KR2021Proceedings of the 18th International Conference on Principles of Knowledge Representation and ReasoningProceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning

Online event. November 3-12, 2021.

Edited by

ISSN: 2334-1033
ISBN: 978-1-956792-99-7

Sponsored by
Published by

Copyright © 2021 International Joint Conferences on Artificial Intelligence Organization

DEL-based Epistemic Planning for Human-Robot Collaboration: Theory and Implementation

  1. Thomas Bolander(Technical University of Denmark)
  2. Lasse Dissing(Technical University of Denmark)
  3. Nicolai Herrmann(Technical University of Denmark)


  1. KR and autonomous agents and multi-agent systems
  2. Multi-robot planning and coordination
  3. Reasoning about knowledge, beliefs, and other mental attitudes
  4. Social intelligence for robots in human-centric environments


Epistemic planning based on Dynamic Epistemic Logic (DEL) allows agents to reason and plan from the perspective of other agents. The framework of DEL-based epistemic planning thereby has the potential to represent significant aspects of Theory of Mind in autonomous robots, and to provide a foundation for human-robot collaboration in which coordination is achieved implicitly through perspective shifts. In this paper, we build on previous work in epistemic planning with implicit coordination. We introduce a new notion of indistinguishability between epistemic states based on bisimulation, and provide a novel partition refinement algorithm for computing unique representatives of sets of indistinguishable states. We provide an algorithm for computing implicitly coordinated plans using these new constructs, embed it in a perceive-plan-act agent loop, and implement it on a robot. The planning algorithm is benchmarked against an existing epistemic planning algorithm, and the robotic implementation is demonstrated on human-robot collaboration scenarios requiring implicit coordination.