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Abstract

Argumentation has gained traction as a formalism to make
more transparent decisions and provide formal explanations
recently. In this paper, we present an argumentation-based
approach to decision making that can support modelling and
automated reasoning about complex qualitative preferences
and offer dialogical explanations for the decisions made. We
first propose Qualitative Preference Decision Frameworks
(QPDFs). In a QPDF, we use contextual priority to rep-
resent the relative importance of combinations of goals in
different contexts and define associated strategies for deriv-
ing decision preferences based on prioritized goal combina-
tions. To automate the decision computation, we map QPDFs
to Assumption-based Argumentation (ABA) frameworks so
that we can utilize existing ABA argumentative engines for
our implementation. We implemented our approach for two
tasks, diagnostics and prognostics of Alzheimer’s Disease
(AD), and evaluated it with real-world datasets. For each
task, one of our models achieves the highest accuracy and
good precision and recall for all classes compared to com-
mon machine learning models. Moreover, we study how to
formalize argumentation dialogues that give contrastive, fo-
cused and selected explanations for the most preferred deci-
sions selected in given contexts.

1 Introduction
Argumentation-based decision making has gained an in-
creasing amount of research interest recently due to its
explanatory power (Amgoud and Prade 2006; Zeng et al.
2018). The key components of a general decision frame-
work (Fan and Toni 2013), which is used to model agents’
knowledge base, include decisions, goals, and attributes.
Qualitative preferences over decisions are often derived
from the relative importance of some decision properties,
such as goals and attributes. In real-life applications, the rel-
ative importance of these properties does not always remain
the same but may vary in different contexts. For example, in

∗For the ADNI: data used in preparation of this article were
obtained from the ADNI database (adni.loni.ucla.edu). As such,
the investigators within the ADNI contributed to the design and
implementation of ADNI and/or provided data but did not partic-
ipate in analysis or writing of this report. A complete listing of
ADNI investigators can be found at: http://adni.loni.ucla.edu/wp-
content/uploads/how to apply/ADNI Acknowledgement List.pdf

the problem of determining whether a patient is at high risk
for Alzheimer’s Disease (AD), although the APOE4 allele
is a genetic risk factor for both men and women, its mag-
nitude and effect appear to differ between genders. Medi-
cal research suggests that the effect of APOE4 is far more
pronounced in women than in men (Altmann et al. 2014;
Sampedro et al. 2015). Considering the patient being a man
or a woman as the context for this decision problem, we may
arrive at the following two different priority rules:

• APOE4 > ADASQ4 test results1 (patient is a female)

• ADASQ4 test results > APOE4 (patient is a male)

In this paper, we propose a formal decision making ap-
proach that can handle the problem mentioned above and
at the same time provide selected and focused dialogical
explanations. We propose Qualitative Preference Decision
Framework, in which preferences over decisions depend on
which decisions can meet which goals and the priority of
these goals. In a QPDF, the relative importance of goal com-
binations is conditioned on the decision contexts hence dif-
ferent sets of priority orderings are applicable in different
contexts. We also present strategies for deriving decision
preferences from such contextual priority of goal combina-
tions. Instead of using an aggregation method to derive the
entire preference relation for pairwise decision comparison,
we take a more holistic strategy and directly compute all the
most preferred decisions in given contexts. To enable au-
tomated decision reasoning, we employ Assumption-based
Argumentation (ABA) frameworks. We choose ABA for
two reasons: (1) it has existing argumentative engines which
can ease our implementation, and (2) it provides underlying
structures that can facilitate the generation of explanations.

Dementia is one of the major causes of disability and de-
pendency among older people and is affecting 50 million
people worldwide2. Alzheimer’s disease (AD) is the most
common form of dementia and may contribute to 60–70%
of cases2. We have implemented the proposed approach for
two tasks, the diagnosis of AD and the prediction of progres-
sion to AD in the future (prognosis). Rather than relying on

1ADASQ4 stands for the Alzheimer’s Disease Assessment
Scale Question 4 Delayed Word Recall (a short-term memory test)

2WHO dementia fact sheet: https://www.who.int/en/
news-room/fact-sheets/detail/dementia
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expert knowledge which can be hard to obtain, the contex-
tual priority of goal combinations are learned from patient
data directly. We choose three types of contexts based on
medical research, namely gender, education, and age. The
highest accuracy for the diagnosis and the prognosis task is
achieved by our model that considers the education context
and the gender context, respectively.

In previous works on argumentative explanations, ex-
planations are often given as various forms of argumen-
tative trees, which are essentially subgraphs of an argu-
ment graph and model the process of argument evaluation
in the form of disputes (Rago, Cocarascu, and Toni 2018;
Garcı́a et al. 2013; Čyras et al. 2019). Most of these expla-
nations are generated based on the entire dispute process.
However, as the size of the agent knowledge base increases
and the reasoning process becomes more complex, the size
and complexity of such unselected explanations may be-
come unmanageable. The explanations may also become
very hard for users to gauge and hard to implement in in-
teractive applications. As an attempt to tackle this issue, we
propose the notion of explaining dialogue and study its prop-
erties. By referring only to the parts requiring explanations
in the dispute process, explaining dialogues can provide fo-
cused dialogical explanations that contain selective informa-
tion pertaining to users’ doubts and inquiries, rather than all
the information involved in evaluating the decision.

2 Preliminaries
This paper relies upon Assumption-based Argumentation
(ABA) and Dispute Tree, as summarized below.

Assumption-based Argumentation (ABA) frameworks
(Toni 2014) are tuples 〈L,R,A, C〉 where
• 〈L,R〉 is a deductive system, with a languageL and a rule

setR of the form β0 ← β1, . . . , βm(m ≥ 0, βi ∈ L);
• A ⊆ L is a non-empty set, referred to as assumptions;
• C is a total mapping fromA into 2L, where each c ∈ C(α)

is a contrary of α.
In ABA frameworks, for all rules ρ = β0 ← β1, . . . , βm,

β0 cannot be assumptions. Arguments are deductions of
claims with sets of rules and supported by sets of assump-
tions. Attacks against arguments are directed at the as-
sumptions in the support of arguments. Formally, adapted
from (Toni 2014; Dung, Kowalski, and Toni 2009):
• An argument for β ∈ L supported by ∆ ⊆ AwithR ⊆ R

(denoted ∆ `R β) is a finite tree with nodes labelled by
sentences in L or by τ 3, the root labelled by β, leaves ei-
ther τ or assumptions in ∆, and non-leaves β′ with the
items of the body of some rule in R with head β′ as chil-
dren, and R contains only the rules in the tree.
• An argument ∆1 `R1

β1 attacks an argument ∆2 `R2
β2

iff β1 is a contrary of one of the assumptions in ∆2.
∆ ` β is used as the shorthand form for ∆ `R β. A

set of assumptions A attacks a set of assumptions A′ iff an
argument supported by a subset of A attacks an argument
supported by a subset of A′.

3τ /∈ L represents“true” and stands for the empty body of rules

A set of assumptions is admissible in ABF =
〈L,R,A, C〉 iff it does not attack itself and it attacks all
∆ ⊆ A that attack it. We say that an argument ∆ ` β is
admissible in ABF iff there is an admissible set ∆′ ⊆ A for
which ∆ ⊆ ∆′. We also say that an argument ∆ `R β is in
ABF iff R ⊆ R and ∆ ⊆ A.

Definition of Dispute Trees is adapted from (Dung, Man-
carella, and Toni 2007). Given an ABA framework ABF =
〈L,R,A, C〉, a dispute tree for X ∈ L is a tree T , such that:
(1) every node n of T is of the form [S : X], labelled by a
status S ∈ {P, O} and an argument X in ABF , where the
status can be either proponent (P) or opponent (O) but not
both; (2) the root of T is a node of the form [P : ∆ ` X ];
(3) for every P node n labelled by an argument B, and for
every argument C that attacks B, there exists a child of n,
which is an O node labelled by C; (4) for every O node n
labelled by an argument C, there exists at most one child of
n which is a P node labelled by an argument that attacks C;
(5) no other nodes in T except the ones listed above.

A dispute tree T is an admissible dispute tree iff: (1) ev-
ery O node in T has a child, i.e. all attackers are defended
against; (2) no argument in T labels both P and O nodes, i.e.
conflict-free.

3 Decision Making with Qualitative
Preferences

In this section, we propose Qualitative Preference Decision
Frameworks (QPDFs) which can model qualitative prefer-
ences over decisions based on an ordered goal base. The
goal base contains sets of goals which are ordered accord-
ing to a set of contextual priority rules. These rules specify
the relative importance of the goal sets in different contexts.
We first formalize contextual priority orderings of goal sets.
Then, we introduce QPDFs and associated strategies for de-
riving preferences over decisions from QPDFs.
Definition 1. Let G be a set of goals, the priority relation
>g is a partial preorder (a reflexive and transitive relation)
over 2G, representing relative importance of sets of goals.

We use s >g s′ to denote s >g s′ and s′ �g s, where
s, s′ ∈ 2G. s >g s′ means that s is at least as important as
s′. s >g s′ means that s is strictly more important than s′.
Definition 2. The context terms T is a set of distinct atoms
representing granular contexts in the concerned domains.
Definition 3. A defeasible context C is a set of context
sentences, in which each sentence c ∈ C is of the form
tn ∧ . . . ∧ t1 → t0 where n ≥ 0 and t0, t1, . . . , tn ∈ T.
Definition 4. A defeasible contextual priority rule is an
expression of the form si >g sj | T where T ⊆ T is a set of
context terms, si, sj ∈ 2G are two sets of goals.

The left-hand side of a defeasible contextual priority rule
specifies the relative importance of two sets of goals while
the right-hand side represents the context in which this pri-
ority order holds.
Definition 5. The contextual priority P is a set of defea-
sible contextual priority rules. For each rule si >g sj | T
in P, si and sj belong to a goal base S ⊆ 2G containing all
comparable sets of goals such that
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• for every s ∈ S, there is a set s′ ∈ S and a set of context
terms T ⊆ T, such that either s >g s′ | T ∈ P or s′ >g
s | T ∈ P;
• for all s′ ∈ 2G, if there is a T ⊆ T and some s ∈ 2G with
s′ >g s | T ∈ P or s >g s′ | T ∈ P, then s′ ∈ S.

Definition 6. A Qualitative Preference Decision Frame-
work (QPDF) is a tuple 〈D, A, G, TDA, TGA, C, P〉 such that:
• D is a finite set of decisions D = {d1, · · · , dn}, (n > 0),
• A is a finite set of attributes A = {a1, · · · , am}, (m > 0),
• G a finite set of goals G = {g1, · · · , gl}, (l > 0), and
• TDA (size n×m), and TGA (size l ×m), are two tables s.t.

– for every TDA[i, j] (1 ≤ i ≤ n, 1 ≤ j ≤ m), TDA[i, j] is
either 1, indicating di has aj , or 0, otherwise.

– for every TGA[k, j] (1 ≤ k ≤ l, 1 ≤ j ≤ m), TGA[k, j] is
either 1, indicating gk is satisfied by aj , or 0, otherwise.

• C is a set of context sentences;
• P is a set of contextual priority rules, representing the rel-

ative importance of goal sets in different contexts.
Given a QPDF Fqp = 〈D, A, G, TDA, TGA, C, P〉, a decision

di ∈ D meets a goal gk ∈ G, with respect to Fqp, iff there
exists an attribute aj ∈ A, such that TDA[i, j] = 1 and
TGA[k, j] = 1.

We use Γ(d) = S, where d ∈ D, S ⊆ G, to denote the
set of goals met by d, DEC to denote the set of all possible
decisions and FQP to denote the set of all possible QPDFs.

The contextual priority P contains priority rules in all pos-
sible contexts. The set of applicable priority rules changes
with the defeasible context C. Formally, we define applica-
ble priority as follows.
Definition 7. Given a QPDF Fqp = 〈D, A, G, TDA, TGA, C, P〉,
the applicable priority in context C is formally defined as:

Pa = {si >g sj : si >g sj | T ∈ P, T ⊆ EC(C)}

where EC(C) stands for the epistemic closure of C4.
Example 1. Let G be {g1, g2, g3}, let C be {t1 ∧ t2 → t3},
and let P be:

{ {g1} >g {g2} | {t1}, {g2} >g {g3} | {t1},
{g2} >g {g1} | {t4}, {g1, g2} >g {g1} | {t2},
{g3} >g {g2} | {t4}, {g2, g3} >g {g1, g2} | {t3, t5} }

With the given context C, no priority rules are applica-
ble and Pa = ∅. However, when the context changes, Pa
changes accordingly. Table 1 shows the content in Pa when
different context information is added.

In Example 1, we illustrate that a qualitative preference
decision framework (QPDF) not only describes the relation-
ships among decisions, attributes, and goals, but also cap-
tures changing relative importance of goal sets in different
contexts. We then define a preference relation over decisions
and present our strategies for deriving decision preferences
based on contextual priority of goal sets.

4The epistemic closure of C, EC(C), is derived by repeatedly
applying the modus ponens inference rule to C until the elements
of EC(C) do not change anymore, where modus ponens amounts
to deriving b either from→ b or from a→ b and a.

Additional Contexts Applicable Priority Pa

{→ t1} {g1} >g {g2} >g {g3}
{→ t2} {g1, g2} >g {g1}
{→ t4} {g3} >g {g2} >g {g1}
{→ t1,→ t2} {g1, g2} >g {g1} >g {g2} >g {g3}
{→ t1,→ t2,→ t5} {g2, g3} >g {g1, g2} >g {g1} >g {g2} >g {g3}

Table 1: Illustration of varying context C and the corresponding
applicable priority Pa in different contexts

TDA TGA TDG

a1 a2 a3 a1 a2 a3 g1 g2 g3

d1 1 1 0 g1 1 0 0 d1 1 1 0
d2 1 0 1 g2 0 1 0 d2 1 0 1
d3 0 1 1 g3 0 0 1 d3 0 1 1

Table 2: Illustration of most-contextual-preferred decision function

Definition 8. A preference relation is a preorder % on D.

Similarly, we use d � d′ to denote d % d′ and d′ 6% d. We
say that d is at least as preferred as d′ given d % d′, and d is
strictly preferred than d′ given d � d′,

Given the information captured in a decision framework,
a decision function for the framework returns a set of “good”
decisions in the framework (Fan and Toni 2013). Deci-
sion functions can be viewed as mappings between decision
frameworks and sets of decisions, according to certain deci-
sion criteria. We define the general form of decision func-
tions for QPDFs formally as follows.

Definition 9. Given a QPDF Fqp = 〈D, A, G, TDA, TGA, C, P〉,
a decision function for Fqp is a mapping ψqp : FQP 7−→
DEC, such that: (1) ψqp(Fqp) ⊆ D; (2) for any d, d′ ∈ D, if
Γ(d) = Γ(d′) and d ∈ ψqp(Fqp), then d′ ∈ ψqp(Fqp).

We use Ψqp to denote the set of all decision functions for
QPDFs.

From the general form of decision functions given in Def-
inition 9, we then instantiate the most-contextual-preferred
decision function.

Definition 10. Given a QPDF Fqp = 〈D, A, G, TDA, TGA, C, P〉,
let S be the goal base of Fqp, let Pa be the applicable priority
in context C, a most-contextual-preferred decision func-
tion ψqp ∈ Ψqp is a mapping such that, for every d ∈ D,
d ∈ ψqp(Fqp) iff

• for all d′ ∈ D and d′ 6= d, d % d′, i.e. the following holds:
– for all s ∈ S, if s 6⊆ Γ(d) and s ⊆ Γ(d′), then there ex-

ists s′ ∈ S, such that: (1) s′ >g s ∈ Pa, (2) s′ ⊆ Γ(d),
(3) s′ 6⊆ Γ(d′).

The decision strategy enforced by the most-contextual-
preferred decision function is similar to the discrimin order-
ing described in (Coste-Marquis et al. 2004). For each deci-
sion selected by ψqp in given contexts, if it does not meet a
set of goals that is met by some other decisions, it must meet
a more important or at least as important set of goals than the
one it does not meet. As the relative importance of goal sets
may vary with contexts, the decisions selected by ψqp can
be different depending on the contexts, as in Example 2.
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Example 2. Given a QPDF Fqp = 〈D, A, G, TDA, TGA, C, P〉,
let D = {d1, d2, d3}, let C = {t1 ∧ t2 → t3}, let G and P
be the same as in Example 1. The content of the two tables
TDA and TGA are shown in Table 2. From TDA and TGA, we can
derive the contents in TDG. We analyze the most-contextual-
preferred decision in three different contexts:

1. With additional context {→ t1}, as in Table 1, the ap-
plicable priority Pa in the current contexts are {g1} >g
{g2} >g {g3}. It is trivial to see that d1 is more pre-
ferred than d2 since d1 meets g2 which is not met by d2
and {g2} >g {g3}. Similarly, both d1 and d2 are more
preferred than d3. Hence, we have ψqp(Fqp) = {d1} and
d1 � d2 � d3.

2. With additional context {→ t4}, Pa in the current con-
texts are {g3} >g {g2} >g {g1}. In this case, we have
ψqp(Fqp) = {d3} and d3 � d2 � d1.

3. With additional contexts {→ t1,→ t2,→ t5}, Pa in given
contexts are {g2, g3} >g {g1, g2} >g {g1} >g {g2}. We
have ψqp(Fqp) = {d3}, but d3 � d1 � d2.

A decision function defines the strategy for choosing
“good” decisions but does not specify how such “good” de-
cisions can be computed. Hence, we translate QPDFs and
their decision functions into Assumption-Based Argumen-
tation (ABA) frameworks which have established semantics
and computational support. ABA frameworks can be used to
compute most-contextual-preferred decisions directly, rather
than aggregating the contextual priority of goal sets to derive
the preference order between each pair of decisions.

The contextual priority P and defeasible contexts C are
encoded within existing ABA components, e.g. rules and
assumptions, avoiding the needs to modify the semantics of
ABA. In Definition 11, we show how to construct an ABA
counterpart for a QPDF.
Definition 11. Given a QPDF Fqp = 〈D, A, G, TDA, TGA, C, P〉,
let S be the goal base in Fqp, the most-contextual-preferred
ABA framework counterpart for Fqp is ABF =
〈L,R,A, C〉, where:

• R is such that:
– for all d ∈ D, a ∈ A, if TDA[d, a] = 1: hasAttr(d, a)←;
– for all g ∈ G, a ∈ A, if TGA[g, a] = 1: satBy(g, a)←;
– for all tn ∧ . . . ∧ t1 → t0 ∈ C:
con(t0)← con(t1), . . . , con(tn);

– for all si, sj ∈ S, if si >g sj | T ∈ P, then for every tk ∈ T :
notImp(si, sj)← notCon(tk);

– met(d, g)← hasAttr(d, a), satBy(g, a);
– for all d ∈ D, s ∈ S, s = {g1, · · · , gm}:
metS(d, s)← met(d, g1), · · · ,met(d, gm);

– notCPre(d)← notMetS(d, s),metS(d′, s), noBetter(d, d′, s);
– better(d, d′, s)← metS(d, s′), notMetS(d′, s′), dImp(s′, s);
– nothing else is inR.
• A is such that:
– for all d ∈ D: cPre(d);
– for all tn ∧ . . . ∧ t1 → t0 ∈ C: notCon(t0);
– for all si >g sj | T ∈ P: dImp(si, sj);
– for all d ∈ D, s ∈ S: notMetS(d, s);
– for all d, d′ ∈ D, d 6= d′ and s ∈ S: noBetter(d, d′, s);
– nothing else is in A.

• C is such that:
– C(cPre(d)) = {notCPre(d)};
– C(notCon(t)) = {con(t)};
– C(dImp(si, sj)) = {notImp(si, sj)};
– C(notMetS(d, s)) = {metS(d, s)};
– C(noBetter(d, d′, s)) = {better(d, d′, s)};
– nothing else in C.

It is not hard to observe the correspondence between the
most-contextual-preferred decision function in the QPDF
and the component R in its ABA framework counterpart.
For example, the following two rules are defined in the same
spirit as Definition 10.
notCPre(d)← notMetS(d, s),metS(d

′
, s), noBetter(d, d

′
, s) (1)

better(d, d
′
, s)← metS(d, s

′
), notMetS(d

′
, s

′
), dImp(s

′
, s) (2)

An intuitive reading of rule (1) is: decision d is not a
most-contextual-preferred decision, if it does not meet the
set of goals s, while some other decision d′ meets s and
there is no way d can be better (preferred) than d′. Rule
(2) further specifies that a decision d can still be better (pre-
ferred) than d′, given that d′ meets s while d does not, if
d meets s′ which is more important than s and d′ does not
meet s′. Assumption dImp(s′, s) indicates that the prior-
ity order s′ >g s is defeasible, i.e. may not hold depend-
ing on the contexts. Once the favourable context applies,
i.e. {} ` con(t) exists, it defends the defeasible priority
dImp(s′, s) from notCon(t).

We then prove the sound and complete result to establish
the connection between QPDFs and their ABA counterparts:
the most-contextual-preferred decisions, i.e. decisions se-
lected by ψqp in a QPDF correspond to the claims of admis-
sible arguments in their ABA counterparts and vice versa.
Theorem 1. Given a qualitative preference decision
framework Fqp = 〈D, A, G, TDA, TGA, C, P〉, let ABF =
〈L,R,A, C〉 be the most-contextual-preferred ABA frame-
work counterpart for Fqp. Then, for all d ∈ D, d ∈ ψqp(Fqp)
iff argument {cPre(d)} ` cPre(d) is admissible in ABF .

Proof. (Sketch) First, we prove if di ∈ ψqp(Fqp), then
{cPre(di)} ` cPre(di) is an admissible argument in ABF .
We need to show two things: all attackers of {cPre(di)} `
cPre(di) can be defended against by a set of assumptions
∆ ⊂ A, and {cPre(di)} ∪ ∆ is conflict-free. Since di
is most-contextual-preferred, for each goal set s ∈ S, ei-
ther (1) di meets goal set s, therefore argument {} `
metS(di, s) exists and is not attacked; or (2) di does not
meet s, but for every dj ∈ D and dj 6= di, there ex-
ists some s′, such that di meets s′ while dj does not and
s′ >g s ∈ Pa in the current context C. Hence, the argument
A = {notMetS(dj , s

′), dImp(s′, s)} ` better(di, dj , s) ex-
ists. However, for each tk ∈ T where s′ >g s | T ∈ P, there
exists an argument B = notImp(s′, s) ` notCon(tk) that at-
tacks A. Since s′ >g s ∈ Pa, there exists an argument {} `
con(tk) for each tk ∈ T that counter-attacks argument B. In
both cases, the attackers of argument {cPre(di)} ` cPre(di),
i.e. {notMetS(di, s), noBetter(di, dj , s)} ` notCPre(di),
are always counter attacked. Thus, {cPre(di)} ` cPre(di)
withstands all attacks. Since the set ∆ includes all assump-
tions defending {cPre(di)} ` cPre(di), it contains assump-
tions of the following forms: notMetS(dj , s

′), dImp(s′, s)
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(in case (2)), while {} ` con(tk) (in case (2)) and {} `
metS(di, s) (in case (1)) are arguments with empty supports.
Since i 6= j and s 6= s′, {cPre(di)} ∪ ∆ is conflict-free.
Since the support of {cPre(di)} ` cPre(di), cPre(di), is in
a conflict-free set that withstands all attacks, it is admissible.

We then prove if {cPre(di)} ` cPre(di) is admissible
in ABF , i.e. there exists a set of assumptions ∆ such
that {cPre(di)} ∪ ∆ is admissible, then di ∈ ψqp(Fqp).
Since {cPre(di)} ` cPre(di) is admissible, all its attackers,
i.e. {notMetS(di, s), noBetter(di, dj , s)} ` notCPre(di)
for all s ∈ S, must be counter attacked by arguments
supported by ∆. Each such attacker is counter attacked
due to one of the following: (1) there exists an argu-
ment {} ` metS(di, s) or (2) there exists an argument
{notMetS(dj , s

′), dImp(s′, s)} ` better(di, dj , s) that can
withstand all its attackers. Hence, we have either di meets
s, implied by case (1), or di does not meet s while some
other dj meets s, but di meets some more important goal set
s′ which dj does not meet, implied by case (2). By Defini-
tion 10, di ∈ ψqp(Fqp).

With Theorem 1, we can utilize the semantics and com-
putational tools of ABA to derive most-contextual-preferred
decisions in QPDFs. ABA also provides underlying struc-
tures for generating dialogical explanations (see Section 5).

4 Diagnostics and Prognostics of AD
We implemented the proposed argumentation-based deci-
sion making approach for the diagnostics and prognostics of
Alzheimer’s Disease (AD). We investigated two tasks: (1)
diagnosis: to determine the clinical diagnosis, i.e. normal
(CN), mild cognitive impairment (MCI), and AD, based on
multiple sources of data, (2) prognosis: to predict whether a
patient is to stay at undemented status (Stay) or progress to
AD (Progress) in 3 years.

Data used in the experiments of the two tasks were ob-
tained from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) database (adni.loni.usc.edu). The ADNI is a
long term project that collects a broad range of demographic,
clinical, laboratory and neuroimaging data about patients
with different cognitive impairments. For detailed informa-
tion, see www.adni-info.org.

4.1 Implementation
Specific to the two tasks studied, we adopt a hybrid ABA-
CBR (case-based reasoning) approach — the diagnosis
(prognosis) of a new case is derived based on the diagno-
sis (prognosis) of past similar cases, where ABA yields the
most similar past cases to the given new case. As in shown
Figure 1, our model first learns contextual priority of goal
sets from patient data. For each new case, it constructs a
QPDF that encodes patient data, the case information, and
the contextual priority of goal sets. It then creates an ABA
counterpart for the QPDF, and uses it to identify a list of ref-
erence cases. The QPDF and its corresponding ABA frame-
work are constructed in a way such that the most-contextual-
preferred decision is the case most similar to the new case.

Learn Contextual Priority of Goal Sets. The rela-
tionship between demographic features and the prevalence

Diagnosis Diagnosis Education Prognosis Prognosis Gender

All Data ≤ 16 (350) > 16 (193) All Data Female (174) Male (260)

LDELTOTAL MMSE LDELTOTAL mPACCtrailsB FAQ ADASQ4
CDRSB LDELTOTAL mPACCtrailsB ADAS13 RAVLT imme mPACCtrailsB
MMSE CDRSB CDRSB FAQ mPACCtrailsB ADAS13
mPACCtrailsB mPACCdigit mPACCdigit mPACCdigit mPACCdigit mPACCdigit
mPACCdigit FAQ FAQ RAVLT imme ADAS13 RAVLT imme
FAQ mPACCtrailsB MMSE ADASQ4 APOE4 CDRSB
PTEDUCAT ADAS13 TRABSCOR APOE4 RAVLT perc FAQ
ADAS13 RAVLT learn ADAS13 RAVLT perc ADASQ4 MMSE
Fusiform RAVLT perc RAVLT learn DX bl DX bl APOE4

Table 3: Contextual priority orderings of the top 9 features (each
modelled as a goal set) of the best performing context in each task

Figure 1: Implementing our approach for AD diagnosis (prognosis)

of AD has been studied intensively in medical research.
It has been observed in multiple large-scale studies that
age, gender, and education can influence the prevalence of
AD (Zhang et al. 1990; Gao et al. 1998). In our implemen-
tation, we consider age, gender and education as contexts
and model priority of goal sets in different contexts. To de-
termine contextual priority of features (modeled as goal sets
in QPDF), we separate the patient cases according to their
contexts, e.g. female and male for gender, and use an Ex-
tra Trees Classifier to rank the importance of features sepa-
rately. Features with importance scores greater than 0.02 are
selected. In the same context, the features with higher im-
portance scores have higher priority than those with lower
scores. Due to space constraint, only the priority orderings
of the best performing context of each task, i.e. education
for the diagnosis task and gender for the prognosis task, are
presented in Table 3. For the full text descriptions of the fea-
ture acronyms, please refer to the data dictionary of ADNI
at http://adni.loni.usc.edu.

Data Encoding. Each selected feature is then discretized
into two or three nominal values either according to clini-
cally validated cut-off scores or according to the data distri-
bution. For example, the feature FAQ, which stands for the
score of Functional Activities Questionnaire, is discretized
into three nominal values FAQ (≤ 1), FAQ (> 1, < 5),
and FAQ (≥ 5) according to cut-off scores in (Teng et
al. 2010). The feature Fusiform, which stands for the
MRI fusiform gyrus volume, is discretized into three nom-
inal values Fusiform(< 14454), Fusiform(≥ 14454,≤
18090), and Fusiform(> 18090) according to data dis-
tribution since no clear cut-offs are available. Then, all the
nominal values are category encoded with one-hot encoding.

Construct QPDF. For each new case, a QPDF is con-
structed based on the case information, encoded patient data
and the contextual priority derived previously. In our imple-
mentation, the decisions are choices to use the case of an ex-
isting patient as reference for diagnosis (prognosis), which
can be represented by the patient ID. The features of past
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Figure 2: A fragment of an admissible dispute tree (also a partial dispute tree according to Definition 15) for decision 1097 being a most-
contextual-preferred decision. Hence, patient 1097 is the case most similar to the patient of interest, case 675.

Diagnosis Prognosis

Accuracy
Precision Recall

Accuracy
Precision Recall

CN MCI AD CN MCI AD Stay Progress Stay Progress

Naive Bayes 0.853 0.888 0.921 0.710 0.939 0.813 0.873 0.834 0.919 0.667 0.849 0.793
Decision Tree 0.884 0.941 0.899 0.795 0.957 0.897 0.779 0.811 0.857 0.679 0.893 0.585

Multilayer Perceptron 0.895 0.926 0.903 0.859 0.932 0.916 0.804 0.836 0.883 0.710 0.896 0.672
Support Vector Machine 0.897 0.973 0.858 0.979 0.871 0.984 0.693 0.836 0.881 0.719 0.899 0.664

Random Forest 0.911 0.982 0.894 0.905 0.930 0.965 0.750 0.839 0.878 0.719 0.906 0.656

Our Model (context: gender) 0.901 0.926 0.894 0.900 0.949 0.945 0.736 0.839 0.880 0.723 0.903 0.664
Our Model (context: education) 0.915 0.936 0.916 0.927 0.949 0.949 0.792 0.825 0.863 0.711 0.906 0.604

Our Model (context: age) 0.904 0.926 0.899 0.902 0.932 0.942 0.778 0.837 0.876 0.723 0.906 0.646

Table 4: Classification reports for the two tasks: (1) diagnosis (left): determine if the patient is cognitively normal (CN), MCI or AD; (2)
prognosis (right): predict whether a patient will stay undemented (Stay) or progress to AD (Progress) in 3 years

patient cases are considered as attributes. For a new case
of interest, its features are modelled as goal sets and goals
— each feature is modeled as a goal set and the nominal
values derived from it as the goals in the goal set5.

Construct ABA Counterpart. A corresponding ABA
framework is constructed for the QPDF according to Def-
inition 11. For example, the contextual priority rule
APOE4 >g DX bl | {female} in the QPDF is converted
to the rule, notImp(apoe4, dx bl)← notCon(female), in the
corresponding ABA framework. Then, the most-contextual-
preferred decision is computed using proxdd6 and the re-
sulting patient case can be used as a “good” reference case
for the new case. Then, this resultant case is removed. The
next most-contextual-preferred decision is computed in the
same way until a specified number of cases are identified.

The diagnosis (prognosis) for the new case of interest is
then determined based on the diagnosis (prognosis) of the
reference cases using plurality voting, or weighted voting in
case of a tie. Figure 2 illustrates a fragment of an admissible
dispute tree for patient case 1097 being a most-contextual-
preferred decision in the QPDF that considers features of the
new case 675 (a female) as goals and goal sets and gender
as contexts, i.e. case 1097 is chosen as one of the reference
cases to determine the prognosis for patient 675.

5This means that the features in Table 3, e.g. CDRSB and
MMSE, are modelled as goal sets. Nominal values derived from
them are modelled as goals. For example, FAQ (≤ 1), FAQ
(> 1, < 5), and FAQ (≥ 5) are goals in goal set FAQ.

6http://robertcraven.org/proarg/proxdd.html

4.2 Experiment Results
To evaluate the performance of our proposed approach on
the two tasks, three models were implemented based on the
approach, each considering one of the three types of con-
texts that are selected based on medical research —gender,
education, and age. Our models use six reference cases
to determine the diagnosis of a new case. Five machine
learning models were also implemented in Python: Naive
Bayes (NB), CART Decision Tree (DT), Multilayer Percep-
tron (MLP), Random Forest (RF), and SVM with RBF ker-
nel type. The hyperparameters in these models were opti-
mized using Grid Search. 6-fold cross-validation was used
for model evaluation and the results are shown in Table 4.

Task 1: Diagnosis. We choose to use data from the base-
line visit in ADNI-1, which is the first phase of the project.
After data preprocessing, 543 patient cases are selected, with
116 normal (CN) records, 310 MCI records, and 117 AD
records. Among the three types of contexts studied, the opti-
mal result is achieved by the model that considers education.
It yields an accuracy of 0.915, the highest among all mod-
els, and relatively high precision and recall values for all
three classes. Our models that consider the other two con-
texts, gender and age, also achieve good accuracy, which are
higher than all comparison models except Random Forest.

Task 2: Prognosis. For most ADNI patients, the pro-
gression from CN or MCI state to AD happens around the
third year after their baseline visits. Hence, we use the data
and diagnosis at the baseline visit to predict whether a pro-
gression to AD happens in the following 3 years. 434 pa-
tient cases are selected from the ADNI-1 participants who
revisited 36 months after their baseline visits, with 116 pa-
tients stayed undemented and 318 patients progressed to AD
in 3 years. For the prognosis task, the best performance is
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achieved by the model that considers gender. It yields an
accuracy of 0.839, which is the same as Random Forest. It
is closely followed by the model that considers age, which
achieves an accuracy of 0.837 and also the highest preci-
sion for the Progress class (0.723) and the highest recall for
the Stay class (0.906). The model that considers education
yields a lower accuracy. It achieves a high recall for the Stay
class, but a relatively low recall for the Progress class.

5 Explaining Dialogues
Building upon the constructs of the decision making ap-
proach proposed in previous sections, we provide a new per-
spective on how to formalize dialogical explanations that are
(1) focused: only present information pertaining to users’
doubts and inquiries, and (2) contrastive: explain why a de-
cision is chosen instead of another (Miller 2019).

We propose explaining dialogue, in which a proponent
explains a decision to an opponent by uttering relevant ar-
guments to defend attacks from the opponent. It can be
constructed from a partial dispute tree, which represents a
part of the debate process to evaluate the decision in need of
explanation. An explaining dialogue has similar structures
with an ABA-dialogue (Fan and Toni 2011). However, each
of its utterances has a set of unmarked assumptions Sum,
that can be used to determine whether the dialogue has been
successful. We obtain sound and complete results that estab-
lish the equivalence among claims of successful explaining
dialogues, topics of admissible partial dispute trees, and ad-
missible arguments in ABA frameworks. With these results,
we then illustrate how successful explaining dialogues can
be used to give contrastive, focused and selected explana-
tions for most-contextual-preferred decisions in QPDF.
Definition 12. An explaining dialogue is conducted be-
tween a proposing agent P and an opposing agent O, and
consists of utterances of the form 〈a1, a2, T, C, Sum, ID〉
where:
• a1, a2 ∈ {P, O};
• C is the content, and is one of: (1) a claim, claim(β) for

some β ∈ L, (2) a rule, rl(β0 ← β1, . . . , βm) for some
β0, · · · , βm ∈ L, (3) an assumption, asm(α) for some
α ∈ L, or (4) a contrary, ctr(α, β) for some α, β ∈ L;

• Sum is a set of unmarked assumptions;
• ID ∈ N is the identifier;
• the target utterance T ∈ N>0 such that T < ID.

An utterance 〈ai, aj , T, C, Sum, ID〉 is from ai to aj .
Given the notion of utterances, an explaining dialogue

DP
O(X ) (P explains to O on X ∈ L) is a finite sequence

δ = 〈u1, · · · , ul〉, l ≥ 0, where each uk, k = 1, · · · , l,
is an utterance from either P or O. Given a dialogue
δl = 〈u1, · · · , ul〉 and a sequence of utterances U =
〈ul+1, · · · , ul+m〉, δl⊕U = 〈u1, · · · , ul, ul+1, · · · , ul+m〉.
An explaining dialogue can be generated from a dispute tree
as follows.
Definition 13. Given an ABA framework ABF =
〈L,R,A, C〉, and a dispute tree T for X ∈ L in ABF ,
the explaining dialogue DP

O(X ) corresponding to T is a se-
quence δl = 〈u1, · · · , ul〉 (let δk denote the working δl) s.t.:

• for the root node [P : {X} ` X ] in T , δk =
〈u1, u2〉 where u1 = 〈P, O, 0, claim(X ), {}, 1〉, and u2 =
〈P, O, 1, asm(X ), {}, 2〉;

• for every node [O : ∆1 `R1
β] in T , R1 = {r1, · · · , rn},

δk = δk ⊕ U where U is a sequence 〈uk+1, · · · , uk+m〉
consisting of:
uk+1 = 〈O, P, id, ctr(αi, β), Sumk , k + 1〉 where αi is the
assumption attacked by this opponent node, id is the ID
of the utterance with content asm(αi), and Sumk is the
unmarked assumptions of the previous utterance uk; for
each rx ∈ R1, uk+1+x = 〈O, P, k + 1, rl(rx), Sumk+x, k +
1 + x〉; for each βj ∈ ∆1, uk+1+n+j = 〈O, P, k + 1 +
x, asm(βj), S

um
k+n+j∪{βj}, k+1+n+j〉where k+1+x

is the ID of the utterance with the rule that contains βj ;
• for every node [P : ∆2 `R2 α] in T , R2 = {r1, · · · , rm},
δk = δk ⊕ U where U is a sequence 〈uk+1, · · · , uk+n〉
consisting of:
uk+1 = 〈P, O, id, ctr(βj , α), Sumk \∆1, k + 1〉 where ∆1

is the support of the argument attacked by this proponent
node, βj ∈ ∆1 is the assumption being attacked, and
id is the ID of the utterance with content asm(βj); for
each ry ∈ R2, uk+1+y = 〈P, O, k + 1, rl(ry), Sumk+y, k +

1 + y〉; for each αi ∈ ∆2, uk+1+m+i = 〈P, O, k + 1 +
y, asm(αi), S

um
k+m+i, k + 1 + m + i〉 where k + 1 + y is

the ID of the utterance with the rule that contains αi;
We use Fδ = 〈L,Rδ,Aδ, Cδ〉 to denote the underlying

framework of the dialogue δ where Rδ = {r | rl(r) is C of
some ui in δ}, Aδ = {α | asm(α) is C of some ui in δ},
Cδ(α) = {β | ctr(α, β) is C of some ui in δ}. Fδ is also the
underlying framework of T from which δ is constructed.
Definition 14. An explaining dialogue DP

O(X ) = δ =
〈u1, · · · , ul〉 is successful if the unmarked assumptions
Sum of the last utterance ul in δ is an empty set.

An intuitive understanding of Definition 14 is that δ is
successful if the supports of all opponent arguments in δ are
attacked, or in other words, the proponent arguments in δ are
sufficient and can counter-attack all opponent arguments.

An explaining dialogue DP
O(X ) can be viewed as a dia-

logical explanation for X . However, an explanation for the
entire debate process regarding X is not always necessary.
The opponent may not challenge each and every assump-
tion made by the proponent exhaustively. Hence, the propo-
nent can choose to present only relevant arguments that can
counter all attacks and make the dialogue successful. We
define the notion of partial dispute tree to represent a par-
tial debate process and study when an explaining dialogue
constructed from a partial dispute tree is successful.
Definition 15. Given an ABA framework ABF =
〈L,R,A, C〉 and an admissible dispute tree T for X ∈ L
in ABF , a partial dispute tree T ′ for X constructed from
T is a sub-tree of T , such that: (1) every node n in T ′ is
also a node in T ; (2) if a node [S : x] is in T ′, then its parent
[S′ : y], S, S′ ∈ {P, O}, S 6= S′, is also in T ′.

Given Definition 15, a partial dispute tree can be obtained
by pruning branches of an admissible dispute tree. Explain-
ing dialogues can also be constructed for partial dispute trees
according to Definition 13.
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〈P, O, 0, claim(cPre(1097)), {}, 1〉 〈P, O, 1, asm(cPre(1097)), {}, 2〉
〈O, P, 2, ctr(cPre(1097), notCPre(1097)), {}, 3〉
〈O, P, 3, rl(notCPre(1097)← notMetS(1097, dx bl),metS(98, dx bl), noBetter(1097, 98, dx bl)), {}, 4〉
〈O, P, 4, asm(notMetS(1097, dx bl)), {notMetS(1097, dx bl)}, 5〉
〈O, P, 4, asm(noBetter(1097, 98, dx bl)), {notMetS(1097, dx bl), noBetter(1097, 98, dx bl)}, 6〉
〈P, O, 6, ctr(noBetter(1097, 98, dx bl), better(1097, 98, dx bl)), {}, 7〉
〈P, O, 7, rl(better(1097, 98, dx bl)← metS(1097, apoe4), notMetS(98, apoe4), dImp(apoe4, dx bl)), {}, 8〉
〈P, O, 8, asm(dImp(apoe4, dx bl)), {}, 9〉 〈P, O, 8, asm(notMetS(98, apoe4)), {}, 10〉
〈O, P, 9, ctr(dImp(apoe4, dx bl), notImp(apoe4, dx bl)), {}, 11〉 〈O, P, 11, rl(notImp(apoe4, dx bl)← notCon(female)), {}, 12〉
〈O, P, 12, asm(notCon(female)), {notCon(female)}, 13〉
〈P, O, 13, ctr(notCon(female), con(female)), {}, 14〉 〈P, O, 14, rl(con(female)←), {}, 15〉

Table 5: A successful explaining dialogue built from partial dispute tree P : 1← O : 24← P : 28← O : 122← P : 124 in Figure 2

Theorem 2. Given an ABA framework ABF = 〈L,R,A, C〉
and an admissible dispute tree T for X ∈ L in ABF , let T ′
be a partial dispute tree constructed from T , let DP

O(X ) = δ
be the explaining dialogue constructed from T ′ and Fδ =
〈L,Rδ,Aδ, Cδ〉 be the underlying framework of δ and T ′.
Then, δ is successful iff T ′ is admissible in Fδ .

Proof. (Sketch) We first prove if T ′ is admissible in Fδ , then
δ constructed from T ′ is successful. Since T ′ is admissible
in Fδ , every O node in T ′ has a child. According to Defi-
nition 13, for every opponent node [O : ∆1 `R1

β] in T ′,
all βj ∈ ∆1 are added into Sum by some utterance un of
the form un = 〈O, P, id, asm(βj), S

um∪{βj}, n〉. Since ev-
ery opponent has a child, then there exists a proponent node
[P : ∆2 `R2 α] such that ∆2 `R2 α attacks some βj ∈ ∆1.
Then, ∆1 is removed from Sum by some utterance um of
the form 〈P, O, n, ctr(βj , α), Sum \∆1,m〉 from the propo-
nent. Hence, for each O node, the assumptions added into
Sum by its utterances are removed by an utterance from its
child P node. Since every O node has a child P node in T ′,
for δ constructed from T ′, the Sum in the last utterance of δ
is empty and δ is successful.

We then prove the converse — if the dialogue δ con-
structed from a partial dispute tree T ′ is successful, then
T ′ is admissible in Fδ . Since δ is successful, the unmarked
assumptions, Sum, in its last utterance is empty. For an op-
ponent node [O : ∆1 `R1 β], all assumptions in ∆1 are
added into Sum by its utterances. Since Sum in the last
utterance of δ is empty, then there exists some utterance
um = 〈P, O, id, ctr(βj , α), Sum \ ∆1,m〉, where βj ∈ ∆1

and id is the ID of the utterance with content asm(βj), that
removes all assumptions in ∆1 from Sum. According to
Definition 13, an utterance of such a form can only be con-
structed from a proponent node. Hence, this O node has a
proponent child [P : ∆2 `R2 α]. In order for Sum in the last
utterance of δ to be empty, such P node must exist for every
O node in T ′. Hence, T ′ is admissible in Fδ .

When T ′ for X ∈ L is an admissible dispute tree in the
underlying framework Fδ , argument {X} ` X is admissible
in Fδ . Hence, we have the following corollary.

Corollary 2.1. Given an explaining dialogue DP
O(X ) = δ,

let Fδ = 〈L,Rδ,Aδ, Cδ〉 be the underlying framework of δ.
Then, δ is successful iff {X} ` X is admissible in Fδ .

Proof. (Sketch) We first prove if δ is successful, then {X} `
X is admissible in Fδ . Let δ be constructed from a dispute
tree T for X . According to Theorem 2, if δ is successful,

then T is admissible in Fδ . This implies the following: (1)
every node of the form [O : ∆ ` b] has a child in T ; (2)
there exists no argument ∆ ` x such that node [P : ∆ ` x]
and node [O : ∆ ` x] both exist in T . Let [P : {X} ` X ]
denote the root node of T . Let P(T ) denote the set of all
assumptions in the supports of arguments labeling P nodes
in T . Item (1) implies that P(T ) withstands attacks from
the arguments embedded in all O nodes. Item (2) implies
that P(T ) is conflict-free. Hence, P(T ) is admissible in Fδ .
Since X ∈ P(T ), {X} ` X is admissible in Fδ .

We then prove the converse — if {X} ` X is admissible
in Fδ , then δ is successful. If {X} ` X is admissible in Fδ ,
then there exists a set of assumptions ∆ such that ∆ ∪ {X}
is admissible in Fδ . Hence, an admissible dispute tree T can
be constructed from ∆ ∪ {X}, with {X} ` X labeling the
root node and each argument of the form ∆′ ` x, ∆′ ⊆ ∆,
labeling a P node in T . Since δ can be constructed from T
and T is admissible, δ is successful.

Theorem 2 and Corollary 2.1 establish the connections
among successful explaining dialogues, admissible partial
dispute trees, and their underlying ABA frameworks. An ex-
plaining dialogue is successful when its claim corresponds
to (1) the topic of an admissible partial dispute tree and
(2) an admissible argument in the underlying ABA frame-
work. Table 5 shows a successful explaining dialogue built
from the partial dispute tree P : 1 ← O : 24 ← P : 28 ←
O : 122← P : 124 in Figure 2.

The interaction between a user and our model can be char-
acterized as an explaining dialogue, in which our model
plays the role of a proponent and the user plays as an op-
ponent. The user can challenge decisions made by our
model by uttering contraries and rules with a set of sentences
U(X ) ∈ L. Our model can offer explanations also by utter-
ing contraries and rules with a set of sentencesM(X ) ∈ L.

Example 3. For the explaining dialogue in Table 5, with the
mentioned sentences enclosed in the parentheses, a success-
ful explaining dialogue between our model and the user may
be as follows:
Model (utterance 1): case 1097 is the most similar to
(cPre(1097)) the case of interest 675.
User (utterance 3, 4): case 1097 is not the most similar to
(notCPre(1097)) case 675, since case 98 and case 675 share the
same baseline diagnosis (metS(98, dx bl)) while 1097 does not
(notMetS(1097, dx bl)).
Model (utterance 7, 8): however, case 1097 and case 675 have
similar APOE alleles (metS(1097, apoe4)), while case 98 does
not (notMetS(98, apoe4)). APOE allele is a more important risk
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factor than the baseline diagnosis (dImp(apoe4, dx bl)) for pre-
dicting progression to AD.
User (utterance 11): APOE allele cannot be a more important
risk factor than the baseline diagnosis (notImp(apoe4, dx bl))
because the context is not female (notCon(female)).
Model (utterance 14, 15): Since patient 675 is a female
(con(female) ←), APOE allele is a more important factor for
predicting progression to AD.

6 Related Works
The work presented in this paper shares some motivation
with other works in the area of qualitative multi-attribute
preferences, where preferences over decisions are defined
based on a set of attributes or goals ranked by their prior-
ity (Visser, Hindriks, and Jonker 2012). More broadly, our
work can also be viewed as a form of multiple criteria deci-
sion making (Amgoud and Prade 2009), with the criteria be-
ing the satisfaction of combinations of goals. Unlike most of
the works in multi-attribute preferences that study different
approaches to derive the global preference relation by aggre-
gating goal or attribute priorities (Coste-Marquis et al. 2004;
Bonnefon and Fargier 2006), we take a holistic approach
and derive the most-contextual-preferred decisions directly
without explicitly deriving the preference relation for each
pair of decisions. Both our work and (Brewka 2004) model
qualitative preference over decisions based on “multiple”
priority orderings of goals. However, they model multiple
priority orderings for different goal bases that co-exist in the
same context, while we model contextual priority that can
be viewed as multiple different priority orderings in differ-
ent contexts. Moreover, they use ordinal ranks while we use
a priority relation for representing the relative importance of
goal sets, which allows us to easily approximate the priority
relation with feature importance learned from training data.

The notions of our contextual priority may appear to be
similar to the conditional preferences statements and CP-
network proposed in (Boutilier et al. 1999). However, the
two are quite different in nature. They model ceteris paribus
preference, i.e. each preference statement is conditioned on
certain value assignments of a subset of outcome variables
(goals) and relates two outcomes that only differ in a sin-
gle variable. Our contextual priority rule is conditioned on
some defeasible contexts and relates two goal sets, which
may differ in more than one variable (goal).

There has been extensive research on argumentation for-
malisms for modeling qualitative preferences (Modgil 2009;
Modgil and Prakken 2014; Garcı́a and Simari 2014; Besnard
and Hunter 2014; Amgoud and Vesic 2014; Baroni et al.
2011). Most existing works account for defeasible pref-
erences at the semantic level. Preferences are often used
to modify existing (Amgoud, Dimopoulos, and Moraitis
2008; Modgil and Prakken 2014; Amgoud and Vesic 2014;
Besnard and Hunter 2014) or construct new attack rela-
tions (Dung, Thang, and Son 2019), and hence refine the
evaluation results of a framework. In value-based argumen-
tation frameworks, values are assigned to arguments and
preferences can then be specified over values to evaluate
the acceptance of the competing arguments (Bench-Capon
2003). However, we choose to map QPDFs to ABAs and

embed decision preferences at a “sub-semantic” level, sim-
ilar to the approach in (Cyras and Toni 2016). Without
modifying existing semantics, the implementation of our ap-
proach can be greatly eased as we can make use of existing
ABA engines to support decision computation.

Recently, there are several emerging works on generat-
ing explanations based on argumentation constructs. Ar-
gumentative explanations for the acceptance of decisions
are often given as various forms of subgraphs of an argu-
ment graph constructed from an argumentation framework.
More often, argumentative trees, such as dispute trees (Fan
and Toni 2014; Zeng et al. 2019; Čyras et al. 2019), and
dialectical trees (Garcı́a et al. 2013), are used to visual-
ize the reasoning process and serve as computational con-
structs for generating explanations. Various forms of ar-
gumentation dialogues have also been explored for generat-
ing dialogical and interactive explanations (Fan et al. 2014;
Caminada, Dvořák, and Vesic 2014; Cocarascu, Rago, and
Toni 2019). Unlike previous works that produce explana-
tions based on the entire reasoning process, e.g. using infor-
mation from a complete argumentative tree or from several
trees, our dialogical explanations can be derived from par-
tial dispute trees. This enables focused dialogues to be gen-
erated with selected, rather than all, information involved in
evaluating a decision.

7 Conclusion
We have proposed an argumentation-based decision mak-
ing approach that can represent and reason with complex
qualitative preferences and provide dialogical explanations
for the decisions made. The main contributions of this pa-
per are three-fold. Firstly, we extend the ability of deci-
sion frameworks to handle qualitative preferences based on
contextual priority of goal combinations. This allows more
complex goal priorities to be specified for different decision
contexts. Secondly, the proposed explaining dialogue ex-
pands the explanation capabilities of argumentation-based
decision making models. Different from previous explana-
tion formalisms, it is able to generate dialogical explanations
based on focused and selected information rather than all the
disputes in the reasoning process. Lastly, we demonstrated
the feasibility of our approach for AD diagnosis and prog-
nosis using experiments on real-world datasets. Such appli-
cations in the healthcare domain could benefit greatly from
the improved explainability offered by our approach.

As for future research directions, we hope to further de-
velop and extend our proposed approach. Currently, the con-
textual priority of goal sets is approximated using feature
importance learned from the data. This ensures that the re-
sulting priority orderings are consistent and satisfiable. In
the future, we will refine QPDF to include resolutions for
inconsistent and unsatisfiable contextual priorities. We will
also continue to study the relationship between QPDF and
other preference-based formalisms. Due to the size of ADNI
dataset, we were not able to illustrate all aspects of QPDF,
such as complex contexts. We are looking to find and exper-
iment with a larger dataset to better convey the full sophisti-
cation of our approach.
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