not have any more prop-
erties. The logs bucket, instead, belongs to the universe of
external underspecified resources, for which it is not known
whether it stores any logs (and where), and might actually
store logs on itself—a fact that is worth spotlighting while
assessing the security of IaC deployments. As can be seen
in the extended version of our previous work (Cauli et al.
2021b), the examples discussed here are very close to real
IaC deployments’ encoding and to the properties that are of
interest for a security review.

3 Background
Here, we review DL-LiteF and CQs, which provide the basis
for the contributions made throughout the paper.

Let C, R, and I be countably infinite sets of concept
names, role names, and individual names. A DL-LiteF con-
cept B is built according to the syntax B ::= ⊥ | A | ∃P,
where A is a concept name from the set C and P is a role
name R, or its inverse R−, from the set R. A TBox T is
a collection of positive inclusion axioms B1 v B2, nega-
tive inclusion axioms B1 v ¬B2, and functionality axioms
Funct P. An ABox A is a collection of concept and role
assertions, both positive and negative, of the form A(a),
¬A(a), R(a, b), and ¬R(a, b), with a,b individual names
from the set I. A DL-LiteF knowledge base (KB) K is
the pair 〈T ,A〉. The semantics of a DL-LiteF KB is given
in terms of interpretations. An interpretation is the tuple
I = (∆I , ·I), where ∆I is a non-empty domain and ·I is
an interpretation function. The function ·I assigns to every
concept name A a set AI subset of ∆I , to every role name R
a set RI subset of ∆I ×∆I , and to every individual name a
a domain element aI form the set ∆I . We adopt the unique
name assumption (UNA), which requires that aI 6= bI for
individual names a 6= b. The interpretation function is ex-
tended to concepts and roles as follows.

⊥I = ∅ (¬B)I = ∆I r BI

(R−)I = {(a, b) | (b, a) ∈ RI}
(∃P)I = {a | ∃b ∈ ∆I .(a, b) ∈ PI }

An interpretation I is a model of K iff for all α in T ∪A we
have I |= α. The KB K is said to be satisfiable when there
exists at least one model. We write K |= α whenever I |= α
for all models I of K.

A conjunctive query (CQ) is an existentially-quantified
formula q[~x] of the form ∃~y.conj(~x, ~y), where conj is a con-
junction of positive atoms and potentially inequalities. A
union of conjunctive queries (UCQ) is a disjunction of CQs.
The variables in ~x are called answer variables, those in ~y

are the existentially-quantified query variables. A tuple ~c of
constants appearing in K is an answer to q if for all interpre-
tations I model ofK we have I |= q[~c]. We call these tuples
the certain answers of q over K, denoted ans(K, q), and the
problem of testing whether a tuple is a certain answer query
entailment. A tuple ~c of constants appearing in K satisfies
q if there exists an interpretation I model of K such that
I |= q[~c]. We call these tuples the sat answers of q over K,
denoted sat−ans(K, q), and the problem of testing whether
a given tuple is a sat answer query satisfiability. In the rest of
the paper, we consider inequalities only in the case of query
satisfiability and not in the case of query entailment.

4 DL-LiteF Core-closed KBs
In this section, we introduce the so-called “core-closed”
knowledge bases, their models, and their unique features.

A DL-LiteFcore-closed KB is the tuple K =
〈T ,A,S,M〉, built from a standard KB 〈T ,A〉 and a core
〈S,M〉. As described in section 2, the set S contains DL-
LiteF axioms representing the core structural specifications
and the set M contains positive concept and role asser-
tions representing the core configuration. Syntactically,M
is similar to an ABox A but, differently from A, it is as-
sumed to be complete with respect to the specifications S .
As usual, 〈T ,A〉 encodes the incomplete terminological and
assertional knowledge that, in our setting, may refer to both
the (closed) core and the surrounding (open) world.

The core-closed KB K is defined over the sets of con-
cept names C, role names R, and individual names I. The
set of concepts is partitioned into specification concepts CS
and open concepts CK. The set of roles is partitioned into
specification roles RS and open roles RK. The set of indi-
viduals is partitioned into the core individuals IM and the
open individuals IK. We call CS and RS core-closed pred-
icates as their extension is closed over the core domain and
open otherwise. In contrast, we call CK and RK open pred-
icates. From now on, we denote symbols from the alphabet
XX with the subscript X , and symbols from the alphabet
X with no subscript. We now define which assertions are
M-assertions, i.e., fall into the scope ofM; and which as-
sertions are A-assertions, i.e., fall into the scope of A.

M⊆ { AS(aM), RS(aM, aM), RS(aM, aK), RS(aK, aM) }
A ⊆ { AK(a), RK(a, b), AS(aK), RS(aK, bK) }

We assumeM to be complete and consistent w.r.t. S , and
interpret as false all M-assertions missing from M. The
usual open-world assumption is made over A-assertions.

For convenience, we sometimes consider the set of open
individuals IK as further partitioned into a set of boundary
elements IB , which appear inM, and a set of free elements
IK

′
, which appear only in A. With this notation in mind,

we introduce the active domain of constants appearing in
M, denoted adom(M) and defined as the set IM] IB .
We adopt the standard name assumption over individuals in
adom(M) and the unique name assumption over individ-
uals in IK

′
. In section 7, we will refer to this assumption

as core standard name assumption. Such an assumption
reflects the knowledge that we have of the system that we

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

176

aim at modeling. According to it, the nodes declared in the
(known) core part of the infrastructure simply coincide with
their interpretation domain; but the nodes belonging to the
(unknown) surrounding part of the infrastructure need to be
mapped to the domain. All these elements are distinct.

According to the DL-LiteF syntax, axioms are built from
concepts B ::= BS | BK, with BK ::= ⊥ | AK | ∃PK and
BS ::= ⊥ | AS | ∃PS , where P, called basic role, is either
an atomic role R or its inverse R− from the set R. Axioms in
S (S-axioms) refer only to core-closed predicates; whereas
T -axioms can refer both to core-closed predicates (on the
left-hand side of concept inclusions) and to open predicates:

S ⊆ { BS1 vBS2 , BS1 v¬BS2 , Func(PS) }
T ⊆ { B1vBK2 , B1v¬BK2 , Func(PK) }

The semantics of a DL-LiteF core-closed KB is given in
terms of interpretations I, consisting of a non-empty domain
∆I and an interpretation function ·I . The latter assigns to
each concept A a subset AI of ∆I , to each role R a sub-
set RI of ∆I × ∆I , and to each individual a a node aI in
∆I . An interpretation I is a model of an inclusion axiom
B1 v B2 if BI1 ⊆ BI2 . An interpretation I is a model of a
membership assertion A(a), (resp. R(a, b)) if aI ∈AI (resp.
(aI , bI) ∈ RI). We say that I models T , S , and A if it
models all axioms or assertions contained therein. We say
that I modelsM, denoted I |=CWA M, when it models an
M-assertion f if and only if f ∈M. Finally, I models K if
it models T , S ,A, andM. If K has at least one model, then
K is satisfiable.

The notion of FOL-reducibility captures the property that
we can reduce satisfiability and query answering over a core-
closed KB to evaluating a first-order logic query overA and
M considered as minimal models. In particular, we consider
the following interpretations of A andM: the database in-
terpretation of A, denoted db(A), and the labeled transition
system interpretation ofM, denoted lts(M).

Given an ABox A, with adom(A) its active do-
main of constants, we denote by db(A) the interpretation
(∆db(A), ·db(A)) that is defined as follows:

∆db(A) = adom(A)

adb(A) = a, for each constant a appearing in A
Adb(A) = { a | A(a)∈A } for each A∈C
Rdb(A) = { (a, b) | R(a, b)∈A } for each R∈R.

For an MBox M, we denote by lts(M) the interpretation
(∆lts(M), ·lts(M)) that is defined similarly as above with
one notable exception: the interpretation of concept and role
names is computed only for those concepts and roles that fall
within the scope of M, that is, core-closed predicates CS

and RS . It is easy to see that db(A) |= A, and, precisely,
it is the minimal model of A. Similarly, lts(M) |=CWA M,
and, in particular, it is the unique model ofM.

We consider various reasoning problems over core-closed
KBs and study their combined and data complexity (Vardi
1982). We measure data complexity in terms of the model
M, which we expect to be much larger than A.

5 Core-closed KB Satisfiability
As per standard DL-LiteF results, we now show that satisfi-
ability of core-closed KBs (i) can be reduced to consistency
of the functionality axioms and of the axioms in the nega-
tive closure of T and S , and (ii) it is FOL-reducible. Read-
ers familiar with the work of (Calvanese et al. 2007b) will
recognize the analogies between the two presentations.

As defined in the previous section, a DL-LiteF core-
closed KB K = 〈T ,A,S,M〉 is satisfiable if and only
if there exists at least one interpretation I such that I |=
T ∪ A ∪ S and I |=CWAM. Let ga be a function that takes
as input a basic role P and two individuals a, b and returns
a membership assertion in the following way: ga(P, a, b) =
R(a, b) if P=R, and ga(P, a, b) = R(b, a) if P=R−.

Canonical Interpretation The canonical interpretation of
a core-closed KBK is constructed according to the notion of
boundary chase, or bchase. The bchase is built by exploiting
the applicable positive inclusion axioms in the sets T and S .
Definition 1 (Applicable Axioms). Let X be a set of M-
assertions, Y be a set of A-assertions, and PIT and PIS
be the positive inclusion axioms in T and S , respectively.
Then, an axiom α ∈ PIT] PIS is said to be applicable in
Y to an assertion f ∈ Y] X if:
c1 α=A v AK, f=A(a), and AK(a) /∈ Y
c2 α=∃P v AK, f=ga(P, a, b), and AK(a) /∈ Y
c3 α = A v ∃PK, f = A(a), and there is no b such that

ga(PK, a, b) ∈ Y
c4 α=∃P v ∃PK, f = ga(P, a, b), and there is no c such

that ga(PK, a, c)∈Y
c5 α=AS v A′S , fA=AS(aK), and A′S(aK) /∈ Y
c6 α=∃PS v AS , f=ga(PS , aK, b), and AS(aK) /∈ Y
c7 α= AS v ∃PS , fA = AS(aK), and there is no aM s.t.

ga(PS , aK, aM)∈X and no cK s.t. ga(PS , aK, cK)∈Y
c8 α = ∃P′S v ∃PS , f = ga(P′S , aK, b), and for no aM,

ga(PS , aK, aM)∈X and for no cK, ga(PS , aK, cK)∈Y
Starting with Y0 =A and X =M (that is, starting with

the contents ofA andM), axioms are incrementally applied
to assertions. At each i-th step, an axiom α is applied to an
assertion f in Yj ∪ X and a new membership assertion is
added to Yj+1. Following such step, α is not applicable in
Yj+1 to the assertion f anymore. Depending on the order of
application, syntactically different sets of assertions could
be generated. To account for this, from now on we assume
the existence of an infinite ordered set of fresh symbols I+,
from which we draw fresh individuals, and apply assertions
following a preset order.
Definition 2 (Boundary Chase). Let K = 〈T ,A,S,M〉 be
a DL-LiteF core-closed KB, PIT the positive inclusion ax-
ioms in T , PIS the positive inclusion axioms in S , and I+

a set of fresh individuals. Then, the boundary chase of K,
denoted bchase(K), is defined as:

bchase(K,X) =
⋃
j∈N
Yj

where X = M, Y0 =A, and Yj+1 = Yj ∪ {fnew}, where
fnew depends on the rule being applied:

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

177

let f be the first assertion s.t. there is α applicable in Yj to f
let α be the first applicable axiom
let anew be the next available constant in the ordered set I+
switch < f, α >

case c1: fnew = AK(a)
case c2: fnew = AK(a)
case c3: fnew = ga(PK, a, anew)
case c4: fnew = ga(PK, a, anew)
case c5: fnew = A′S(aK)
case c6: fnew = AS(aK)
case c7: fnew = ga(PS , aK, anew)
case c8: fnew = ga(PS , aK, anew)

As customary, we note that (i) negative inclusion and
functionality axioms play no role in the construction of the
bchase, and that (ii) this notion of bchase is fair, that is,
all applicable axioms will eventually be applied, as for-
malized by the following statements. Let bchasei be the
bchase built at the i−th rule application. Then, if there is
an i ∈ N s.t. axiom α is applicable in bchasei(K,X) to
an assertion f ∈ bchasei(K,X), then there is a j > i s.t.
bchasej+1(K,X) = bchasej(K,X)∪{f ′}, where f ′ is the
result of applying α to f in bchasej(K,X).

Moreover, as clear from definitions 1 and 2, we have that
an axiom is applicable to anM-assertion only when a fresh
assertion about a “boundary” individual aK can be added
to the chase. However, only A-assertions are included in
the bchase itself, and the procedure of adding fresh asser-
tions only generates A-assertions and never generates M-
assertions. We formalize this in the following lemma.
Lemma 1. Let K = 〈T ,A,S,M〉 be a DL-LiteF core-
closed KB, let i be an index in N, and let bchasei(K,M)
be K’s i-th boundary chase. Then, bchasei(K,M) does not
containM-assertions.

We are now ready to define the notion of canonical inter-
pretation of a core-closed KB.
Definition 3 (Canonical Interpretation). The canonical in-
terpretation of a core-closed KB K, denoted as can(K), is
the interpretation can(K) = (∆can(K), ·can(K)) where:

∆can(K) = IM] IK] I+

acan(K) = a for a ∈ adom(M) ∪ bchase(K,M)

AK
can(K) = {a | AK(a) ∈ bchase(K,M)}

RK
can(K) = {(a, b) | RK(a, b) ∈ bchase(K,M)}

AS
can(K) = AS

lts(M) ∪ {a | AS(a) ∈ bchase(K,M)}
RS

can(K) = RS
lts(M) ∪ {(a, b) | RS(a, b) ∈ bchase(K,M)}

We refer to the canonical model built with the i-th bchase
as cani(K) = (∆can(K), ·cani(K)) and note that ∆lts(M)⊆
∆can(K), ∆db(A)⊆∆can(K), and ·lts(M)∪·db(A) = ·can0(K).
Lemma 2. Let K = 〈T ,A,S,M〉 be a DL-LiteF core-
closed KB, and let can(K) be its canonical interpretation.
Then, can(K) is a model ofM.

Proof. We show that can(K) models anM-assertion f iff if
f ∈M. The ‘if’ direction follows from the fact that can(K)

contains lts(M), which is a model of M and contains all
M-assertions f such that f ∈ M. The ‘only if’ direc-
tion follows from Lemma 1: in particular, can(K) is the
union of lts(M) and bchase(K,M), and since bchase does
not containM-assertions, then allM-assertions in can(K)
are inside lts(M). Since lts(M) modelsM, then allM-
assertions f in can(K) are also in M. We conclude that
can(K) |=CWAM.

Lemma 3. Let K = 〈T ,A,S,M〉 be a DL-LiteF core-
closed KB, let PIT be the positive inclusion axioms in T ,
and let PIS the positive inclusion axioms in S . Then,
can(K) is a model of (PIT ,A, P IS ,M).

As a consequence, every DL-LiteF core-closed KB with
only positive inclusion axioms in T and S (s.t. PIT = T
and PIS = S) is always satisfiable, since one can always
build a can(K) that is a model ofK. Regarding functionality
assertions, the following lemma applies.

Lemma 4. Let K = 〈T ,A,S,M〉 be a DL-LiteF core-
closed KB, let FT be the subset of functionality axioms in
T , and let FS be the subset of functionality axioms in S .
Then can(K) is a model of (FT ,A, FS ,M) if and only if
db(A) ∪ lts(M) is a model of (FT ,A, FS ,M).

NI-closure Let us now consider negative inclusion ax-
ioms. In particular, to establish a satisfaction relation be-
tween db(A) and lts(M), on one side, and the NIs in K, on
the other side, we need to consider the interaction between
the positive and the negative inclusion axioms that are con-
tained in K. In the following, we materialize the interaction
between the PIs and NIs contained in T ∪ S by computing
their negative inclusion closure, cln(T ∪ S). We then show
that can(K) is a model of such closure.

Definition 4. Let T be a DL-LiteF TBox, and let S be a DL-
LiteF SBox. We call NI-closure of T ∪S the set cln(T ∪S)
of inclusion axioms defined inductively as follows:

1. All NIs in T ∪ S are in cln(T ∪ S);
2. All Fs in T ∪ S are in cln(T ∪ S);
3. If B1 v B2 ∈ (T ∪ S), and B2 v ¬B3 (or B3 v ¬B2)
∈ cln(T ∪ S), then also B1v¬B3 ∈ cln(T ∪ S);

4. If either ∃P v ¬∃P ∈ cln(T ∪ S) or ∃P− v ¬∃P− ∈
cln(T ∪ S), then both are in cln(T ∪ S).

This closure does not add negative inclusion axioms that
were not implied already by T ∪ S .

Lemma 5. Let T ∪ S be a set of DL-LiteF inclusion ax-
ioms, and let α be either a functionality axiom or a negative
inclusion axiom. Then, if cln(T ∪S) |= α then T ∪S |= α.

We are now ready to show that, provided we have com-
puted the closure cln(T ∪ S), the analogous of Lemma 3
and Lemma 4 hold for NIs.

Lemma 6. Let K = 〈T ,A,S,M〉 be a DL-LiteF core-
closed KB. Then, can(K) is a model of K if and only if the
union db(A)∪ lts(M) is a model of cln(T ∪S),A, andM.

Corollary 1. Let T ∪ S be a set of DL-LiteF inclusion ax-
ioms, and α a functionality or negative inclusion axiom. We
have that, if T ∪ S |= α then cln(T ∪ S) |= α.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

178

FOL-reducibility
Lemma 7. Let K = 〈T ,A,S,M〉 be a DL-LiteF core-
closed KB. Then can(K) is a model of K if and only if K
is satisfiable.

Since can(K) could be infinite, its construction is in gen-
eral neither convenient nor possible. However, the results
presented so far, especially Lemmas 6 and 7, allow us to
conclude that in order to check satisfiability of a DL-LiteF
core-closed KBK it is sufficient to compute cln(T ∪S) and
to look at db(A) ∪ lts(M).

Theorem 1. Let K = 〈T ,A,S,M〉 be a DL-LiteF core-
closed KB. Then K is satisfiable if and only if db(A) ∪
lts(M) is a model of cln(T ∪ S), A, andM.

Proof.⇒ K is satisfiable. From Lemma 7, it follows that
can(K) is a model of K. From Lemma 6, it follows that
db(A) ∪ lts(M) is a model of cln(T ∪ S), A, andM.

⇐ If db(A) ∪ lts(M) is a model of cln(T ∪ S), A, andM,
then, from Lemma 6, can(K) is a model of K, and, from
Lemma 7, K is satisfiable.

Verifying that db(A) ∪ lts(M) models cln(T ∪ S), A,
andM, can now be done by writing a Boolean FOL query
over db(A)∪lts(M) itself. We use the following translation
function δ from axioms in cln(T ∪ S) to FOL formulas:

δ(func R) = ∃x, y, z.R(x, y) ∧ R(x, z) ∧ y 6= z

δ(func R−) = ∃x, y, z.R(y, x) ∧ R(z, x) ∧ y 6= z

δ(B1 v ¬B2) = ∃x.γ1(x) ∧ γ2(x)

where Bi is a DL-LiteF complex concept, and in the last
equation we have: γi(x) = Ai(x) if Bi = Ai; γi(x) =
∃yi.Ri(x, yi) if Bi = ∃Ri; and γi(x) = ∃yi.Ri(yi, x) if
Bi = ∃R−i . Intuitively, such formulas detect inconsistencies
that would make db(A) ∪ lts(M) not model the axioms in
the NI-closure.

To summarize, to decide satisfiability of a DL-LiteF core-
closed KB K we need to: (1) compute db(A) and lts(M);
(2) compute cln(T ∪S); and (3) compute the Boolean FOL
formula qunsat as the union of all Boolean formulas returned
by the application of δ to every axiom in cln(T ∪ S). We
show how this is done in Algorithm 1.

Algorithm 1: The algorithm Consistent
Inputs : K = 〈T ,A,S,M〉
Output: true if K is satisfiable, false otherwise

1 def Consistent (K):
2 qunsat ::= ⊥;
3 foreach α ∈ cln(T ∪ S) do
4 qunsat ::= qunsat ∨ δ(α);

5 if qdb(A)∪lts(M)
unsat = ∅ then

6 return true;

7 return false;

Lemma 8. Let K = 〈T ,A,S,M〉 be a DL-LiteF core-
closed KB. Then, the algorithm Consistent(K) terminates,
and K is satisfiable iff Consistent(K) returns true.

Proof. Termination follows from the fact that cln(T ∪S) is
a finite set. The query qunsat verifies whether there is an ax-
iom α in the NI-closure that is violated in db(A) ∪ lts(M).
The algorithm returns true only when such an axiom does
not exists, therefore, db(A)∪ lts(M) is a model of all asser-
tions in cln(T ∪S), and, by Theorem 1,K is satisfiable.

As a consequence of Lemma 8, we get:

Corollary 2. Satisfiability of a DL-LiteF core-closed KB is
FOL reducible.

6 CQ Entailment
In this section, we discuss entailment of a conjunctive query
q over a core-closed KB K and computation of the cer-
tain answers ans(q,K). Let us recall that, for the en-
tailment problem, we are interested in queries that do not
contain inequalities. By the construction of K’s canonical
model can(K) presented in the previous section, it is easy
to see that the preliminary properties that hold for DL-LiteF
KBs (Calvanese et al. 2007b) also hold for DL-LiteF core-
closed KBs. In particular, we have that (i) there exists an
isomorphism from K’s canonical model to every model of
K and (ii) the answers to a CQ over K correspond to the
answers to the query over can(K). Based on these results
, we solve entailment of a CQ q over a core-closed KB K
via query reformulation. The query is reformulated based
on the PI axioms in T ∪ S and then evaluated over db(A)
∪ lts(M). Classically, the algorithm PerfectRef takes in
input a CQ q and returns a collection of fresh CQs that re-
formulate q by internalizing positive inclusion axioms and
reducing atoms that can be unified (Calvanese et al. 2007b).
We apply PerfectRef as is and, hence, omit its description
from the presentation. We report the CAns procedure in al-
gorithm 2 and state its correctness by the following theorem.

Theorem 2. Let K = 〈T ,A,S,M〉 be a DL-LiteF core-
closed KB, let q be a conjunctive query, and ~t a tuple of
constants in K. Then ~t ∈ ans(q,K) iff ~t ∈ CAns(q,K).

As a result of the tight correspondence between the
standard and the core-closed setting w.r.t. canonical
model construction and query reformulation, we have that
ans(q,K) = CAns(q,K) and that, hence, answering con-
junctive queries in core-closed DL-LiteF KBs is FOL-
reducible. In addition, due to such correspondence, other
properties of conjunctive query answering over DL-LiteF
hold as well, e.g., it is also the case that there is a K with no
finite interpretation that answers a CQ, just like usual DL-
LiteF KBs (Calvanese et al. 2007b).

Theorem 3. Query entailment in DL-LiteF core-closed KBs
is AC0 in data complexity and NP-complete in combined
complexity.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

179

Algorithm 2: The algorithm CAns
Inputs : CQ q, K = 〈T ,A,S,M〉
Output: ans(q,K)

1 def CAns (K,q):
2 if not Consistent(K) then
3 return AllTup(q,K)

4 return PerfectRef(q, T ∪ S)db(A)∪lts(M);

7 CQ Satisfiability
We now discuss satisfiability of a conjunctive query with in-
equalities q w.r.t a core-closed KBK and computation of the
sat answers sat-ans(q,K). Let q be the conjunctive query
q[~x] = ∃~y.conj(~x, ~y) where ~x is the set of q’s answer vari-
ables and ~y are the existentially-quantified variables. We call
a CQ-assertion a query q where the answer variables ~x have
been replaced by an assignment ~c and define the problem of
CQ-assertion satisfiability as follows.

Definition 5 (CQ-assertion Satisfiability). An asserted con-
junctive query with inequalities q[~c] = ∃~y.conj(~c, ~y) is said
to be satisfiable w.r.t. K = 〈T ,A,S,M〉 iff there exists an
interpretation I model of K such that I satisfies q[~c].

To decide CQ-assertion satisfiability we require solving
satisfiability of a core-closed KB without the unique name
assumption, which we discuss in the following paragraph.

Core-Closed KB Satisfiability w/o UNA Let us drop the
unique name assumption on pairs of individuals that are
not covered by the core standard name assumption (cf. sec-
tion 4). Intuitively, these include all pairs referring to in-
dividuals not in M’s active domain plus all pairs where
exclusively one element can be a boundary node from IB .
The ABox A can now contain inequality assertions aj 6≈ak
where aj ∈ IK and ak ∈ IK

′
. Pairs of individuals not

falling in this set definition, that is, pairs s.t. aj ∈ IM or
aj , ak ∈ IB , will still be assumed to be distinct by the core
SNA. For instance, a boundary node aj in IB could corre-
spond to the same domain object as an external node ak in
IK

′
. We refer to this assumption as A-noUNA.

Lemma 9. Let K = 〈T ,A,S,M〉 be a DL-LiteF core-
closed KB with inequalities in A interpreted under A-
noUNA. Then, one can construct in polynomial time in IK

′

and IB a core-closed KB K′ = 〈T ′,A′,S,M〉 s.t. A′ con-
tains no inequalities and K is satisfiable iff K′ is satisfiable.

Proof. We build T ′ and A′ by applying the following rules:

• if (func P)∈T ∪S and {ga(P, ai, aj), ga(P, ai, ak)}⊆A
for aj 6= ak s.t. aj ∈ IK and ak ∈ IK

′
, then replace all

occurrences of ak with aj in A.
• if (func P)∈T ∪S and {ga(P, ai, aj), ga(P, ai, ak)}⊆A

for aj 6= ak s.t. aj ∈ IM or aj , ak ∈ IB , or if A contains
a 6≈ a for some a, then the KB is not satisfiable and we
add Af (af) to A and Af v⊥ to T for fresh concept Af

and constant af .

Lastly, we remove all inequalities and denote the sets as A′
and T ′. For the rest of this proof, see the full version.

Theorem 4. Under the A-noUNA assumption, satisfiabil-
ity of DL-LiteF core-closed KBs with inequalities is AC0 in
data complexity and P-complete in combined complexity.

Solving CQ-assertion Satisfiability Consider a CQ-
assertion ∃~y.conj(~c, ~y). From now on, for simplicity, let
us denote it as conj, which is treated as the set of atoms that
the query comprises. The set conj can be grounded by re-
placing variables ~y with constants ~d. The assignment ~d may
contain both constants from I and fresh constants. When
conj is grounded in ~d, denoted conj(~d), all atoms become
assertions. Assertions C(c), r(c, c′), r(c, a), r(a, c), c 6≈ c′,
c 6≈ a, a 6≈ c, and b 6≈ b′ where C∈CS , r∈RS , c, c′ ∈ IM,
b, b′∈IB , and a 6∈ IM are calledM-assertions. All other as-
sertions are called A-assertions. A grounded CQ-assertion
conj(~d) is therefore partitioned into the two sets conjA and
conjM. The set conjM is the subset of conj containingM-
assertions. To distinguish the predicate assertions from the
inequality assertions we refer to its subsets as conj?M and
conj 6≈M, respectively. The set conjA is the subset of conj
containing A-assertions. We add to this set the inequality
a 6≈ a′ for every distinct a∈ IK and a′ ∈ IK′

. We do this to
preserve these objects’ distinctness when invoking the satis-
fiability without UNA, according to the following lemma.
Lemma 10. An asserted conjunctive query with inequalities
q[~c] = ∃~y.conj(~c, ~y) is satisfiable w.r.t. K = 〈T ,A,S,M〉
iff there exists at least one assignment ~d for the variables in ~y
such that conj(~c, ~d) does not include assertion x 6≈ x for ev-
ery constant x and is grounded in the sets conjA and conjM
such that conj?M⊆M and K′ = (T ,A] conjA,S,M) is
satisfiable without the UNA.

We now show that finding (part of) the assignment
~d, which induces the partition to conjM and conjA of
Lemma 10, can be done in log-space in M. We introduce
terminology and notation that will be helpful to understand
the reasoning behind Algorithm 3. The algorithm manipu-
lates a set of atoms. We refer to this set as conj even though
its composition changes between different stages of the run-
ning of the algorithm. Each atom in conj is either an asser-
tion, whose arguments are all constants, or an unassigned
atom, whose arguments contain some variables. In high-
level, conj contains five types of atoms that play a differ-
ent role in determining query satisfiability. These five types
are: A-assertions, M-assertions, A-atoms, M-atoms, and
atoms. We have already introduced the first two sets, conjA
and conjM, and assumed that conjA enforces the unique
name assumption on IK and IK

′
by explicitly including ad-

ditional inequalities. The remaining three types of atoms are
defined as follows. (1) Unassigned atoms that refer to con-
cepts in CK and roles in RK are calledA-atoms as they will
inevitably be replaced by A-assertions. We denote this set
as conjA? and highlight that it does not contain inequali-
ties, but only concept/role atoms. (2) Unassigned atoms of
the form r(c, y), r(y, c), c 6≈ y, or y 6≈ c where r ∈ RS

and c ∈ IM, are calledM-atoms as they will inevitably be

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

180

replaced by M-assertions. We denote this set as conjM?.
Differently from conjA?, conjM? may contain inequalities.
Hence, we partition it into the subsets conj?M? and conj 6≈M?.
(3) The remaining elements in conj are simply called atoms
as they might be replaced either by constants from IM or
IK, turning them intoA-assertions orM-assertions, respec-
tively. We denote this subset of conj as conj? and partition
it into conj?? and conj 6≈? .

Algorithm 3: Sat (K,conj)

Inputs : Consistent K = 〈T ,A,S,M〉, set conj
Output: true if conj is satisfiable w.r.t. K

1 def Sat (K,conj):
2 if (conj contains x 6≈x) or (conj?M 6⊆ M)

then
3 return false;

4 conj ::= conj r conjM;
5 if conj == ∅ then
6 return true;

7 if there is at← conj?M? with free variable y
then

8 for a s.t. at[a/y] ∈M do
9 if Sat(K, conj[a/y]) then

10 return true;

11 return false;

12 if there is at← conj?? with free variables ~y then
13 for ~a s.t. at[~a/~y] ∈M do
14 if Sat(K, conj[~a/~y]) then
15 return true;

16 return Sat(K, conj[~ay/~y]);

17 if there is at← conjA? with free variable y then
18 for a ∈ IM do
19 if Sat(K, conj[a/y]) then
20 return true;

21 return Sat(K, conj[ay/y]);

22 if there is at← conj 6≈? then
23 return Sat(K, conj[~ay/~y]);

24 conj ::= conj r conj 6≈M?;
25 conjA ::= conjA ∪ {a 6≈ b | a, b ∈

IB ∪ IK
′ ∧ a 6= b};

26 return sat 6≈noUNA(T ,A ∪ conjA,S,M)

Algorithm Description The algorithm searches for an as-
signment that partitions conj into the sets conjM and conjA
such that conjM is consistent with (i.e., included in) M
and conjA is satisfiable w.r.t. K when dropping the UNA.
Assignments are found by replacing variables with con-
stants in A-atoms, M-atoms, and atoms, which become
A-assertions or M-assertions; thus, populating the sets

conjA and conjM. The algorithm starts with a set conj that
may contain all types of assertions (i.e., conj ⊆ conjM ∪
conj?M? ∪ conj

6≈
M? ∪ conj?? ∪ conj

6≈
? ∪ conjA? ∪ conjA).

At each recursive invocation of Algorithm 3 with the cur-
rently handled set of atoms conj, we have that conj is cer-
tainly unsatisfiable if: (i) it contains any inequality asser-
tions referring to the same pair of symbols or (2) it contains
any concept/role M-assertions that are not in M (lines 2-
3). Hence, when the code execution continues to line 4, all
theM-assertions conj?M do not affect satisfiability and all
theM-inequalities conj 6≈M are simply true by the underly-
ing core SNA. These assertions can then be disregarded (line
4). If, after removing these, conj is empty, then it is surely
satisfiable (lines 5-6). Otherwise, conj may still contain
M-atoms, A-atoms, atoms, and A-assertions (i.e., conj ⊆
conj?M? ∪ conj

6≈
M? ∪ conj?? ∪ conj

6≈
? ∪ conjA? ∪ conjA).

We prioritize the replacement of atoms that must be mapped
to assertions inM, and try all of these during replacement
of both M-atoms and atoms (lines 8-10 and 13-15). For
concept/role M-atoms in conj?M? we try all replacements
from M. If we find an atom from conj?M? that cannot be
instantiated with an assertion in M leading to satisfiabil-
ity of the replaced query, then conj is surely unsatisfiable
(line 11). Otherwise, it is satisfiable (line 10). Similarly,
for concept/role atoms in conj?? , we first try all the replace-
ments in M (lines 13-15); if none of these replacements
makes conj satisfiable, then we try by replacing variables
with fresh constants (line 16), turning the generic atom into
an A-assertion. For concept/role A-atoms in conjA?, we
first try all the replacements in IM (lines 18-20); if none of
these replacements makes conj satisfiable, then we try by re-
placing variables with fresh constants (line 21) Notice that in
both cases the A-atom becomes an A-assertion. When the
algorithm progresses to line 22, conj may still contain in-
equality atoms, inequalityM-atoms, and A-assertions (i.e.,
conj ⊆ conj 6≈? ∪ conj

6≈
M? ∪ conjA). We assign the inequal-

ity atoms by replacing variables with fresh constants (lines
22-23) and disregard the inequalities in the set conj 6≈M?, as
they must be true by the core SNA (line 24). If a recursive
call reaches line 25, then only A-assertions are left in conj
(i.e., conj = conjA). In line 25, we enforce the uniqueness
of the pre-existing nodes in IB and IK

′
and, finally, invoke

the sat 6≈noUNA algorithm (line 26).

Correctness
Theorem 5. Let K = 〈T ,A,S,M〉 be a DL-LiteF core-
closed KB, q a conjunctive query, and ~c a tuple of con-
stants in K. Then, q[~c] is satisfiable w.r.t to K if and only
if Sat(K, q[~c]) returns true.

Corollary 3. Query satisfiability in DL-LiteF core-closed
KBs is decided in LOGSPACE in data complexity and is P-
complete in combined complexity.

We leave open the question of whether query satisfiabil-
ity is in AC0 in data complexity. In algorithm 4, we re-
port the procedure that given a query q computes the set
sat-ans(q,K) w.r.t. a core-closed KB K. We now state the
correctness of the algorithm.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

181

Theorem 6. Let K = 〈T ,A,S,M〉 be a DL-LiteF core-
closed KB, q a CQ with inequalities over K, and ~t a tuple of
constants in K. Then, ~t ∈ sat-ans(q,K) iff ~t ∈ SAns(q,K).

Algorithm 4: The algorithm SAns
Inputs : CQ q, K = 〈T ,A,S,M〉
Output: sat-ans(q,K)

1 def SAns (K,q):
2 if not Consistent(K) then
3 return ∅

4 return
{ ~c | ~c ∈ AllTup(q,K) ∧ Sat(K, q[~c]) = tt };

8 MUST/MAY Queries
As introduced in section 2, we are interested in Boolean
combinations of MUST/MAY queries. Such a Boolean com-
bination is a query ψ that combines nested UCQs in the
scope of a MUST or a MAY operator as follows:

ψ ::= ¬ψ | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | MUST ϕ | MAY ϕ 6≈

where ϕ,ϕ 6≈ are unions of conjunctive queries potentially
containing inequalities. Note that we do not allow nest-
ing of MUST/MAY atoms within ψ as we believe it would
not increase its expressive power. Intuitively, the reason-
ing needed for answering the nested queries can be decou-
pled from the reasoning needed to answer the higher-level
Boolean combination. In particular, the set of answers to
the query ψ over a core-closed KB K = 〈T ,A,S,M〉
with individual names I, denoted as ANS(ψ,K), is com-
puted as follows. Each nested query MUST q[~x] with q the
union of conjunctive queries

∨
i qi is resolved by comput-

ing the set
⋃

i ans(qi,K) as
⋃

i CAns(q,K). Each nested
query MAY q[~x] with q the union of conjunctive queries
with inequalities

∨
i qi is resolved by computing the set⋃

i sat−ans(qi,K) as
⋃

i SAns(q,K). Connectives ¬,∧,∨
are resolved by set complementation w.r.t. I, intersection,
and union, respectively.

Theorem 7. Answering whether a given tuple ~t satisfies a
MUST/ MAY query over a core-closed DL-LiteF KBs can
be decided in LOGSPACE in data complexity and is NP-
complete in combined complexity.

9 Related Work
Many authors have advocated for combining open- and
closed-world reasoning in description logics, and proposed
a variety of ways to achieve it, e.g., (Baader and Hollunder
1995; Borgwardt and Forkel 2019; Franconi, Ibáñez-Garcı́a,
and Seylan 2011; Gaggl, Rudolph, and Schweizer 2016).
One of the most prominent approaches is to extend DLs
with closed predicates (Franconi, Ibáñez-Garcı́a, and Sey-
lan 2011), that is, with a set of concepts and roles that are
viewed as complete and their extensions fixed in all models.
Our combination of open- and closed-world reasoning was
tailored specifically for this application domain, and it is not

obvious whether it can be easily expressed using the usual
closed predicates, due to the presence of predicates that are
closed over part of the domain but open on the rest.

One of the major challenges of extending DLs with closed
predicates is to keep the complexity in check. Closed pred-
icates can be simulated in expressive DLs with nominals
(like ALCO and its extensions), but for such logics satis-
fiability is at least ExpTime-hard (Baader et al. 2017) and
conjunctive query entailment 2ExpTime-hard (Ngo, Ortiz,
and Šimkus 2016). Moreover, such an encoding is not use-
ful for obtaining improved bounds for the data complex-
ity. Unfortunately, query answering with closed predicates
is also intractable in data complexity, and the coNP lower
bound applies already to very restricted classes of conjunc-
tive queries (CQs) and very weak DLs like DL-Litecore or EL
(Lutz, Seylan, and Wolter 2019). Lutz, Seylan, and Wolter
(2013) showed that for most lightweight DLs conjunctive
query answering is FOL rewritable only under some safety
restrictions that make the presence of closed predicates ir-
relevant. Our core-closed KBs resemble their safe KBs and
are FOL rewritable, but the partial closed-world assumption
plays an important role, particularly in the query satisfiabil-
ity problem that arises from the MAY queries.

Semantic approaches to security are being studied (Hen-
dre and Joshi 2015) and will soon lead to publicly avail-
able, community-maintained, threat modeling ontologies.
As an example, we refer the reader to the “Ontology-
driven Threat Modeling” incubator project by OWASP
(https://github.com/OWASP/OdTM) and reflect on how this
will impact the adoption of DL-based semantic reasoning
techniques in threat modeling and security. We believe that
our MUST/MAY queries could be used within a first-order
logic of knowledge/belief (Reiter 1992), as done in (Cal-
vanese et al. 2007a), but this was not in the scope of the
application presented in this paper.

10 Conclusion and Future Work
We introduce a variant of DL-LiteF that combines closed-
and open-world reasoning within the same predicates. Our
variant is tailored for the modeling of cloud infrastructure
and allows to reason about security issues that might arise in
such applications. We avoid the complexity price usually in-
volved in reasoning with closed predicates and show that we
keep the convenient complexity of DL-LiteF for KB satisfi-
ability and conjunctive query answering, and that conjunc-
tive query satisfiability is also tractable. We combine query
answering and satisfiability in a logic that includes must and
may queries over KBs, as required for testing security issues.

As future work, we are interested in including more com-
plex knowledge in the T -box while still keeping (data) com-
plexity tractable. For example, complex role inclusions
would be required to reason about dataflow, which is a cen-
tral aspect of security. Also, to be able to reason about per-
missions, we would have to consider non-monotone exten-
sions. Practically, we are interested in logical languages that
would allow security engineers to pose security queries in
an intuitive and easy-to-use way.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

182

https://github.com/OWASP/OdTM

References
Baader, F., and Hollunder, B. 1995. Embedding defaults into
terminological knowledge representation formalisms. J. of
Automated Reasoning 14(1):149–180.
Baader, F.; Horrocks, I.; Lutz, C.; and Sattler, U. 2017. An
Introduction to Description Logic. Cambridge University
Press.
Borgwardt, S., and Forkel, W. 2019. Closed-world seman-
tics for conjunctive queries with negation over ELH \bot
ontologies. In JELIA, volume 11468 of Lecture Notes in
Computer Science, 371–386. Springer.
Calvanese, D.; Giacomo, G. D.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007a. Eql-lite: Effective first-order query
processing in description logics. In IJCAI, 274–279.
Calvanese, D.; Giacomo, G. D.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007b. Tractable reasoning and efficient
query answering in description logics: The DL-Lite family.
J. Autom. Reason. 39(3):385–429.
Cauli, C.; Li, M.; Piterman, N.; and Tkachuk, O. 2021a. Pre-
deployment security assessment for cloud services through
semantic reasoning. In Computer Aided Verification - 33rd
International Conference, CAV 2021, Proceedings, Lecture
Notes in Computer Science.
Cauli, C.; Li, M.; Piterman, N.; and Tkachuk, O. 2021b. Pre-
deployment security assessment for cloud services through
semantic reasoning. Full version https://gup.ub.gu.se/
publication/304989, Last accessed on 2021-07-14.
Franconi, E.; Ibáñez-Garcı́a, Y. A.; and Seylan, I. 2011.
Query answering with dboxes is hard. Electr. Notes Theor.
Comput. Sci. 278:71–84.
Gaggl, S. A.; Rudolph, S.; and Schweizer, L. 2016. Fixed-
domain reasoning for description logics. In Kaminka, G. A.;
Fox, M.; Bouquet, P.; Hüllermeier, E.; Dignum, V.; Dignum,
F.; and van Harmelen, F., eds., Proc. of the 22nd Eur. Conf.
on Artificial Intelligence (ECAI 2016), volume 285 of Fron-
tiers in Artificial Intelligence and Applications, 819–827.
IOS Press.
Hendre, A., and Joshi, K. P. 2015. A semantic approach
to cloud security and compliance. In CLOUD, 1081–1084.
IEEE Computer Society.
Lutz, C.; Seylan, I.; and Wolter, F. 2013. Ontology-
based data access with closed predicates is inherently in-
tractable(sometimes). In Proc. Int. Joint Conf. on Artificial
Intelligence (IJCAI’2013), 1024–1030. IJCAI/AAAI.
Lutz, C.; Seylan, I.; and Wolter, F. 2019. The data com-
plexity of ontology-mediated queries with closed predicates.
Logical Methods in Computer Science 15(3).

Ngo, N.; Ortiz, M.; and Šimkus, M. 2016. Closed predicates
in description logics: Results on combined complexity. In
Proc. Int. Conf. on the Principles of Knowledge Representa-
tion and Reasoning (KR 2016), 237–246. AAAI Press.
Reiter, R. 1992. What should a database know? J. Log.
Program. 14(1&2):127–153.
Tobies, S. 1999. A nexptime-complete description logic

strictly contained in c2. In CSL, volume 1683 of Lecture
Notes in Computer Science, 292–306. Springer.
Vardi, M. Y. 1982. The complexity of relational query lan-
guages (extended abstract). In STOC, 137–146. ACM.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

183

https://gup.ub.gu.se/publication/304989
https://gup.ub.gu.se/publication/304989

	Introduction
	Motivation
	Background
	DL-LiteF Core-closed KBs
	Core-closed KB Satisfiability
	CQ Entailment
	CQ Satisfiability
	Must/May Queries
	Related Work
	Conclusion and Future Work

