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Abstract

As AI systems become ever more intertwined in our personal
lives, the way in which they explain themselves to and inter-
act with humans is an increasingly critical research area. The
explanation of recommendations is thus a pivotal function-
ality in a user’s experience of a recommender system (RS),
providing the possibility of enhancing many of its desirable
features in addition to its effectiveness (accuracy wrt users’
preferences). For an RS that we prove empirically is effec-
tive, we show how argumentative abstractions underpinning
recommendations can provide the structural scaffolding for
(different types of) interactive explanations (IEs), i.e. expla-
nations supporting interactions with users. We prove formally
that these IEs empower feedback mechanisms that guarantee
that recommendations will improve with time, hence render-
ing the RS scrutable. Finally, we prove experimentally that
the various forms of IE (tabular, textual and conversational)
induce trust in the recommendations and provide a high de-
gree of transparency in the RS’s functionality.

1 Introduction
Recommender systems (RSs) (Resnick and Varian 1997)
are increasingly popular methods for helping users discover
items which may be of relevance, according to some pref-
erences, by exploiting vast data sources that humans alone
could never fully utilise. Desirable features of RSs (Tintarev
and Masthoff 2015) include: effectiveness, guaranteeing rec-
ommendation accuracy with regards to users’ preferences;
transparency, explaining how recommendations are made to
users; scrutability, permitting feedback from users based on
these explanations; trust, increasing users’ confidence in the
RS; and satisfaction, increasing users’ enjoyment in using
the RS. Arguably, the main focus of the literature over the
past decade has been the relentless pursuit of effectiveness
via ever more complex models (Dacrema, Cremonesi, and
Jannach 2019), leaving the (as important) features relating
to users’ experience of the RS somewhat neglected.

Meanwhile, there has been an unprecedented push of late
towards the explainability of AI systems from academia, in-
dustry and governments, e.g. see (Cath et al. 2018). Recent
studies have also shown that the use of complex and unin-
terpretable models is at times both unnecessary and counter-
productive, in RSs specifically (Dacrema, Cremonesi, and
Jannach 2019) and in AI in general (Rudin 2019). Fur-

ther, as argued in (Abdul et al. 2018), the core trends of ex-
plainability in AI are not on “usable, practical and effective
transparency that works for and benefits people” and true
progress in this direction can only be made via interdisci-
plinary works. Within the area of RSs, recent works have
begun to focus more on explanatory desirable features, giv-
ing users the option to provide more information about their
preferences via feedback mechanisms to achieve scrutabil-
ity, even at the expense of effectiveness, e.g. see (Balog,
Radlinski, and Arakelyan 2019). In (Rader, Cotter, and Cho
2018), different types of explanation are used to explain
Facebook’s newsfeed algorithm and all are shown to have
beneficial effects on transparency, thus justifying the variety
of explanations emerging in the RS literature, e.g. graph-
ical (Rago, Cocarascu, and Toni 2018), tabular (Vig, Sen,
and Riedl 2009) or conversational (Balog, Radlinski, and
Arakelyan 2019). Further justification is given by (McIn-
erney et al. 2018), who show via a bandit-based method that
different users respond best to different explanations.

We use argumentation, as understood in AI (e.g. see
(Simari and Rahwan 2009)), to provide a general, uni-
fying framework for RS explanations, combining aspects
from Knowledge Representation and Reasoning, Human-
Computer Interaction and RSs. Argumentation has been
shown to be an excellent means towards explainability, in
RSs (e.g. see (Chesñevar, Maguitman, and González 2009))
and beyond (e.g. see (Cyras et al. 2019a; Madumal et al.
2019)). In the context of RSs, various forms of explanations,
e.g. conversational (Cocarascu, Rago, and Toni 2019) or lin-
guistic (Cyras et al. 2019b), may be drawn from argumenta-
tion frameworks extracted from RSs (Rago, Cocarascu, and
Toni 2018), unearthing reasons for or against recommenda-
tions. We define an RS with a diverse explanatory repertoire
for the aspect-item frameworks of (Rago, Cocarascu, and
Toni 2018). Our RS results from a new method for extract-
ing argumentation explanations in the form of bipolar argu-
mentation frameworks (Cayrol and Lagasquie-Schiex 2005),
serving as the underlying scaffolding for the explanations
with which users may interact in multiple ways. We under-
take empirical, theoretical and experimental evaluations of
the RS to show that it satisfies four of the aforementioned
desirable features (effectiveness, scrutability, transparency
and trust). Finally, we discuss the implications of this study,
e.g. various avenues for future work.
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2 Background
Bipolar argumentation frameworks (BFs) (Cayrol and
Lagasquie-Schiex 2005) are triples ⟨X ,L−,L+⟩ with X , a
set of arguments, and L−,L+ ⊆ X × X , attack and sup-
port relations, resp. For any a ∈ X , the strength of a (wrt
⟨X ,L−,L+⟩) is given by σ(a), for σ ∶ X → I a (strength)
function and I a set equipped with a preorder ≤ (Baroni,
Rago, and Toni 2018).

We focus on RSs that can be understood as aspect-item
frameworks (A-Is) (Rago, Cocarascu, and Toni 2018), which
are 6-tuples ⟨I,A,T ,L,U ,R⟩ such that:
● I is a finite, non-empty set of items, e.g. in the movie

context, Breakfast at Tiffany’s (m0) or My Fair Lady (m1);
● A is a finite, non-empty set of aspects, disjoint from I ,

e.g. Audrey Hepburn (a1) or drama (g1), and T is a finite,
non-empty set of types, where each aspect in A has a single
type in T (possibly shared with other aspects), e.g. a1 is of
type actor while g1 and g2 (romance) are of type genre;
● L ⊆ (I ×A)∪(A × I) is a symmetric binary relation,

where for any i ∈ I, a ∈A, (i, a) ∈L and (a, i) ∈L indicate
that item i holds aspect a, e.g. m0 holds aspects a1, g1 and
g2 but m1 holds only a1 and g1;
● U is a finite, non-empty set of users;
● R ∶ U × (I ∪A) → [−1,1] is a partial function of rat-

ings, e.g. a user may give m1 a very positive rating of 1 but
a1 a moderately negative rating of −0.5.

In the remainder of the paper we will assume as given
an arbitrary A-I F = ⟨I,A,T ,L,U ,R⟩, unless otherwise
specified, and we will use the following notations: for any
t∈T ,At denotes {a∈A∣ the type of a is t}; X denotes I∪A
and is referred to as the set of item-aspects; L(x) = {y ∈
X ∣(y, x) ∈ L} denotes the set of linked item-aspects of x ∈
X ; for i ∈ I , Lt(i) denotes {a ∈ L(i)∣a ∈ At}. We will
assume that L(x) ≠ ∅ (∀x ∈ X ) and that Lt(i) ≠ ∅ (∀i ∈ I
and ∀t ∈ T ), i.e. that all item-aspects have linked item-
aspects and that all items have linked aspects of each type.

As in (Rago, Cocarascu, and Toni 2018), we will define
an RS for users characterised by a profile. Here, the profile
πu of u ∈ U consists of: a ‘collaborative filtering’ constant
φu ∈ ]0,1] (by excluding φu=0, we impose that collaborative
filtering is never disregarded); ∀t ∈ T a ‘type importance’
constant µut ∈ ]0,1] (by excluding µut =0, we impose that
all types of aspect are considered); ∀v ∈ U such that u≠v, a
‘similarity’ constant ωuv ∈[0,1], indicating how similar users
u and v are, and thus how much v′s ratings should be taken
into account in making recommendations to u. Intuitively,
increasing a constant increases how much the corresponding
feature is taken into account for that user.

3 Recommender System
An RS, in its essence, provides recommendations to a user
based on how items satisfy certain preferences or require-
ments. In our case, we predict how highly the user would
rate an item based on various other forms of predicted
ratings in the A-I, which are propagated via linked item-
aspects. We define these various other forms of predicted
ratings before doing so for items’ predicted ratings, using
throughout the supporting notions given in Table 1.

Definition 1. Let u ∈ U . The weighted average rating ρu ∶
I → [−1,1] is defined as follows, for i ∈ I: if Υu(i) ≠ ∅ and

∑v∈Υu(i) ω
u
v > 0 then ρu(i) = ∑v∈Υu(i) ω

u
vR(v,i)

∣Υu(i)∣
; otherwise,

ρu(i) is undefined.

Intuitively, weighted average ratings are approximations
of how the user would rate an item based on similar users’
ratings, and they are undefined when no other (similar) users
have given any ratings for the item. Weighted average rat-
ings are used to determine aspects’ predicted ratings in the
absence of user’s ratings, as follows (again, using Table 1):

Definition 2. Let u ∈ U . The predicted aspect rating PuA ∶
A → [−1,1] is defined as follows, for a ∈ A:

ifR(u, a) is defined then PuA(a) =R(u, a); else

if Λu(a) = Λ−u(a) = ∅ then PuA(a) = 0; else

if Λu(a) = ∅ then PuA(a)=φu
∑i∈Λ−u(a) ρu(i)
∣Λ−u(a)∣ ; else

if Λ−u(a) = ∅ then PuA(a) =
∑i∈Λu(a)R(u, i)
∣Λu(a)∣ ; else

PuA(a)=[
∑i∈Λu(a)R(u, i)
∣Λu(a)∣ +φu

∑i∈Λ−u(a)ρu(i)
∣Λ−u(a)∣ ]/[1+φu]

Note that this definition is well-defined. In particular,
in the third case, ρu(i) is necessarily defined for every
i ∈ Λ−u(a) (by definition of Λ−u, see Table 1). Similarly,
in the fourth case, R(u, i) is necessarily defined and, in the
final case, ρu(i) and R(u, i) are defined. Predicted aspect
ratings are then used to calculate predicted ratings for items:

Definition 3. Let u ∈ U . For i ∈ I and t ∈ T , let
the contribution of t towards i’s predicted rating for u be

cu,it = ∑a∈Lu
t
(i)P

u
A(a)

∣Lu
t (i)∣

. Then, the predicted item rating PuI ∶
I → [−1,1] is defined as follows. For any i ∈ I , if R(u, i)
is defined then PuI (i) =R(u, i), else: PuI (i) =

∑t∈T µ
u
t c

u,i
t

∑t∈T µ
u
t

.

Intuitively, a user’s rating on an item is its predicted rat-
ing, else the latter is the weighted average of the types’ con-
tributions, each weighted by its importance. A contribution
itself is a prediction of how the user would rate an item’s
linked aspects of a certain type as a whole, e.g. all its ac-
tors or genres, each being an average of our predictions of
how the user might rate each aspect. Note that the notion
PuI is well-defined, in particular given our assumptions that
Lt(i) ≠ ∅ and µut ≠0 , for any i ∈ I and t ∈ T (see Section 2).

For illustration see Figure 1 (treating all edges and their
symmetricals as elements of L). Here, we have given ratings
for three items (m1,m2 andm3), which are used to calculate
predicted ratings for the three aspects (a1, g1 and g2), which
are in turn used to calculate a predicted rating for m0.

We will usePuX (x), called the predicted rating of an item-
aspect, to denote PuI (x) or PuA(x) for x∈I or x∈A, resp.

Note that our predicted aspect and item ratings differ from
those in (Rago, Cocarascu, and Toni 2018) mainly in that we
do not use collaborative filtering on each item directly to af-
fect its predicted rating, instead incorporating it indirectly
via the similar users’ ratings’ effect on predicted ratings of
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Notion Description Formula

Υu
(i)

the set of users other than u {v ∈ U/{u}∣R(v, i)
who have rated item i is defined}

Λu
(a)

the set of items linked to {i∈L(a)∣R(u, i)
a with ratings from u is defined}

Λ−u(a)
the set of items linked to a

{i ∈ L(a)∣ρu(i)without ratings from u but with is defined}/Λu
(a)defined weighted average ratings

L
u
(x)

the set of item-aspects
{y ∈ X ∣(y, x) ∈ Lu

}affecting x for u

L
u
t (i)

the set of aspects
{a ∈ Lu

(i)∣a ∈ At}affecting i of type t for u

L
−
(x)

the set of
{y ∈ X ∣(y, x) ∈ L−}attackers of x

L
+
(x)

the set of
{y ∈ X ∣(y,x) ∈ L+}supporters of x

Table 1: Supporting notions, with u∈U , i∈I, a∈A, t∈T and x∈X .

the item’s linked aspects. This will allow concise explana-
tions of recommendations, aiding transparency.

4 Argumentation Explanations
In the spirit of (Rago, Cocarascu, and Toni 2018), we
extract argumentation explanations for recommendations
drawn from predicted ratings by directing the relations be-
tween item-aspects (indicating where one’s predicted rating
affects another’s) and then translating the directed relations
into appropriate argumentation relations.

Definition 4. The directed A-I for u ∈ U is Fu =
⟨I,A,T ,Lu,U ,R⟩, where:
Lu={(i, a)∈L∣R(u, a) is undefined ∧ ∃v ∈U such that

R(v, i) is defined where if v≠u then ωuv ≠0}∪
{(a, i) ∈ L∣R(u, i) is undefined}

For any i ∈ I , let ru(i) be R(u, i) if defined, else φuρu(i)
if defined, and otherwise undefined. The BF corresponding
to Fu is ⟨X ,L−,L+⟩ (with X =I ∪A, as before) such that:
L− = {(i, a) ∈ Lu∣ru(i) < 0} ∪ {(a, i) ∈ Lu∣PuA(a) < 0};
L+ = {(i, a) ∈ Lu∣ru(i) > 0} ∪ {(a, i) ∈ Lu∣PuA(a) > 0}.
An attack (support) from one item-aspect to another indi-

cates that the former weakens (strengthens, resp.) the argu-
ment that the user would rate the latter highly. We use ru to
extract attacks or supports from items as it determines their
effects on linked aspects’ predicted ratings (see Definition
2), whereas PuA does so from aspects to linked items’ pre-
dicted ratings (see Definition 3), avoiding circularity issues.

An illustration is shown in Figure 1, for an A-I where I =
{m0,m1,m2,m3}, A = {a1, g1, g2}, T = {actor, genre},
and L = {(x, y), (y, x)∣(x, y) ∈ L− ∪ L+}. Given ratings
from a user u: R(u,m1) = 1, R(u,m2) = 0.4, R(u,m3) =
−0.8, and constants: µugenre = 0.8, µuactor = 0.5, the pre-
dicted ratings are shown on the graph. Here, due to their
positive ratings, m1 and m2 support the arguments that the
user likes aspects that these items hold while the relation
from the negatively-rated m3 is one of attack. Similarly,
the positive predicted ratings for a1 and g1 lead to supports

Figure 1: Example argumentation explanation, visualised as a
graph, with arguments corresponding to items (aspects) shown in
white (grey, resp.) and given and predicted ratings indicated. In the
movie domain, item-aspects could be: m0 - Breakfast at Tiffany’s,
a1 - Audrey Hepburn, g1 - drama, g2 - romance, m1 - My Fair
Lady, m2 - The Birds and m3 - The Umbrellas of Cherbourg.

towards m0 while g2’s negative predicted rating means it at-
tacks m0.

In the spirit of (Rago, Cocarascu, and Toni 2018), pre-
dicted ratings of item-aspects can be understood as func-
tions for determining the strengths of item-aspects (argu-
ments) in argumentation explanations, exhibiting desirable
dialectical properties as gradual semantics of the underpin-
ning BFs. Here, we consider a novel property of fluid mono-
tonicity, which is instrumental for driving the feedback that
a user may provide in interactions shaped by argumentation
explanations (see Section 5). This property is formulated for
two BFs, with the same arguments, equipped with respective
strength functions; it sanctions that changes to the strength
of some attacker/supporter of an argument result in a change,
in the same “direction”, of the argument’s strength:

Definition 5. Let B = ⟨X ,L−,L+⟩ and B′ = ⟨X ,L−′,L+′⟩
be BFs. Let σ and σ′ be strength functions wrt B and B′
resp. Then, B,B′, σ,σ′ satisfy fluid monotonicity if, for any
x, y ∈ X where x ∈ L−(y) ∪ L+(y), if σ′(x) > σ(x) then
σ′(y) > σ(y) and if σ′(x) < σ(x) then σ′(y) < σ(y).

This property draws inspiration from reinforcement (Am-
goud et al. 2017) and strict monotonicity (Baroni, Rago, and
Toni 2019), stating that the weakening (strengthening) of
any argument weakens (strengthens, resp.) an argument it
attacks or supports. An instance of this property, for specific
choices of argumentation explanationsB,B′ and definitions
of σ,σ′ in terms of predicted ratings, is satisfied, as follows:
Proposition 1. Let u ∈ U and x ∈ X . Let F ′ =
⟨I,A,T ,L,U ,R′⟩ be such that R′(v, z1) = R(v, z1) for
all v ∈ U/{u} and all z1 ∈ X , and R′(u, z2) = R(u, z2) for
all z2 ∈ X /{x}. Let PuX ′ and ru′ be the predicted ratings in
F ′. Finally, for any y ∈ X where x ∈ L−(y) ∪L+(y), let σu
and σu′ be such that:
● σu(x) = ru(x) and σu′(x) = ru′(x) if x ∈ I , otherwise
σu(x) = PuA(x) and σu′(x) = PuA′(x);
● σu(y) = PuX (y) and σu′(y) = PuX ′(y).
Then, F ,F ′, σu, σu′ satisfy fluid monotonicity.
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Proof. (Sketch) Since x ∈L−(y)∪L+(y), Def. 4 gives that
either x ∈ I , y ∈A (case 1) or x ∈A, y ∈ I (case 2). In case
1, Defs. 2 and 4 show thatR(u, y) is not defined and ru(x)
is defined, the latter giving that ∃v ∈ U such that R(v, x)
is defined, thus the first two conditions of Def. 2 do not
hold. From Def. 2, a change in R′ such that ru′(x)>ru(x)
in the three other conditions gives PuA′(y) >PuA(y). The
inverse effect holds for a change such that ru′(x)<ru(x).
In case 2, Def. 4 shows that R(u, y) is not defined hence
PuI (y)=

∑t∈T µ
u
t c

u,y
t

∑t∈T µ
u
t

, by Def. 3. Let the type of x be tx. The
change PuA′(x)>PuA(x) has no effect on µut , ∀t ∈T , nor on
cu,yt , ∀t∈T /{tx}, thus the only parameter affected is cu,ytx =
[∑a∈Lu

tx
(y)PuA(a)]/∣Lutx(y)∣. So the change PuA′(x)>PuA(x)

gives cu,ytx
′>cu,ytx and thus PuI ′(y)>PuI (y). The inverse effect

holds for a change such that PuA′(x) <PuA(x). Thus, the
proposition holds in both cases.

This property is useful for our RS as it characterises how
the item-aspects’ predicted ratings in the RS affect one an-
other, but we also posit that it is intuitive from an argumen-
tation viewpoint in general when an argument’s semantic
meaning is fluid. For instance, in our RS setting, an argu-
ment x may signify that the user (strongly) likes its corre-
sponding item-aspect if its strength is (extremely) positive or
that the user (strongly) dislikes the item-aspect if its strength
is (extremely) negative. Thus, if we reduce the predicted
rating of some supporter y of x, weakening it (lowering its
potential to increase its linked item-aspects’ predicted rat-
ings), past the midpoint where y’s semantic meaning is mod-
ified, its support towards x becomes attack, and continuing
to reduce y’s predicted rating actually strengthens the attack
against x (and its potential to reduce its linked arguments’
predicted ratings). The inverse effect occurs for an attacker
being weakened. For example, in Figure 1, weakening an
argument, e.g. reducing the rating ofm1,m2 orm3, reduces
the predicted rating of arguments it attacks or supports, e.g.
g1, thus strengthening the attack or weakening the support.
Note that strengthening (weakening) an aspect inherently in-
creases the likelihood of an item which holds (does not hold,
resp.) the aspect being recommended.

In the next section, we capitalise on this behaviour by pro-
viding users with the means to interact with the RS via feed-
back mechanisms which affect predicted ratings intuitively.

Note that our argumentative explanations differ from
those in (Rago, Cocarascu, and Toni 2018) since: (i) we use
BFs rather than tripolar argumentation frameworks, which
also include a neutralising relation for diluting effects on
positive or negative predicted ratings (this third relation is
not required in our methodology for interacting with users);
(ii) intuitive behaviour which drives feedback, such as fluid
monotonicity, cannot be guaranteed for the predicted ratings
in the RS in (Rago, Cocarascu, and Toni 2018).1

1However, it satisfies a property of weak balance (Rago, Co-
carascu, and Toni 2018), which characterises attacks (supports) as
links between an item-aspects such that if we isolate the affecter as
the only item-aspect affecting the affectee, the former reduces (in-
creases, resp.) the latter’s predicted rating wrt its neutral midpoint.
Our σu also satisfies weak balance (omitted for lack of space).

5 Interactive Explanations
We now define methods for extracting interactive explana-
tions (IEs) from the argumentation explanations of the pre-
vious section.2 The IEs are generated following positive or
negative recommendations to the user (for or against items,
resp.) based upon (positive or negative, resp.) predicted
items ratings. Thus, for example, the RS may recommend
the user movie m0 (indicated simply as m0) or not (indi-
cated simply as ¬m0). We define three IEs, of varying for-
mats, namely tabular, textual and conversational, offering a
glimpse into the flexibility afforded by using argumentation
explanations as scaffolding for IEs. The IEs are designed so
as to vary the information provided in order to cater for dif-
ferent users with diverse explanatory requirements, i.e. tar-
geting width or depth in the argumentation explanation, and
also how the information is provided, i.e. statically where
all information is given at once or dynamically where infor-
mation is provided progressively in a conversation.

All our IEs are equipped with feedback mechanisms for
users to provide more information about their preferences,
triggered by one of two cases where there is a discrepancy
between the recommendation and the user preferences: case
↓, where an item is recommended but the user would have
liked it not to be, and case ↑, where an item is not recom-
mended but the user would have liked it to be. These situa-
tions could be rectified by simply giving a corrected rating
on the item, in the spirit of data augmentation, but we define
the IEs in such a way that more information is elicited from
the user regarding the reasons for the discrepancy.

5.1 IE1: Tabular
Our first IE is tabular in nature and is of a similar format to
the explanations of (Vig, Sen, and Riedl 2009). For case ↓
(↑), the user is presented with a set of the strongest support-
ers (attackers, resp.) in a table with their types and predicted
ratings. IE1 may be seen as making use of the width in the
argumentation explanations as many of the aspects affect-
ing an item may be considered, but nothing deeper in the
argumentation explanation. We choose (up to) three aspects
to avoid overloading users, as suggested by (Pu and Chen
2007), and provide the information statically in one interac-
tion. Formally, IE1 for an item i0 consists of the following
supporters for case ↓:3
amax1 = argmaxa∈L+(i0)PA(a)
amax2 = argmaxa∈L+(i0)/{amax1}PA(a) [if ∣L+(i0)∣ > 1]
amax3 = argmaxa∈L+(i0)/{amax1,amax2}PA(a) [if ∣L+(i0)∣ > 2]
and the following attackers for case ↑:
amin1 = argmina∈L−(i0)PA(a)
amin2 = argmina∈L−(i0)/{amin1}PA(a) [if ∣L−(i0)∣ > 1]
amin3 = argmina∈L−(i0)/{amin1,amin2}PA(a) [if ∣L−(i0)∣ > 2]
For illustration, in the example in Figure 1, an IE1 for m0

for case ↓ may consist of supporters a1 and g1, their types
and their (translated) predicted ratings:

2From now on, we focus on recommendations to u ∈ U and
drop the superscript u throughout. Also, we let any parameter
marked prime (′) be the new instance after some indicated change.

3Here argmaxs∈Sf(s) = {s ∈ S∣∀t ∈ S/{s} ∶ f(t) ≤ f(s)}
and argmins∈Sf(s) = {s ∈ S∣∀t ∈ S/{s} ∶ f(t) ≥ f(s)}.
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Audrey Hepburn actor 5/5 stars
Drama genre 3/5 stars

while an IE1 for ¬m0 for case ↑ utilises its attacker g2:

Romance genre 0.5/5 stars

The user can then interact with the explanations by recti-
fying ratings for supporter/attackers. In the illustration, for
case ↓ the user may decide to lower the rating of (one of) a1

and g1, and in case ↑ the user may increase the rating of g2.

5.2 IE2: Textual
Our next IE is textual, amounting to a linguistic description
of the reasons behind a recommendation, delivered stati-
cally. It differs from IE1 not just in style, but also in con-
tent, by targeting depth, rather than width, in the argumen-
tation explanation. For case ↓ (↑), we first state the type
tmax (tmin, resp.) that had the biggest positive (negative,
resp.) effect, followed by the most prominent supporting
(attacking, resp.) aspect amax (amin, resp.) of that type,
followed by its most prominent supporting (attacking, resp.)
item imax (imin, resp.). Formally, IE2 is as follows for cases
↓/↑ for a recommendation i0/¬i0:
The recommender system inferred that you would/would not
like item i0 due to tmax/tmin. It reached this conclusion as:
[if R(u, amax)/R(u, amin) is defined:] + you liked/disliked
amax/amin.
[else:] + it inferred that you like/dislike amax/amin because:

[ifR(u, imax)/R(u, imin) is defined:] + you liked/disliked
imax/imin.
[else:] + similar users liked/disliked imax/imin.

where: tmax =argmaxt∈T ci0t , tmin =argmint∈T ci0t , amax =
argmaxa∈L+tmax

(i0)PA(a), amin = argmina∈L−tmin
(i0)PA(a),

imax=argmaxi∈L+(amax)r(i) and imin=argmini∈L−(amin)r(i).
For illustration, in the example in Figure 1, an IE2 for m0

for case ↓may be The recommender system inferred that you
would like the movie Breakfast at Tiffany’s due to its actors.
It reached this conclusion as it inferred that you like Audrey
Hepburn because you liked My Fair Lady.

The user may then interact with the RS in the following
ways for cases ↓/↑, resulting in the indicated changes:
● I don’t care about a movie’s tmax/tmin - Reduce constant
such that µ′tmax

< µtmax / µ′tmin
< µtmin .

● I dislike/like amax/amin - Assign rating R′(u, amax)
/ R′(u,amin) such that P ′A(amax) < 0 < PA(amax) /
P ′A(amin) > 0 > PA(amin).
● But I dislike/like imax/imin [available if
R(u, amax)/R(u, amin) is not defined] - Assign rating
such thatR′(u, imax) < 0 <r(imax)/R′(u, imin) > 0>r(imin).
● I don’t care about what other users think [available if
R(u, amax)/ R(u, amin) and R(u, imax)/R(u, imin) are not
defined] - Reduce constant such that φ′ < φ.

5.3 IE3: Conversational
Our final IE uses the same information as IE2, i.e. exploiting
the depth of the argumentation explanation, but structured in
a dynamic, conversational protocol between the user and the
RS, potentially resulting in changes in predicted ratings. The
protocols for both cases ↓/↑, as shown in Figure 2, consist of:

Figure 2: IE3 protocol.

● user-interactions - statements from the user to request rea-
sons or provide information about preferences (labelled ui);
● system-decisions - decisions by the system in response to
user-interactions (labelled di);
● system-interactions - statements from the system to elicit
more information about the user’s preferences (labelled si);
● system-changes - adjustments to the system after the user-
interactions to effect some change in the RS (labelled ci).

We now define the components of the protocols formally.
The user-interactions for cases ↓/↑ are as follows:

u1: I disliked/liked i0, why did the recommender system infer
that I would/would not like it?
u2: Why did the system infer that I like/dislike its tmax/tmin?
u3: I don’t care about a movie’s tmax/tmin.
u4: Not true, I dislike/like amax/amin.
u5: Why did the system infer that I like/dislike amax/amin?
u6: But I dislike/like imax/imin.
u7: I don’t care about what other users think.

The system-decisions for cases ↓/↑ are as follows:
d1: Output s1 with tmax=argmaxt∈T ci0t /tmin=argmint∈T ci0t .
d2: Let amax=argmaxa∈L+tmax

(i0)PA(a)/amin=argmina∈L−tmin
(i0)

PA(a). If ∃R(u, amax) /R(u, amin), output s2, else output s3.
d3: Let imax=argmaxi∈L+(amax)r(i) / imin=argmini∈L−(amin)

r(i). If ∃R(u, imax) /R(u, imin) output s4, else output s5.
The system-interactions for cases ↓/↑ are as follows:

s1: The recommender system inferred you would/would not
like the item due to tmax/tmin.
s2: The recommender system came to the conclusion that
you would/would not like this item’s tmax/tmin because you
liked/disliked amax/amin.
s3: The recommender system came to the conclusion that
you would/would not like this item’s tmax/tmin because it in-
ferred that you would like/dislike amax/amin.
s4: The recommender system inferred that you would/would
not like amax/amin because you liked/disliked the imax/imin.
s5: The recommender system inferred that you would/would
not like amax/amin as similar users liked/disliked the imax/imin.

The system-changes for cases ↓/↑ are as follows:4
c1: Reduce constant such that µ′tmax

< µtmax / µ′tmin
< µtmin .

c2: Assign rating R′(u, amax)/R′(u, amin) such that
P ′A(amax) < 0 < PA(amax)/P ′A(amin) > 0 > PA(amin).
c3: Assign rating such that R′(u,imax) < 0 < r(imax) /
R′(u,imin) > 0 > r(imin).
c4: Reduce constant such that φ′ < φ.

4Note that these system-changes and the conditions under
which they become available are equivalent to those of IE2.
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In IE3, the first decision by the system (d1) considers the
attacking and supporting aspect arguments of the item argu-
ment itself. Firstly, the arguments are grouped by their types,
e.g. actors vs. genres in Figure 1, and the user is given the
opportunity to adjust how much the most prominent type is
taken into account (u3/c1). If the user requests more infor-
mation about why this inference was made (u2) the system
then determines the most prominent individual aspect in this
type (d2), e.g. (assuming that genre was the most promi-
nent type) the arguments drama (g1) vs. romance (g2) in
Figure 1. Depending on whether this prominent aspect’s rat-
ing was given or predicted, the user is given the opportunity
to change it (u4/c2) or in the latter case request more infor-
mation about this inference (u5). In this case, the system
determines the most prominent item which led to this con-
clusion (d3), i.e. item arguments which attack or support this
aspect argument, e.g. My Fair Lady (m1) vs. The Birds (m2)
in Figure 1. Depending on whether this prominent item was
rated by the user or similar users, the user is given the chance
to change the rating (u6/c3) and in the latter case reduce how
much similar users are taken into account (u7/c4).

6 Evaluation and Discussion
In this section we assess how well the RS, equipped with
the IEs, performs along some of the desirable features of
(Tintarev and Masthoff 2015). The research questions (RQs)
for our 3-stage evaluation are: RQ1 (Effectiveness) - Does
the RS produce accurate (wrt users’ preferences) recommen-
dations? RQ2 (Scrutability) - Does the RS adapt to user
preferences? RQ3 ((Perceived) Transparency) - Do users
(feel they) understand how the RS works? RQ4 (Trust) - Do
users trust the RS’s recommendations? RQ5 (Satisfaction) -
Are users happy with the recommendations?

6.1 Stage 1 - Empirical Analysis
We first address RQ1, assessing how well the predicted rat-
ings of our RS match users’ given ratings in various datasets,
without considering the IEs at this stage5. We experiment
with the following datasets: a subset of the Netflix dataset
as used in (Rago, Cocarascu, and Toni 2018), the Movie-
Lens 100K benchmark dataset and the MovieLens develop-
ment dataset (Harper and Konstan 2015). For all datasets,
T = {genre, actor, director}.6

The Netflix dataset consists of 528 movies, each with 500
ratings on a five star (integral) scale from 1 to 5. From the
total of 36968 users, we keep only those who have rated at
least 10 movies, giving a total of 4772 users. The Movie-
Lens 100K benchmark dataset consists of 1239 movies with
ratings on a five star (integral) scale from 1 to 5 and 943
users in total, each having rated at least 20 movies. The
MovieLens development dataset consists of 9533 movies
with ratings on a 5-star scale, with half-star increments (0.5

5The code and the datasets to replicate these exper-
iments are available at: https://github.com/CLArg-group/
KR2020-Aspect-Item-Recommender-System

6Note that the RS is applied in the movie context in this pa-
per but it may be deployed in, and indeed is well-suited to, other
contexts, e.g. on e-commerce or music streaming platforms.

Dataset ∣I ∣ ∣U ∣ ∣A∣ >100 >50 >30 10-30
Netflix 528 4772 1154 365 1077 1923 2849

ML 100K 1239 943 4328 312 510 689 254
ML Dev. 9533 610 22394 244 376 498 112

Table 2: Dataset summary with the number of items, users, aspects,
and the number of users who rated more than 100, more than 50,
more than 30, and between 10 and 30 movies.

stars - 5.0 stars), and 610 users in total, each having rated at
least 20 movies. Dataset statistics can be found in Table 2.7

We compare against the following baseline recommenda-
tion algorithms, as implemented in the Surprise library (Hug
2017) using the default configuration settings:
● KNN: K Nearest Neighbours, a classical collaborative fil-
tering algorithm;
● KNNZ: KNN with the z-score normalization of each user;
● SVD: Singular Value Decomposition, an algorithm that led
to the best results in the Netflix challenge8;
● NMF: Non-negative Matrix Factorization, a collaborative
filtering algorithm (Luo et al. 2014);
● Slope1: Slope One (Lemire and Maclachlan 2007), based
on “popularity differential” between items for users by find-
ing the average rating differential;
●CoClust: Co-clustering (George and Merugu 2005), an al-
gorithm built on simultaneous clustering of users and items.

On the Netflix dataset, we also compare with the AI∗
RS method in (Rago, Cocarascu, and Toni 2018), but use
a different experimental set-up than the latter. Indeed, in
(Rago, Cocarascu, and Toni 2018), all users who have rated
at least 10 or alternatively 20 movies are used as training
and the users who rated less than this as testing, with a
variable number of ratings (5, 7, 10) used to address the
cold-start problem, i.e. where sufficient information about
users/items is lacking, for the users in the testing set. In-
stead, given that our focus is to determine the performance
of our methodology on several datasets, we split the Netflix
and the other datasets into training and testing sets and ad-
dress the cold-start problem as follows: for users who rated
over 30 movies, we select 30 movies for testing and use
those which remain for training; for users who rated 10 to 30
movies, we select 10 movies for testing and use the rest for
training. We settle for this split of training and testing sets
which yields a large number of user-rating pairs for testing.
Also, whereas in (Rago, Cocarascu, and Toni 2018) similar-
ities are determined based on users’ genre preferences, we
use cosine similarity between users based on movie ratings.

For the Netflix dataset, we use the following constants
for all users’ profiles: φ = 0.7, µactor = 0.1, µdirector = 0.1,
µgenre = 0.8. For both MovieLens datasets, we use: φ = 0.1,
µactor=0.1, µdirector=0.1, µgenre=0.6. For u ∈ U , ∀v ∈ U with
u≠v, ωuv = 0 if v is not one of 20 most similar users to u.

Similarly to (Rago, Cocarascu, and Toni 2018), we con-
sider predicted ratings differing from an actual rating by 1
star to be correctly predicted in order to accommodate the

7Note that our method takes only minutes to compute predicted
ratings for these datasets.

8https://www.netflixprize.com/
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KNN 85% 0.78 1.06 89% (81%/98%)

KNNZ 85% 0.78 1.07 88% (83%/93%)
SVD 88% 0.73 1.01 89% (82%/98%)
NMF 84% 0.80 1.09 87% (83%/91%)

Slope1 85% 0.78 1.07 88% (83%/94%)
CoClust 84% 0.80 1.09 87% (84%/91%)
A-I∗ RS 77% 0.97 1.32 83% (82%/84%)

Ours 86% 0.78 1.05 89% (82%/97%)

M
ov

ie
L

en
s

10
0K

(2
32

10
pa

ir
s)

KNN 83% 0.83 1.11 92% (86%/99%)
KNNZ 83% 0.82 1.12 92% (87%/97%)
SVD 87% 0.76 1.04 92% (87%/99%)
NMF 83% 0.84 1.13 92% (87%/97%)

Slope1 84% 0.82 1.10 92% (87%/98%)
CoClust 82% 0.84 1.13 91% (87%/96%)

Ours 84% 0.84 1.10 92% (87%/98%)
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KNN 79% 0.77 1.00 93% (89%/98%)
KNNZ 80% 0.74 0.99 93% (90%/97%)
SVD 82% 0.73 0.96 94% (90%/98%)
NMF 79% 0.76 0.99 93% (90%/96%)

Slope1 80% 0.74 0.99 94% (90%/97%)
CoClust 79% 0.77 1.00 93% (90%/96%)

Ours 77% 0.82 1.03 93% (90%/96%)

Table 3: Experimental results for the three datasets with the num-
ber of user-item pairs in the testing datasets indicated.

variations seen in this type of subjective rating. In Table
3 we report Accuracy (i.e. number of correct predictions
compared to the total number of predictions) as well as stan-
dard RS performance measures (Silveira et al. 2019): Mean
Absolute Error, Root Mean Squared Error given the 1-5 star
scale, and Precision, Recall, and F1 given the binary scale:
a rating greater or equal to 3 is considered to be positive,
whereas a rating less than 3 is considered to be negative.

The experiments show that our RS is competitive with
standard baselines, as well as the A-I∗ RS. Our results differ
from those of (Rago, Cocarascu, and Toni 2018) as we used
more user-rating pairs for testing. Despite effectiveness not
being our main focus, it is encouraging to see that it is not
sacrificed in place of explainability by our method. Amongst
the baselines, KNN may also be deemed to be explainable,
but our focus is on argumentative explanations, which, to the
best of our knowledge, have not been defined for KNN.

6.2 Stage 2 - Theoretical Analysis
We now answer RQ2 by performing a theoretical analy-
sis showing that the IEs affect the predicted ratings intu-
itively and desirably. Note that an experimental evaluation
of scrutability would have required a complex and extensive
user study (e.g. to obtain statistically significant changes in
the predicted ratings) and so we leave this for future work.

The following corollary of Proposition 1 shows that IE1’s
system-changes are guaranteed to affect not only i0’s pre-
dicted rating intuitively, i.e. reducing/increasing it in case
↓/↑, resp., (this could indeed be achieved with a corrected
rating on i0, inherent in the identification of the discrep-

ancy), but also the predicted ratings of other unrated items
which hold the adjusted aspect.
Corallary 1. Increasing the predicted rating of some a ∈ A
such that P ′A(a) > PA(a), increases the predicted rating of
any i ∈ I where a ∈ L−(i) ∪L+(i), i.e. P ′I(i) > PI(i).

We now show that the changes in the predicted ratings for
IE2 and IE3 are intuitive. Once again, a corrected rating on
i0 would rectify the discrepancy in the ratings and so we
again show that the system-changes also affect the predicted
ratings of other items intuitively. The next proposition guar-
antees that system-changes c↓1 and c↑1 (where superscripts in-
dicate cases), which relate to the user specific constant for
tmax and tmin, resp., reduce its weighted contribution towards
any unrated item’s predicted rating.

Proposition 2. System-change c↓1 (c↑1) guarantees that for
any i∈I where R(u, i) is not defined, the weighted contri-
bution of tmax (tmin, resp.) towards i’s predicted rating is re-
duced, i.e. ∣µtmaxc

i
tmax
′∣<∣µtmaxc

i
tmax
∣(∣µ′tmin

citmin
′∣<∣µtminc

i
tmin
∣, resp.).

Proof. (Sketch) For c↓1, the system-change is µ′tmax
<µtmax . By

Defs. 3 and 2, µtmax only affects PI , thus citmax
′=citmax

, giving
∣µ′tmax

citmax
′∣<∣µtmaxc

i
tmax
∣. The proof for c↑1 is similar.

The following corollary of Proposition 1 shows that
system-changes c↓2 and c↑2, which relate to amax and amin,
resp., affect all unrated items that hold the aspect intuitively,
i.e. reducing or increasing, resp., their predicted ratings.

Corallary 2. System-change c↓2 (c↑2) guarantees that for any
i ∈ I where amax ∈L+(i) (amin ∈L−(i), resp.), i’s predicted
rating is reduced (increased, resp.), i.e. P ′I(i) < PI(i)
(P ′I(i)>PI(i), resp.).

The following corollary of Proposition 1 shows that
system-changes c↓3 and c↑3, which relate to imax and imin resp.,
affect all unrated aspects held by the item intuitively, i.e. re-
ducing or increasing, resp., their predicted ratings.

Corallary 3. System-change c↓3 (c↑3) guarantees that for any
a ∈ A where imax ∈L+(a) (imin ∈L−(a), resp.), a’s predicted
rating will be reduced (increased, resp.), i.e. P ′A(a)<PA(a)
(P ′A(a)>PA(a), resp.).

The final proposition guarantees that system-changes c↓4
and c↑4, which relate to φ, cause a change such that, the ef-
fects of attackers (supporters) for which similar users’ rat-
ings are being used, on the predicted ratings of unrated as-
pects that they attack (support, resp.) is diminished.

Proposition 3. System-changes c↓4 and c↑4 guarantee that for
any i ∈ I , where ρ(i) is defined, and any a ∈ A, where i∈
L−(a)∪L+(a) andR(u,a) is not defined, the contribution of i
to the predicted rating of a is reduced, i.e. ∣φ′ρ′(i)∣<∣φρ(i)∣.

Proof. (Sketch) For c↓4 and c↑4, the system-change is φ′ < φ.
By Defs. 3 and 2, φ only affects the predicted aspect rating,
thus ρ′(i) = ρ(i), giving ∣φ′ρ′(i)∣ < ∣φρ(i)∣.

Thus, all system-changes enact some intuitive alteration
in the predicted ratings. We then posit that the more a user
interacts with our RS, the more the predicted ratings will
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align with their preferences and the RS is hence scrutable.
The changes also accommodate dynamic preferences (e.g. if
a user’s rating on an aspect or item shifts over time then c2 or
c3, resp., may capture these shifts accordingly), an important
phenomenon in RSs (Chen, Zhang, and Qin 2019).

6.3 Stage 3 - Experimental Analysis
The final stage of our evaluation comprises a preliminary
user study (again in the movie domain) using crowdsourc-
ing in which RQ3, RQ4 and RQ5 are considered. We exper-
iment with methods for assessing the transparency, trust and
user satisfaction of the RS. In general, there are many chal-
lenges with RS user studies, for example, it is difficult to
measure user experience without allowing users to consume
items (Loepp et al. 2018). However, depending on the do-
main and the information provided, participants sometimes
seem to approximate the actual value of recommendations,
e.g. movies, reasonably well (Loepp et al. 2018). Even so,
when interacting with users via crowdsourcing, replicating
the real world situation for recommendation is difficult to
achieve as the consequences of decisions are minimal and
there is an incentive to complete tasks quickly, whereas in
the real-world, users are genuinely interested in the RS out-
put and, possibly, the mechanism that produces it. This in-
centive to complete tasks quickly may give an advantage to
IE1 and IE2 over IE3 in our setup, since they provide a sim-
ilar amount of information in a concise format, leading to
faster, though perhaps less natural, interactions.

We used Amazon’s Mechanical Turk to conduct an ex-
periment where 75 users were asked to rate movies on a
scale of 1-5 stars, along with the option that they have not
seen the movie. Once we had presented 70 movies to each
user, we calculated recommendations for the users who had
rated at least five movies. Each user was then presented with
three positive recommendations, i.e. those with the highest
predicted ratings, and three negative recommendations, i.e.
movies with the lowest predicted ratings, calculated using
our RS from Section 3. (We required at least three pos-
itive/negative ratings to show positive/negative recommen-
dations, resp.) For these positive and negative recommenda-
tions, each user was informed that the RS was inferring that
she/he likes or dislikes, resp., those movies. Users were then
asked to show their level of agreement with each of the in-
ferences. If a user showed disagreement, i.e. a discrepancy
between the predicted ratings and their own, we offered two
types of IE among IE1-IE3 for that recommendation; we had
51 such occurrences, as 23 users did not rate enough movies
or indicated that there was no discrepancy and one user gave
nonsensical responses. We performed two pairwise compar-
isons among IE1 vs. IE2 and IE2 vs. IE3, thus varying: the
information in the IE (i.e. utilising depth vs. width in the ar-
gumentation explanations) and the way it was provided (i.e.
statically vs. dynamically), counterbalancing the order of
presentation to avoid order effects. We therefore showed:
17 users IE1 then IE2, 15 users IE2 then IE1, 9 users IE2
then IE3 and 10 users IE3 then IE2.

Concerning RQ3, our aim was to evaluate participants’
perceived and actual understanding of the RS, whether the
IEs improved upon these aspects and if the type of IE had

Figure 3: RQ3 results showing the proportion of users giving cor-
rect responses when asked how they think the RS works. Note that
the sample size varied, with IE3 being the smallest.

any effect. To assess transparency in this way, we asked
users before and after their first IE (so only one IE’s effect
was considered) how they thought the RS worked, with nine
selectable options amounting to (responses condensed for
lack of space): one correct response: from similar users’ and
my own ratings, the RS infers how much I like aspects to find
films I may like; three partially correct responses: the RS sug-
gests films similar to those I liked; using my ratings, the RS
builds my profile to find films I may like; and the RS suggests
films which were rated highly by other users who gave sim-
ilar ratings to me; and five incorrect responses: the RS sug-
gests films that were the most popular among users; the RS
randomly selects a few films from a large database contain-
ing films’ titles, posters, directors and actors; the RS sug-
gests films that have similar plot to those I liked; the RS sug-
gests films with posters similar to those I liked; and I don’t
know. Figure 3 shows for all types of IE there were signifi-
cant increases in the number of users who selected the cor-
rect response (p<.001), supporting the claim that our IEs aid
transparency, but that there was little to discern between the
types of IE in this measure (p>.720). A direct comparison
between static and dynamic explanations shows no differ-
ence in perceived understanding (t(19)=1.14, p=.267). Al-
though the textual explanation appears significantly higher
than the tabular one (t(31) = 2.09, p < .045), this may be
a random result due to multiple comparisons. For perceived
transparency, we asked users if they felt like they understood
how the RS worked before and after the IEs but there was no
statistically significant change here (p>.547).

For RQ4 and RQ5, we wanted to evaluate how the (types
of) IEs affected users’ trust in and satisfaction with the RS.
Across explanation types there was a significant increase in
trust ratings from before the explanation was presented (but
after the recommendations were given) to after it was pre-
sented (t(51)=2.46, p = .017). As before, we observed no
significant advantage for any explanation type (p>.122). We
also asked the users at the end of the test which they pre-
ferred of the two IEs (along with an option of no preference)
wrt trust and user satisfaction, which gave direct pairwise
comparisons between depth/width of information in the ex-
planation and its static/dynamic delivery. For the two RQs,
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Figure 4: RQ5 results from the pairwise comparisons.

users for the most part gave the same response for both ques-
tions, with only 10% differing; due to space limitations we
therefore only show the results for RQ5. (The order in which
IEs were delivered to the users had little effect on these re-
sults and so this was ignored.) Figure 4 shows there was a
slight preference for IE1 over IE2, i.e. width over depth in
the argumentation explanation, and (somewhat surprisingly)
a preference for IE2 over IE3, i.e. static, textual explana-
tions over those which are dynamic and conversational. The
sample size was fairly small but feedback from the users
regarding the latter comparison referred to a preference for
having all the information up front. However, the most clear
finding was that the users’ preferences varied significantly
regarding width/depth in the IEs and their static/dynamic
nature, highlighted by the fact that few users opted for the
no preference option. An interesting point was that in the
19 instances of IE3, 18 included two or more user interac-
tions, so the preference for non-conversational IEs was not
due to a lack of interaction. This also shows that despite
the incentive to complete the tasks quickly, conversational
explanations actually induced more interaction with users.

7 Related Work
Several argumentation-based RSs have been devised given
the natural amenability of argumentation for representing
human-like reasoning. Some (e.g. (Briguez et al. 2014)) use
Defeasible Logic Programming (Garcı́a and Simari 2004).
In the hybrid RS of (Bedi and Vashisth 2015), recom-
mendations are repaired using argumentation to align with
user preferences, giving adaptive recommendations. In
(Rodrı́guez et al. 2017), a hybrid, rule-based RS uses ar-
gumentation to differentiate between different recommenda-
tion techniques, which is shown to outperform other hybridi-
sation methods. A formalisation for explanations based on
Toulmin’s model of argumentation (Toulmin 1958) is given
in (Naveed, Donkers, and Ziegler 2018), before being ex-
amined thoroughly with user studies showing that different
levels of argumentation explanation are most acceptable for
different users, an important motivation for our work.

RS explanations which most closely align with ours from
a structural point of view are those utilising knowledge
graphs, e.g. those used by (Xian et al. 2019; Wang et al.
2019), which are similar to A-I frameworks but also include

user nodes and heterogeneous relations. More flexibility is
therefore afforded with the scope of the explanations, but
there is no argumentative reasoning underpinning the RSs.

Many neural methods exist for generating conversational
interactions in RSs, e.g. (Sun and Zhang 2018; Zhang et
al. 2018). One such method, Vote Goat (Dalton, Ajayi, and
Main 2018), uses Dialogflow to converse with users, which
would be interesting to adapt to our method. Other con-
versational RSs include that of (Sepliarskaia et al. 2018),
which uses a static preference questionnaire to avoid cold-
start problems and to elicit user preferences, where the se-
lection of questions is treated as an optimisation problem.
The method of (Balog, Radlinski, and Arakelyan 2019) is a
tag-based approach to recommendations equipped with ex-
planations which satisfy predetermined rules and allow users
to correct the explanations. Compared with the state-of-the-
art, effectiveness is comparable but somewhat sacrificed in
place of greater transparency and scrutability. Finally, tem-
plated and neural methods are combined in (Aliannejadi et
al. 2019) by generating questions offline with users before
using a neural model for question selection, showing that
increasing user interaction gives better recommendations.

8 Conclusions
We have introduced an RS, adapted from, but consider-
ably modifying, that of (Rago, Cocarascu, and Toni 2018),
which is not only competitive with regards to recommen-
dation accuracy (effectiveness, proven empirically), but is
also amenable to the extraction of argumentation abstrac-
tions that act as scaffolding supporting various forms of ex-
planations with which users can interact (IEs). This benefits
both the user and the RS as it empowers feedback about the
user’s preferences to be accommodated to improve recom-
mendations, making the RS scrutable (proven theoretically).
We then undertook a user study, from which we drew the
following tentative conclusions, requiring further studies:
● Argumentation-based IEs of various types often improve
the transparency and trust in an RS (though users didn’t al-
ways perceive this to be the case for transparency).
● Despite conversational IEs consistently inducing interac-
tions with users, users expressed no explicit preference for
this type over receiving all of the information statically, rais-
ing questions about the benefits of conversational explana-
tions (at least when they are delivered as text as opposed to
being spoken, e.g. by an AI assistant).
● Users showed diverse preferences for the content of expla-
nations and the manner in which it is delivered, highlighting
the importance of supporting various styles of explanation.

This paper lays the groundwork for future studies on as-
sessments of types of IEs and their effect on users’ RS expe-
riences. We plan to study more variants of IEs, e.g. expand-
ing user control over the RS and thus its adaptability to their
preferences or developing more natural conversational pro-
tocols spoken by an AI assistant, and deeper analysis, e.g.
focusing on the levels of interaction induced. It would also
be interesting to deploy the RS in real world tasks where the
recommendations matter to users, not to mention in other
suitable contexts, e.g. music streaming or e-commerce.
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