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Abstract
We study DatalogMTL—an extension of Datalog with met-
ric temporal operators—under integer semantics, where the
temporal domain of both interpretations and temporal oper-
ators consists of integer time points only. This is in contrast
to the standard semantics, which is defined over the rational
timeline. DatalogMTL under integer semantics is an interest-
ing KR language: on the one hand, one can often assume the
integer timeline in applications; on the other hand, it captures
prominent temporal extensions of Datalog such as Datalog1S.
We show that the choice of integer semantics leads to more
favourable computational properties. We first show that rea-
soning over integers is at most as hard as reasoning over
rationals for DatalogMTL and its natural fragments. Then,
we investigate fragments of DatalogMTL where adopting the
integer semantics makes reasoning easier. In particular, we
show that complexity drops from P-hard to NC1-complete
for the propositional fragment (where all object variables are
grounded), and from TC0-hard to ACC0 for the linear frag-
ment where the past diamond operator is the only metric op-
erator allowed in rule bodies. Thus, reasoning in such frag-
ments is both tractable and highly parallelisable, which sug-
gests their appropriateness for data-intensive applications.

1 Introduction
DatalogMTL (Brandt et al. 2018; Brandt et al. 2017)
is a recently introduced temporal extension of Data-
log, where atoms in rules can mention operators from
metric temporal logic MTL (Koymans 1990) interpreted
over the rational timeline. For example, the ground ex-
pression x[1,10]Temp(c, high) holds at time t (e.g., ex-
pressed in seconds) if sensor c reported a high tempera-
ture sometime within the interval [t − 10, t − 1]. Simi-
larly, �[1,10]Temp(c, high) holds at t if the sensor reported
high temperature continuously in the aforementioned inter-
val. Then, the rule (1) triggers an alarm for sensor x at time
t if the sensor reported high temperature at least once every
ten seconds within the previous minute:

Alarm(x)← �[1,60] x[1,10] Temp(x, high). (1)
A dataset consists of facts involving intervals, such as
Temp(c, high)@[15, 21], stating that Temp(c, high) holds
continuously in the interval [15, 21].

DatalogMTL provides a powerful language suitable for
ontology-based data access (Brandt et al. 2018), stream rea-
soning (Wałęga, Cuenca Grau, and Kaminski 2019), and

temporal logic programming (Brzoska 1998). Thus, the
study of DatalogMTL and its fragments is receiving increas-
ing attention (Wałęga et al. 2019; Ryzhikov, Wałęga, and Za-
kharyaschev 2019; Wałęga et al. 2019).

In the standard semantics, DatalogMTL is interpreted
over the rational timeline. Having a dense time domain pro-
vides a great deal of modelling flexibility, which can be ben-
eficial in applications (Brandt et al. 2018). In many cases,
however, it suffices to consider only discretely ordered time
points, for instance, when measuring devices produce read-
ings with a given frequency or signals are processed ac-
cording to a fixed global clock. Then, it may be worth con-
sidering the integer timeline—a possibility that has already
been explored for MTL (Ouaknine and Worrell 2008) and
exploited in applications such as the control of unmanned
aircrafts (Doherty, Kvarnström, and Heintz 2009), as well
as for metric extensions of description logics (Gutiérrez-
Basulto, Jung, and Ozaki 2016; Baader et al. 2017). Adopt-
ing integer semantics changes the meaning of temporal ex-
pressions such asx[1,10]Temp(c, high) which now holds at
t if a high temperature was reported in one of the last 10 in-
teger time points rather than in one of the (infinitely many)
rational time points in the interval [t− 10, t− 1].

In this paper, we study the computational complexity
of reasoning in DatalogMTL over the integer timeline, as
defined in Section 2. In such a setting, the semantics of
DatalogMTL is closely related to the semantics of lin-
ear temporal logic (Artale et al. 2017; Gutierrez Basulto,
Jung, and Kontchakov 2016), however, facts and operators
in DatalogMTL are much more succinct due to the binary
encoding of numbers. We will consider DatalogMTL frag-
ments along two dimensions. On the one hand, we study re-
strictions on the allowed operators and consider fragments
allowing only for � or only for x as metric operators; on
the other hand, we study restrictions on the structure of
rules and consider both linear fragments, where rule bod-
ies contain at most one intensional (IDB) conjunct, and core
fragments, where additionally rules without ⊥ in the head
contain a single conjunct in the body (note that rule (1) is
both linear and core). In the setting of the integer timeline,
DatalogMTL remains a powerful KR language, which can
capture well-known temporal formalisms such as Datalog
with a unary successor operator Datalog1S (Chomicki and
Imieliński 1988) and some Horn fragments of linear tempo-
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ral logic (Artale et al. 2017).
Our technical results are as follows. In Section 3, we show

that reasoning under integer semantics in DatalogMTL re-
duces to reasoning over the rationals, and moreover the re-
duction preserves data complexity. As a result, data com-
plexity upper bounds over rationals transfer to the integer
case and thus reasoning in DatalogMTL remains in PSPACE
under integer semantics. The matching lower bound is in-
herited from known results on Datalog1S (Chomicki and
Imieliński 1988), but we also show PSPACE-hardness for the
linear fragment allowing only for � among metric operators.

In Section 4 we consider the propositional fragment of
DatalogMTL, where rules contain no variables. Two factors
contribute to the size of a dataset in DatalogMTL, namely
the object constants and timestamps occurring in facts. The
propositional fragment is relevant because it showcases the
effect of the latter source of complexity, which is exclu-
sive to temporal data. In practice, this can be the dominat-
ing source of complexity; for example in stream reason-
ing applications where constants (e.g., sensors) can often
be treated as fixed, whereas the number of timestamps oc-
curring in facts can be huge (or even unbounded). It was
shown in (Brandt et al. 2018) that reasoning in the proposi-
tional fragment is P-hard in data complexity over rationals,
where the best known upper bound is PSPACE (Wałęga et al.
2019). We show that complexity drops significantly under
interger semantics, and reasoning becomes NC1-complete
and hence both tractable and parallelisable. Furthermore, the
NC1 lower bound holds already for the linear fragment with
onlyx and for the core fragment with only �.

In Section 5 we focus on the core fragment with only x,
which is not covered by the NC1 lower bound in Section 4.
This fragment is interesting in its own right as it captures
the core forward-propagating fragment of Datalog1S. It is
straightforward that, over rationals, reasoning in this frag-
ment is TC0-hard already in the propositional case as it can
simulate integer multiplication. In contrast, we show that un-
der integer semantics data complexity drops to ACC0 even
for the non-propositional case, and we also show that the
complexity is outside AC0 even in the propositional case.

2 Preliminaries
Temporal Domains. We consider two temporal domains:
the rationals Q and the integers Z. Our definitions are
parametrised by a temporal domain T ∈ {Q,Z}, and hence
we will speak of T-intervals, T-programs, T-interpretations,
T-consistency checking, etc. For simplicity, however, we
will not mention the temporal domain explicitly when clear
from the context. We assume that each integer is represented
in binary and each rational as a pair of an integer numerator
and a positive integer denominator (both in binary).

Intervals. We consider T-intervals 〈t1, t2〉, where the left
bracket 〈 is either [ or (, the right bracket 〉 is either ] or ),
and t1, t2 ∈ T ∪ {−∞,∞}. Hence,

〈t1, t2〉 = { t ∈ T | t1 ≤ t ≤ t2, if 〈 is ( then t 6= t1,

and if 〉 is ) then t 6= t2 }.

We use 〈 and 〉 for unspecified brackets. An interval 〈t1, t2〉
is positive if t1 ≥ 0; it is bounded if t1, t2 ∈ T; and it is
punctual if it is of the form [t, t], which we also write {t}.

Syntax. We assume a function-free first-order vocabulary.
An atom is an expression of the form P (τ ) with P a pred-
icate and τ a tuple of constants and variables of matching
arity. Each predicate is either extensional (EDB) or inten-
sional (IDB). A literal A is an expression given by the fol-
lowing grammar, with α an atom and % a positive interval:

A ::= α | > |⊥ | x%A | |%A | �%A | �%A |AS%A |AU%A.

A literal is EDB if it mentions only EDB predicates and IDB
otherwise. A rule is an expression of the form

B ← A1 ∧ · · · ∧ An, for n ≥ 0, (2)

where each Ai are literals and B is an IDB literal not men-
tioning the operators x, |, S , and U . The conjunction
A1 ∧ · · · ∧ An constitutes the rule body, whereas literal B
is the head. A rule is safe if each head variable occurs also
in the body. A DatalogMTL program is a finite set of safe
rules. A program is core if each of its rules is of the form
⊥ ← A1 ∧A2 or B ← A. It is linear if each rule is either
of form (2) with at most one Ai being IDB, or of the form
⊥ ← A1 ∧ A2. For X ∈ {x,�} and Y ∈ {core, lin},
we denote by DatalogMTLX

Y the fragment where programs
are core if Y is core or linear if Y is lin, and X is the only
temporal operator allowed in literals. A program is proposi-
tional if all its predicates are nullary (i.e., propositions). An
expression (e.g., an atom or a literal) is ground if it mentions
no variables. A fact is an expression of the form α@%, with
α a ground atom and % a non-empty interval. A dataset is a
finite set of facts mentioning only EDB predicates.

Semantics. An interpretation M specifies, for each
ground atom α and time point t ∈ T, whether α is true
at t, in which case we write M, t |=T α. This notion ex-
tends to ground literals as in Table 1. Interpretation M
is a model of a rule of form (2) if, for each assignment
ν of constants to variables grounding the rule and each
t ∈ T, we have M, t |=T Bν whenever M, t |=T Aiν for
each i ∈ {1, · · · , n}. It is a model of a program Π, written
M |=T Π, if it is a model of all rules in Π. It is a model of a
fact α@%, written M |=T α@%, if M, t |=T α for all t ∈ T
within %. Finally, it is a model of a dataset D, if it is a model
of all facts in D. A program Π and a dataset D are consis-
tent if they admit a common model; they entail a fact α@%,
written (Π,D) |=T α@%, if M |=T α@% for each common
model M. We write D |=T α@% instead of (∅,D) |=T α@%.

Reasoning Problems. We study the data complexity of T-
consistency checking for DatalogMTL and its fragments—
that is, we assume that a program is fixed while only the
dataset constitutes the input. All our complexity results are
also applicable to entailment of facts with punctual intervals
for which entailment and inconsistency checking are interre-
ducible for all temporal domains and fragments we consider.
Indeed, (Π,D) |=T α@{t} if and only if Π ∪ {⊥ ← α ∧ P}
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M, t |=T> for each t
M, t 6|=T⊥ for each t

M, t |=Tx%A if ∃t′ such that t− t′ ∈ % and M, t′ |=TA

M, t |=T|%A if ∃t′ such that t′ − t ∈ % and M, t′ |=TA

M, t |=T�%A if ∀t′ if t− t′ ∈ % then M, t′ |=T A

M, t |=T�%A if ∀t′ if t′ − t ∈ % then M, t′ |=T A

M, t |=TAS%A′ if ∃t′ such that t− t′ ∈ %, M, t′ |=T A
′,

and ∀t′′ if t′′ ∈ (t′, t) then M, t′′ |=T A

M, t |=TAU%A′ if ∃t′ such that t′ − t ∈ %, M, t′ |=TA
′,

and ∀t′′ if t′′ ∈ (t, t′) then M, t′′ |=T A

Table 1: Semantics of ground literals, where M is an T-inter-
pretation and t, t′, t′′ ∈ T.

and D ∪ {P@{t}} are inconsistent, for P a fresh propo-
sition; whereas Π and D are inconsistent if and only if Π
and D entail a fact with a fresh proposition. Moreover, by
constructing reductions involving S or U one can show that
in DatalogMTL the data complexity of entailment for facts
with arbitrary intervals is the same as the complexity of in-
consistency checking. However, it is not known whether the
same holds for DatalogMTL fragments without S and U .

Complexity. We assume familiarity with basic complexity
classes such as P and PSPACE. Our results also involve the
following classes defined via DLOGTIME-uniform families
of polynomial-size Boolean circuits (Papadimitriou 2003):
AC0, where AND and OR gates may have unbounded fan-in
and the circuit depth is constant; AC0[c1, . . . , ck] for natu-
ral numbers c1, . . . , ck, extending AC0 by allowing modulo
ci gates of unbounded fan-in for all i ∈ {1, . . . , k}; ACC0,
which is the same as AC0[c1, . . . , ck] except that it allows
modulo c gates for all c; TC0, extending AC0 by allowing
majority gates also of unbounded fan-in; and NC1, which is
the same as AC0, except that all gates have fan-in at most
2 but the depth is logarithmic. It is known that AC0 ⊆
AC0[c1, . . . , ck] ⊆ ACC0 ⊆ TC0 ⊆ NC1 ⊆ P ⊆ PSPACE,
AC0 ( AC0[c] for each c > 1, AC0[c] ( TC0 if c is a
power of prime, and NC1 ( PSPACE.

3 Rational vs Integer Semantics
In this section we compare the integer and rational semantics
of DatalogMTL. Each Z-interval is clearly a Q-interval, and
so every Z-program is a Q-program and each Z-dataset is a
Q-dataset. The notions of T-interpretation and the satisfac-
tion relation |=T, however, critically depend on the tempo-
ral domain T. In particular, a Z-dataset may entail different
facts over Z-intervals depending on whether one considers
integer or rational semantics; thus, it is not the case that a
Z-program and a Z-dataset are Z-consistent if and only if
they are Q-consistent. For instance, consider a Z-program
Π = {⊥ ← �(0,1]P} and a Z-dataset D = {P@{0}}. In

every Z-model M of D we have M, 1 |=Z �(0,1]P and so Π
andD are Z-inconsistent; on the other hand, it is not the case
that in every Q-model M of D we have M, 1 |=Q �(0,1]P ,
and it is easy to see that Π and D are Q-consistent. Thus,
both semantics are fundamentally different and complexity
results cannot be directly transferred from one to the other.

In what follows, we show that consistency checking over
integers reduces to consistency checking over rationals, and
the reduction preserves data complexity.

Theorem 1. For DatalogMTL, checking whether a Z-
program Π and a Z-dataset D are Z-consistent reduces
to checking whether a Q-program Π′ and a Q-dataset D′
are Q-consistent, where Π′ depends only on Π and D′ is
constructed from D in AC0. The same statement holds for
DatalogMTLX

Y , for each X ∈ {x,�} and Y ∈ {core, lin}.

Proof sketch. For each literal A, we define literal A′ by
first replacing each interval % in A with the maximal Z-
interval included in % of the form [t1, t2] if % is bounded and
[t1,∞) if % is unbounded, and then replacing each sub-literal
A1S%A2 or A1U%A2 withx[0,1)A1S%A2 or|[0,1)A1U%A2,
respectively. Let now Π be a DatalogMTL Z-program, and
let Π′ be obtained from Π by replacing each literal A with
A′. Note that if Π is a DatalogMTLX

Y Z-program then so is
Π′ (and so Π′ is a DatalogMTLX

Y Q-program).
Next, given a Z-dataset D we construct a Q-dataset D′ by

modifying intervals in D in two steps: (1) replace every left-
open interval (t1, t2〉 in D such that t1 ∈ Z with [t1 + 1, t2〉;
and (2) replace every right-closed interval 〈t1, t2] such that
t2 ∈ Z with 〈t1, t2 + 1). The construction is in AC0 and
every interval inD′ is either of the form [t1, t2) or (−∞, t2),
where t1 ∈ Z and t2 ∈ Z ∪ {∞}.

We finally show that Π and D are Z-consistent if and
only if Π′ and D′ are Q-consistent. First, we define a
transformation f mapping each Z-interpretation M to a Q-
interpretation f(M) such that f(M), t |=Q α if and only if
M, btc |=Z α, for every t ∈ Q and ground atom α, where b·c
is the integer floor function. We can show inductively on the
structure of literals that (?) M |=Z A(τ )@{t} if and only if
f(M) |=Q A

′(τ )@[t, t+ 1), for every Z-interpretation M,
literal A in Π, tuple of constants τ , and integer t. If M is a
Z-model of Π and D, then f(M) is a Q-model of Π′ and D′
and hence Π′ andD′ are Q-consistent. Conversely, if Π′ and
D′ are Q-consistent, then we can show, using the ideas in
Lemma 4 of Wałęga et al. (2019), that there exists the unique
least Q-model M′ of Π′ and D′ (i.e., the Q-model assigning
true as little as possible), and moreover that M′ |=Q α@{t}
implies M′ |=Q α@[btc, btc + 1), for every ground atom α
and rational t. Thus, f−1(M′) is well-defined and (?) en-
sures that f−1(M′) is a Z-model of Π and D.

Thus, data complexity upper bounds for Q-consistency
checking transfer to Z-consistency checking, and it fol-
lows from the results of Wałęga et al. (2019) for rationals
that Z-consistency checking in DatalogMTL is in PSPACE.
The matching lower bound is obtained by a simple reduc-
tion from consistency checking in Datalog1S (Chomicki and
Imieliński 1988), where the successor operator is encoded
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as �{1} (or equivalently x{1}). We next prove PSPACE-
hardness of Z-consistency already for linear programs men-
tioning only � as MTL operator. By Theorem 1, this also
constitutes a (new) lower bound of Q-consistency checking.
Theorem 2. Checking Z-consistency in DatalogMTL is
PSPACE-complete in data complexity, and the lower bound
holds already for DatalogMTL�

lin.

Proof sketch. The upper bound follows from Theorem 1 and
the results of Wałęga et al. (2019). For the lower bound, we
provide a reduction of an arbitrary problem P in PSPACE to
Z-consistency checking. LetM be a deterministic TM and p
a polynomial such that, for every input word w, the machine
decides P for w using at most p(|w|) cells. We construct,
in logarithmic space, a Z-dataset Dw encoding the initial
configuration of M on w and a DatalogMTL�

lin Z-program
ΠM simulating the computations of M (on any input word)
such that M accepts w if and only if ΠM and Dw are Z-
inconsistent. In particular, we will encode the i-th configu-
ration of M by a set of atoms holding at a time point 5 · i,
where the gaps (of length 5) between descriptions of conse-
quent configurations will be used to encode transitions.

The dataset Dw consists of two blocks of facts. The first
block introduces constants c1, . . . , cp(|w|), for cells used in
the computation, and defines the order in which they are lo-
cated on the tape. Let % be the interval (−∞,∞); then Dw

contains the following facts, for all i, j, k ∈ N such that
1 ≤ i, j ≤ p(|w|), i 6= j, and 1 ≤ k < p(|w|):

CellE(ci)@%, Neq
E(ci, cj)@%, Next

E(ck, ck+1)@%,

where CellE(ci) states that ci is a cell, NeqE(ci, cj) states
that cell ci is different from cj , and NextE(ck, ck+1) states
that cell ck+1 is the right-neighbour of ck on the tape (super-
scriptE indicates EDB predicates). The second block ofDw

encodes the initial configuration, represented by constant q0,
and contains the following facts for all pairs (ci,wi), with wi

a constant representing the i-th symbol in w:
HeadE(c1)@{1}, StateE(q0)@{1}, SymbE(ci,wi)@{1},
where HeadE(c) states that the head is over the cell c,
StateE(q) that the current state is q, and SymbE(c, s) that
the cell c contains the symbol s.

The program ΠM transforms EDB atoms over PE , for
each P among Head, State, and Symb, into IDB atoms
over P by means of rules P (τ ) ← PE(τ ), where τ is a
tuple of distinct variables of matching arity. The program
also defines a predicateR(x, y, u, z, v), representing the fact
that in the previous configuration the state was x, the head
was over a cell y containing a symbol u, and there was a cell
z containing a symbol v. This is achieved by including the
following rules in ΠM for every state q and pair alphabet
symbols s, s′, where x, y, u, z, v are variables:
Q(x, y, s, z, s′)← �{1}State(x) ∧ CellE(y) ∧ CellE(z),

Q(q, y, s, z, s′)← �{2}Head(y) ∧ CellE(z),

Q(q, y, u, z, s′)← �{3}Symb(y, u) ∧ CellE(z),

Q(q, y, s, z, v)← �{4}Symb(z, v) ∧ CellE(y),

R(x, y, u, z, v)← �[1,4]Q(x, y, u, z, v).

The rules above exploit the gaps (of length 5) between time
points encoding consequent configurations and the operator
�[1,4] to simulate with R a conjunction of four IDB atoms.
Then, each left-moving transition (q, s) 7→ (q′, s′, L) is en-
coded with the following rules:

State(q′) ∧ Symb(y, s′)← R(q, y, s, z, v),

Head(z)← R(x, y, u, z, v) ∧NextE(z, y),

Symb(z, v)← R(x, y, u, z, v) ∧NeqE(z, y);

each right-moving transition is encoded similarly. The first
rule determines the new state and the contents of the cell
under the head, the second rule provides the new position
of the head, and the third states that all other cells remain
unchanged. Finally, ΠM contains the rule ⊥ ← State(q)
for each accepting state q, which ensures that ΠM and Dw

are Z-inconsistent if and only if M accepts w.

It follows from Theorems 1 and 2 that the data complexity
of Z-consistency checking and Q-consistency checking co-
incide for both DatalogMTL and DatalogMTL�

lin. As we will
show in the remainder of this paper, however, Z-consistency
checking becomes significantly easier than Q-consistency
checking for a range of natural fragments of DatalogMTL.

4 Propositional Fragments
In this section we study data complexity of Z-consistency
checking in propositional fragments of DatalogMTL. It was
shown by Brandt et al. (2018) that Q-consistency checking
in propositional DatalogMTL is P-hard, so inherently se-
quential and maybe intractable (the best known upper bound
is PSPACE). We show that, in contrast, Z-consistency check-
ing is NC1-complete, thus tractable and parallelisable.

Propositional DatalogMTL under integer semantics can
be translated into the LTL�©

horn fragment of linear tempo-
ral logic (Artale et al. 2017), which is shown to be NC1-
complete in data complexity (Artale et al. 2015). This upper
bound, however, cannot be readily transferred to our setting
since the obvious translation is exponential in data. Indeed,
facts in LTL�©

horn are punctual (rather than over intervals) and
LTL�©

horn requires that, in a dataset where t1 and t2 are the
minimal and the maximal integers, all integers belonging to
[t1, t2] must occur explicitly in the dataset.

In the remaining of this section we consider only integer
semantics, so we fix the temporal domain T to be the inte-
gers and thus all relevant notions are implicitly parametrised
by Z. We will also denote by Π an arbitrary propositional
program and by D a dataset, where Π is considered fixed
for complexity analysis. We assume without loss of gen-
erality that D uses only propositions mentioned in Π and
the minimal integer mentioned in D is 0; any dataset can be
transformed into this form in AC0 while preserving consis-
tency with Π. We also assume that Π is normalised so that
it does not use any nesting of temporal operators. Such nor-
malisation may be achieved (in a data-independent way) by
introducing fresh propositions for nested literals. We denote
by prop(Π) the set of propositions in Π and by lit(Π) the
set of all literals without nested temporal operators, with all
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propositions from prop(Π), and with all integer endpoints
bounded by the maximal integer in Π.

To show the NC1 upper bound for Z-consistency check-
ing, we first construct an NFAAΠ,D and a word wΠ,D (both
dependent on Π and D) such that Π and D are Z-consistent
if and only if AΠ,D accepts wΠ,D. Although word accep-
tance by a fixed NFA is in NC1 (Chandra, Stockmeyer, and
Vishkin 1984), our construction does not yield the desired
upper bound by the following two reasons: first, wΠ,D can-
not be constructed in NC1 (it is exponential in the size of
D) and, second, AΠ,D depends on D. To overcome the first,
we exploit Chrobak’s results on the normalisation of unary
NFAs (Chrobak 1986) to construct a succinct NFA AΠ,D
and a word wΠ,D such that AΠ,D accepts wΠ,D if and only
if AΠ,D accepts wΠ,D. In this representation, wΠ,D is of
polynomial size in the size of D and moreover can be con-
structed in NC1. To overcome the second reason, we ob-
serve that the only elements ofAΠ,D dependent onD are the
sets of initial and accepting states (which in turn are subsets
of the data-independent set of all states), and this property
carries over to the construction of the succinct automaton
AΠ,D. This suggests an NC1 procedure where acceptance
of wΠ,D is checked in parallel for each automaton, the num-
ber of which is independent of the size of D, obtained from
a different choice of initial and final states.

We next move on to the construction of the automaton
AΠ,D, and start by introducing the notions underpinning the
definition of the automaton’s states and transition function.
Definition 3. A set q ⊆ lit(Π) of literals is Π-consistent if
there is a model M of Π such that M, 0 |= A if and only if
A ∈ q, for each A ∈ lit(Π). Then, let con(Π) denote the set
of all Π-consistent subsets of lit(Π).

For q, q′ ∈ con(Π), q′ is a Π-successor of q if there is
a model M of Π such that
– M, 0 |= A if and only if A ∈ q, for each A ∈ lit(Π); and
– M, 1 |= A′ if and only if A′ ∈ q′, for each A′ ∈ lit(Π).

Note that in the definition we use time points 0 and 1 just
for definiteness, and, by the definition of a program, it would
be equivalent to use t and t+ 1 for any t ∈ Z instead.

Now, we define an automaton and input word, where Π-
consistent set of literals constitutes states and a transition
from q to q′ is possible only if q′ is a Π-successor of q.
Definition 4. The NFA AΠ,D = (Q,Σ, δ, Q0, F ) is as fol-
lows, where d is the maximal integer mentioned in D:
– the set of states is Q = con(Π);
– the alphabet is Σ = P(prop(Π));
– the transition function δ is such that

δ(q,X) = {q′ ∈ Q | q′ is a Π-successor of q, X ⊆ q′};
– setQ0 of initial states contains all q ∈ Q such that, for all
P ∈ prop(Π), if D |= P@(−∞,−1] then �[0,∞)P ∈ q;

– set F of final states contains all q ∈ Q such that, for all
P ∈ prop(Π), if D |= P@[d+ 1,∞) then �[0,∞)P ∈ q.

Moreover, wΠ,D = X0 · · ·Xd+1 is a word such that, for all
i ∈ {0, . . . , d+ 1}, Xi = {P ∈ prop(Π) | D |= P@{i}}.

As established by the following lemma, our choice of
states and transitions of AΠ,D ensures that each run of the
automaton (on any input word) corresponds to a model of Π.

Lemma 5. The following statements are equivalent for each
sequence q0, . . . , qn of elements in con(Π):

1. there exists a model M of Π such that M, i |= A if and
only if A ∈ qi, for all i ∈ {0, . . . , n} and A ∈ lit(Π);

2. qi+1 is a Π-successor of qi, for all i ∈ {0, . . . , n− 1}.

Proof sketch. Condition 1 implies condition 2 by the defi-
nition of a Π-successor. Next, we show the converse. Since
q0 and qn are in con(Π), there are models M0 and Mn of
Π such that M0, 0 |= A if and only if A ∈ q0, for all
A ∈ lit(Π), and Mn, n |= A′ if and only if A′ ∈ qn, for
all A′ ∈ lit(Π). Let interpretation M be as follows: for each
i ∈ Z and P ∈ prop(Π) let M, i |= P if either i < 0 and
M0, i |= P , or 0 ≤ i ≤ n and P ∈ qi, or i > n and
Mn, i |= P . We can show that, for each i ∈ {0, . . . , n} and
A ∈ lit(Π), M, i |= A if and only if A ∈ qi. This allows us
to show that M is a model of Π, so condition 1 holds.

Word wΠ,D in Definition 4 describes propositions en-
tailed by D at time points between 0 and d. Observe
that since 0 and d are the minimal and the maximal in-
tegers in D, if D entails a proposition P at a time point
smaller than 0 or greater than d, then D |= P@(−∞,−1]
or D |= P@[d+ 1,∞), respectively, which is reflected in
the definition of initial and final states of AΠ,D. Using these
observations and Lemma 5 we can then show that an accept-
ing run q−1, . . . , qd+1 of AΠ,D on wΠ,D corresponds to a
model of D and Π, where qi for a time point i ∈ {0, . . . , d}
describes propositions holding in i, whereas q−1 ∈ Q0

and qd+1 ∈ F are additional states describing propositions
holding at (infinitely many) time points smaller than 0 and
greater than d, respectively.

Lemma 6. Program Π and dataset D are Z-consistent if
and only if AΠ,D accepts wΠ,D.

Proof. (⇒) Let M be a model of Π and D and, for
each integer i, let qi be the (uniquely defined) set of lit-
erals A ∈ lit(Π) satisfying A ∈ qi if and only if
M, i |= A. By the definition of a Π-consistent set, we
have qi ∈ con(Π). Hence, for d the maximal integer in
D, we have q−1, . . . , qd+1 ∈ con(Π), and so by Lemma 5,
q−1, . . . , qd+1 is a sequence of Π-successors. Now, let
AΠ,D = (Q,Σ, δ, Q0, F ) and wΠ,D = X0 · · ·Xd+1 be as
in Definition 4. We can show that q−1 ∈ Q0, qd+1 ∈ F , and
Xi ⊆ qi for all i ∈ {0, . . . , d}, so q−1, . . . , qd+1 is an ac-
cepting run of AΠ,D on wΠ,D.

(⇐) Let q−1, . . . , qd+1 be an accepting run of
AΠ,D = (Q,Σ, δ, Q0, F ) on wΠ,D = X0 · · ·Xd+1 (so d is
the maximal integer in D). Then, q−1 ∈ Q0, qd+1 ∈ F , and
q−1, . . . , qd+1 is a sequence of Π-successors. By Lemma 5,
there is a model M of Π such that M, i |= A if and only
if A ∈ qi, for all i ∈ {−1, . . . , d + 1} and A ∈ lit(Π).
It remains to show that M is a model of D. Assume
that D |= P@{i}, for some P ∈ prop(Π) and i ∈ Z. If
i < 0, then D |= P@(−∞,−1], since 0 is the minimal
integer in D. Hence, every q ∈ Q0 contains �[0,∞)P ,
and so �[0,∞)P ∈ q−1. Then, M,−1 |= �[0,∞)P , so
M |= P@(−∞,−1], and thus M |= P@{i}. If i > d, then
we can show in a similar way that D |= P@[d + 1,∞),
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so �[0,∞)P ∈ qd+1, and thus M |= P@[d + 1,∞). If
0 ≤ i ≤ d, then P ∈ qi, and so by the definition of M,
we have M |= P@{i}. Thus, M is a model of Π andD.

As already mentioned, Lemma 6 does not yield an NC1

upper bound. Indeed, the length of the word wΠ,D is d + 2,
for d the maximal integer mentioned in D; and since in-
tegers in D are encoded in binary, the length of wΠ,D is
exponential in the size of D and hence cannot be con-
structed in NC1. The exponential length is, however, only
caused by long consecutive repetitions of some symbols; for
example if D = {P@(−∞, 0], R@[0, d], S@[0,∞)}, then
wΠ,D = {P,R, S}{R,S} · · · {R,S}{S}, where {R,S} is
repeated d times. We next show how to modify AΠ,D and
wΠ,D to obviate such repetitions and ensure that the new
word can be constructed in NC1.

Our construction of the succinct automatonAΠ,D and the
word wΠ,D relies on a key property of AΠ,D and wΠ,D: the
(possibly infinitely many) lengths of runs of AΠ,D from a
state q to q′ on words X · · ·X mentioning a single symbol
X can be succinctly represented in a data-independent way.
To show this property, we exploit a result by Chrobak (1986)
on normalisation of unary automata.

Lemma 7. For all q, q′ ∈ con(Π) andX ⊆ P(prop(Π)) we
can construct (without using D) a finite set SΠ(q, q′, X) of
pairs of non-negative integers such that the following state-
ments are equivalent for each ` ∈ N:
1. there is a run of AΠ,D from q to q′ on word X`;
2. ` = a+ n · b for some (a, b) ∈ SΠ(q, q′, X) and n ∈ N.

Proof. Let q, q′ ∈ con(Π) and X ∈ prop(Π). Consider
the NFA AΠ,D = (Q,Σ, δ, Q0, F ) from Definition 4 and a
unary NFA UΠ = (Q, {X}, δ′, q, q′) with the same statesQ,
unary alphabet {X}, transition function δ′ that is a projec-
tion of δ to X , and q and q′ as the initial and final states.
SinceQ and δ inAΠ,D do not depend onD, so does automa-
ton UΠ. Moreover, for every ` ∈ N, condition 1 holds if and
only if UΠ accepts the word X`. Since UΠ is a unary NFA,
by (Chrobak 1986, Lemma 4.3), there exists an equivalent
unary NFA U ′Π in Chrobak normal form, where the transi-
tion relation constitutes a path from the initial state followed
by a single nondeterministic choice between several disjoint
cycles. For each accepting state qf in U ′Π let af and bf be
the lengths of the path from the initial state to qf and of the
cycle through qf , respectively, and let SΠ(q, q′, X) be the
set of pairs (af , bf ) for all accepting states qf . So, for each
` ∈ N, U ′Π accepts X` if and only if condition 2 holds.

We are now ready to define the succinct automatonAΠ,D,
whose states coincide with those ofAΠ,D; however, each al-
phabet symbol in AΠ,D is now a pair (X,σ) consisting of a
symbol X from the alphabet of AΠ,D and a set σ of number
pairs (a, b). A transition from q to q′ on symbol (X,σ) in
AΠ,D then corresponds to a run (of length `) from q to q′ on
a word X` inAΠ,D, where ` = a+n · b for some (a, b) ∈ σ
and n ∈ N. This allows us also to define a succinct repre-
sentation wΠ,D of the word wΠ,D.

Definition 8. Let AΠ,D = (Q,Σ, δ, Q0, F ) be the automa-
ton from Definition 4 and let

paths(Π) = {(a, b) | (a, b) ∈ SΠ(q, q′, X),

for some q, q′ ∈ con(Π) and X ⊆ prop(Π)}.

Then, AΠ,D = (Q,Σ, δ, Q0, F ) is the NFA with
– the alphabet Σ = {(X,σ) | X ∈ Σ and σ ⊆ paths(Π)};
– the transition function δ such that

δ(q, (X,σ)) = {q′ ∈ Q | σ ∩ SΠ(q, q′, X) 6= ∅}.

Let t1 < · · · < tk be all integers mentioned in D, and let
%1, . . . , %m be the subsequence of all non-empty intervals
in the sequence {t1}, (t1, t2), {t2}, . . . , (tk−1, tk), {tk},
{tk + 1}. Then, let wΠ,D = (X1, σ1) · · · (Xm, σm) be the
Σ-word satisfying the following, for all i ∈ {1, . . . ,m}:
– Xi = {P ∈ prop(Π) | D |= P@%i};
– σi = {(a, b)∈paths(Π) | |%i|=a+n·b for some n ∈ N}.

It is worth to recall that in this section we consider only
Z-intervals, which are sets of integers; so, for example,
the interval (2, 3) is empty and |(2, 4)| = 1. Next, ob-
serve that the length of wΠ,D is linear in D. In particular,
for D = {P@(−∞, 0], R@[0, d], S@[0,∞)} as in our pre-
vious example, we have %1 = {0}, %2 = (0, d), %3 = {d},
%4 = {d+ 1}, and

wΠ,D=({P,R, S}, σ1)({R,S}, σ2)({R,S}, σ3)({S}, σ4),

for the appropriate σi ⊆ Paths(Π). Indeed, the (d−1) times
repetition of {R,S} in wΠ,D expressing that R and S hold
everythere in (0, d) has been replaced in wΠ,D with a single
element ({R,S}, σ2), where σ2 contains a pair (a, b) such
that |(0, d)| = a+ n · b for some n ∈ N.

Lemma 9. NFAAΠ,D accepts wordwΠ,D if and only if NFA
AΠ,D accepts word wΠ,D.

Proof. Let us fix notation where d is the maximal integer
in D; t1 < · · · < tk are all integers in D (so t1 = 0 and
tk = d); %1, . . . , %m is the subsequence of all non-empty in-
tervals in {t1}, (t1, t2), {t2}, . . . , (tk−1, tk), {tk}, {tk + 1}
(so %1 = {0} and %m = {d + 1}); wΠ,D = X0 . . . Xd+1;
wΠ,D = (X1, σ1) . . . (Xm, σm); AΠ,D = (Q,Σ, δ, Q0, F );
and AΠ,D = (Q,Σ, δ, Q0, F ). We will denote the minimal
and the maximal integers contained in a bounded interval %
by b%c and d%e, respectively. Note that since the endpoints
of intervals %1, . . . , %m coincide with integers mentioned in
D, we can show that D |= P@{t} for a proposition P and
t ∈ %i imply D |= P@%i. Thus, by the definition of wΠ,D,
we have Xb%ic = Xb%ic+1 = · · · = Xd%ie and so, by the
definition of wΠ,D, all these symbols are equal to Xi.

(⇒) Let q−1, . . . , qd+1 be an accepting run of AΠ,D on
wΠ,D. We show that r = q−1, qd%1e, . . . , qd%me is an accept-
ing run of AΠ,D on wΠ,D. Since qd%me = qd+1, and AΠ,D
and AΠ,D have the same sets of initial and accepting states,
if r is a run then it is an accepting run. To show that r is a
run we need to show that for q and qd%se consecutive states
in r, we have that qd%se ∈ δ(q, (Xs, σs)). Let i = b%sc − 1
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and j = d%se (so q = qi and qd%se = qj) hence, as we
have already observed, Xi+1 = · · · = Xj = Xs. Since
q−1, . . . , qd+1 is an accepting run of AΠ,D on wΠ,D, it con-
tains a run of length j−i from qi to qj onXi+1 · · ·Xj . Thus,
by Lemma 7, there is a pair (a, b) ∈ SΠ(qi, qj , Xs) such that
a+ n · b = j − i for some n ∈ N. By the definition of wΠ,D
and the fact that |%s| = j − i, we obtain (a, b) ∈ σs. Thus,
σs ∩ SΠ(qi, qj , Xs) 6= ∅, and so, by the definition of δ, we
have qj ∈ δ(qi, (Xs, σs)). Thus, qd%se ∈ δ(q, (Xs, σs)).

(⇐) Let q−1, q0, . . . , qm be an accepting run of AΠ,D
on wΠ,D; we show existence of an accepting run of AΠ,D
on wΠ,D. Recall that AΠ,D and AΠ,D have the same
initial and final states, and Xb%sc = · · · = Xd%se = Xs

for every s ∈ {1, . . . ,m}, so it suffices to show that
qs ∈ δ(qs−1, (Xs, σs)) implies existence of a run of AΠ,D

(of length |%s| + 1) from qs−1 to qs on the word Xs
|%s|.

Since qs ∈ δ(qs−1, (Xs, σs)), by the definition of δ, there is
a pair (a, b) ∈ σs ∩ SΠ(qs−1, qs, Xs). Hence, (a, b) ∈ σs
and so, by the definition of wΠ,D, there is n ∈ N such
that |%s| = a + n · b. Thus, by Lemma 7 and the fact that
(a, b) ∈ SΠ(qs−1, qs, Xs), there is a run ofAΠ,D from qs−1

to qs on the word X
|%s|
s .

We are ready to show the main result of this section.

Theorem 10. Checking Z-consistency in propositional
DatalogMTL is in NC1 in data complexity.

Proof. Fix a propositional DatalogMTL program Π and
consider an input dataset D. By Lemmas 6 and 9, it suf-
fices to check whether AΠ,D = (Q,Σ, δ, Q0, F ) accepts
wΠ,D = (X1, σ1) · · · (Xm, σm). We first argue that wΠ,D
can be constructed in TC0 in the size of D. For this, com-
pute the sequence t1 < · · · < tn of integers mentioned inD,
where we note that sorting integers is feasible in TC0 (Chan-
dra, Stockmeyer, and Vishkin 1984). Then, it is straight-
forward to construct, in TC0, intervals %1, . . . , %m and sets
X1, . . . , Xm of propositions occurring in the definition of
wΠ,D. It remains to compute σi, for every i ∈ {1, . . . ,m}.
To this end, we compute |%i|, which can be done in TC0,
and then list all (a, b) ∈ paths(Π) such that |%i| = a+ n · b,
for some n ∈ N, which can be done independently from D.
Hence, the construction of wΠ,D is in TC0.

Finally, we will use the fact that the acceptance problem
for a fixed NFA is in NC1 (Holzer and Kutrib 2011). Al-
though the sets of initial and final states in AΠ,D depend
on D, the set of all states of AΠ,D does not. As a result,
there is a constant (in the size of D) number of automata of
the form (Q,Σ, δ, Q′0, F

′) with Q′0, F
′ ⊆ Q. We can thus

check in parallel (in NC1 since each automaton is fixed)
which automata acceptwΠ,D. Then, we can compute in TC0

the sets Q0 and F and verify whether, according to the for-
mer NC1 procedure, the automaton (Q,Σ, δ,Q0, F ) accepts
wΠ,D. The overall procedure is in NC1 in the size ofD.

Our next theorem provides the matching NC1 lower
bound applicable to different fragments of propositional

DatalogMTL. The bound is shown by reduction of the word
acceptance problem for a fixed DFA, which is NC1-hard due
to the existence of NC1-complete regular languages (Bar-
rington et al. 1992).

Theorem 11. Checking Z-consistency is NC1-hard in
data complexity for the propositional fragments of
DatalogMTLxlin and DatalogMTL�

core.

Proof. We start with the case of DatalogMTLxlin. Let
A = (Q,Σ, δ, q0, qf ) be a fixed DFA and let w = w0 · · ·w`

be an input word of length ` + 1. Assume without loss of
generality that q0 6∈ δ(q, σ) for each q ∈ Q and σ ∈ Σ. We
can use a similar idea as in (Artale et al. 2015) to construct
a propositional DatalogMTLxlin program ΠA independent on
w and a dataset Dw such that the construction of Dw is in
AC0 in the size of w and A accepts w if and only if ΠA and
Dw are Z-inconsistent. This yields the required bound since
NC1 is closed under complementation.

Let Rq0
and Pa, for each a ∈ Σ, be EDB propositions,

and let Rq , for each q ∈ Q \ {q0}, be an IDB proposition.
We define

Dw = Rq0
@{0} ∪ {Pa@{j} | wj = a and j ∈ {0, . . . , `}}.

Then, ΠA is a program consisting of the following linear
rules, where we note that Rq0 does not occur in the head of
a rule due to our assumption on q0:

Rq′ ← x{1}Rq ∧x{1}Pa, whenever q′ = δ(q, a),

⊥ ← Rqf .

It can be shown that ΠA and Dw are Z-inconsistent if and
only if A accepts w.

Consider now DatalogMTL�
core. Given A and w as above,

we construct a propositional DatalogMTL�
core program Π′A

and a dataset D′w. For each a ∈ Σ and q ∈ Q consider an
EDB proposition Pqa and IDB proposition Rqa. Then, let

D′w = {Pq0a@{0} | a ∈ Σ} ∪
{Pqa@{3j + 1} | wj = a, q ∈ Q, j ∈ {0, . . . , `}},

and program Π′A consist of the following rules:

Rqa ← Pqa, for each q ∈ Q and a ∈ Σ,

Rq′a′ ← �[2,3]Rqa, whenever q′ = δ(q, a) and a′ ∈ Σ,

⊥ ← Rqfa, for every a ∈ Σ.

Intuitively, time points of the form 3j + 1 are used to en-
code the input word; if the j-th symbol of w is a, then
D′w |= Pqa@{3j + 1}, for all q ∈ Q. Time points of the
form 3j encode states in the run of A on w; if q is the j-
th state in the run, then (Π′A,D′w) |= Rqa@{3j}, for all
a ∈ Σ. Then, literal �[2,3]Rqa simulates a conjunction by
stating that the previous state in the run is q and the most re-
cent input symbol is a, which allows us to determine the next
state in the run. As a result, Π′A and D′w are Z-inconsistent
if and only if A accepts w.

Theorems 10 and 11 imply tight complexity bounds for a
wide range of propositional fragments of DatalogMTL.
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Corollary 12. Checking Z-consistency is NC1-complete
in data complexity for the propositional fragments of each
of the following languages: DatalogMTL, DatalogMTLlin,
DatalogMTLxlin DatalogMTL�

lin, DatalogMTLcore, and
DatalogMTL�

core.
Furthermore, the only metric operator used in the reduc-

tion for DatalogMTLxlin is the punctual past diamond opera-
torx{1}; thus, same reduction can be used to show that con-
sistency checking for the linear fragment of propositional
Datalog1S is NC1-hard in data complexity. Note that Theo-
rem 10 implies the matching upper bound for such a frag-
ment of Datalog1S, and so it is NC1-complete.

We conclude this section by observing that the proposi-
tional fragment of DatalogMTLxcore is not covered by Corol-
lary 12. We will show in the next section that Z-consistency
checking in this fragment is below NC1 (and hence the
same applies to the propositional core fragment of forward-
propagating Datalog1S).

5 Core Fragment of Low Complexity
In this section we show that Z-consistency checking for
DatalogMTLxcore is in ACC0. This is in contrast to Q-
consistency checking in this fragment, which can be eas-
ily shown TC0-hard already for the propositional case; in-
deed, a simple reduction from the TC0-complete problem
of checking whether a · b = c for integers a, b, c in bi-
nary (Hesse 2001) to Q-inconsistency can be achieved using
the program {P ∧R→ ⊥}, with propositions P andR, and
the dataset {P@{a}, R@{ cb}}. We will also prove that Z-
consistency in propositional DatalogMTLxcore is not in AC0.
In the rest of the section we assume integer semantics only.

Similarly to the previous section, we start with a normal
form. A DatalogMTLxcore program is normal if it has only
rules of the following forms, for α, α1, α2, and β atoms, and
% a non-empty bounded positive interval of the form [t1, t2]:

β ← x%α, β ← >, ⊥ ← α1 ∧ α2.

Normalisation yields a program that is a conservative ex-
tension of the original one: nested operators are flattened
using fresh predicates, open intervals are modified as in
Section 4, rules without metric operators are rewritten with
dummy x{0}, and each rule P (τ )← x[t,∞)P

′(τ ′) is re-
placed by rules Q(τ )← x{t}P ′(τ ′), Q(τ )← x{1}Q(τ )
and P (τ )← x{0}Q(τ ) with Q a fresh predicate of the
same arity as P . Hence, in the rest of this section we con-
centrate on normal DatalogMTLxcore programs.

Now, we concentrate on the propositional fragment of
DatalogMTLxcore; as we will show later, our approach can be
easily extended to non-propositional case. In particular, we
characterise fact entailment for a propositional normal pro-
gram Π in terms of existence of a specific path in the graph
corresponding to Π as defined next.

Definition 13. For each propositional DatalogMTLxcore pro-
gram Π in normal form, GΠ is the directed edge-weighted
multigraph with a vertex vP for each proposition P in
Π, and an edge from vP to vQ of weight t for each rule
Q← x%P in Π and each integer t ∈ %.

In what follows, it is convenient to distinguish positive
rules and programs—that is, those that do not mention ⊥.
Our next lemma establishes that, if Π is positive, then paths
in GΠ concisely represent all the derivations in Π.
Lemma 14. The following are equivalent for each proposi-
tional positive DatalogMTLxcore program Π in normal form,
dataset D, and punctual fact Q@{t}:
– (Π,D) |= Q@{t};
– there is a fact P@{t′} with D |= P@{t′} or rule P ← >

in Π, and a path of weight t− t′ from vP to vQ in GΠ.
The next lemma guarantees that weights of all paths be-

tween two nodes in GΠ can be concisely represented. This
lemma follows from the normal form for unary NFAs by
Chrobak (1986), which we have already exploited in the pre-
vious section (see Lemma 7).
Lemma 15. Let G be a directed edge-weighted multigraph
with non-negative integer weights and let v1, v2 be vertices
in G. Then, it is possible to construct a finite set SG(v1, v2)
of pairs of non-negative integers, such that there is a path in
G of weight ` from v1 to v2 if and only if ` = a+ n · b, for
some (a, b) ∈ SG(v1, v2) and n ∈ N.

Let Π be a propositional positive >-free DatalogMTLxcore
program and a D be dataset with all intervals of the form
[t1, t2] for t1, t2 ∈ Z. Lemmas 14 and 15 suggest that to
check if Π and D entail a fact Q@{t}, it suffices to find a
fact P@[t1, t2] in D, a pair (a, b) in SGΠ

(vP , vQ), and an
integer n such that

t1 + a+ n · b ≤ t ≤ t2 + a+ n · b.
This result can be easily extended to rules with > and open
or unbounded intervals in datasets and generalised to non-
propositional programs via standard grounding.

We can exploit these results for punctual fact entailment
to devise an algorithm for inconsistency checking. In partic-
ular, a propositional DatalogMTLxcore program Π in normal
form and a dataset D are inconsistent if and only if there
is a rule ⊥ ← Q1 ∧ Q2 in Π and a time point t such that
both Q1 and Q2 hold at t in the least model of D and the
positive subset of Π. Although existence and uniqueness of
such model is ensured by the results in Wałęga et al. (2019),
the number of candidate time points t is unbounded. Theo-
rem 17 resolves this difficulty, and shows that Z-consistency
checking is in ACC0. Our bound relies on the following ob-
servation on the complexity of integer division.1

Lemma 16. Let c be a positive integer. Then checking if c
divides an integer (given in binary) can be done in AC0[c].

Proof. For each integer m of length k we have that
m ≡ mk · rk + · · ·+m1 · r1 (mod c),

where mi is the i-th bit in the binary representation of m
and ri is the remainder of dividing 2i by c. Since ri < c for
all i and ri = rj implies ri+1 = rj+1 for all i and j, we
can, for each i, construct (in DLOGTIME) a constant circuit
computing ri in unary. Multiplication mi · ri can be realised
by i binary AND gates, and the results for all i can be then
aggregated in one MODc gate to get the final answer.

1We thank Rahul Santhanam for proving Lemma 16.
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We are ready to state the main result of this section, which
implies ACC0 membership of consistency checking.

Theorem 17. For every DatalogMTLxcore program Π there
exists a finite set of integers {c1, . . . , ck} such that checking
Z-consistency of Π and a dataset D is in AC0[c1, . . . , ck].

Proof sketch. First, assume that Π is a propositional normal
>-free DatalogMTLxcore program and D is a dataset with
all intervals of the form [t1, t2] with t1, t2 ∈ Z. Since all
derivations in DatalogMTLxcore are linear, Π and D are in-
consistent if and only if there is a rule ⊥ ← Q1 ∧Q2 in
Π and two facts P1@[tL1 , t

R
1 ], P2@[tL2 , t

R
2 ] in D such that

(Π+, {Pi@[tLi , t
R
i ]}) |= Qi@{t} for both i and some time

point t, where Π+ is the set of all positive rules of Π. Each
triple of a rule and two facts can be checked in parallel, so
in the rest of the proof we assume that such a triple is fixed.
Thus, we can use Lemma 14 to check consistency by veri-
fying existence of two paths in GΠ, one from vP1 to vQ1 of
weight `1 and another from vP2 to vQ2 of weight `2, with

tL2 − tR1 ≤ `1 − `2 ≤ tR2 − tL1 . (3)

By Lemma 15, we can represent, for both i, the weights
of paths from vPi

to vQi
with a finite set SGΠ

(vPi
, vQi

)
of pairs of integers. Thus, to check inequalities (3) it
suffices to verify if there are (a1, b1) ∈ SGΠ(vP1 , vQ1),
(a2, b2) ∈ SGΠ(vP2 , vQ2), and positive integers n1, n2 such
that

tL2 − tR1 ≤ (a1 + n1 · b1)− (a2 + n2 · b2) ≤ tR2 − tL1 ,
which, by Bézout’s identity, holds if and only if the follow-
ing interval contains an integer, where c is the greatest com-
mon divisor of b1 and b2:[

tL2 − tR1 − a1 + a2

c
,
tR2 − tL1 − a1 + a2

c

]
. (4)

Note that b1 and b2 do not depend on D, so we can apply
Lemma 16 and verify (4) in AC0[c] by checking whether
there is an integer between tL2 − tR1 and tR2 − tL1 divided by c
(note that for this it is enough to check at most c consecutive
numbers in this interval). So, the overall consistency can be
checked in AC0[c1, . . . , ck], where c1, . . . , ck are the great-
est common divisors of all possible b1 and b2 of GΠ. The
general case with > in Π and unbounded intervals in D can
be handled in a similar way.

Finally, assume now that Π is a non-propositional normal
program. Although the grounding ΠD of Π with constants
from a dataset D can be computed in AC0, the graph GΠD
depends not only on Π but also on D, which means that the
application of the above procedure toGΠD does not immedi-
ately imply AC0[c1, . . . , ck] complexity (for any c1, . . . , ck).
We can observe, however, that if two datasets D1 and D2

are the same modulo renaming constants not occurring in Π,
then GΠD1

and GΠD2
are isomorphic. Since we are essen-

tially interested in datasets with at most two facts and with
arity of predicates fixed by Π, the number of non-isomorphic
graphs for such datasets can be bounded without knowing
D; thus, we can compute representatives of such graphs in
a data-independent way and reuse our procedure for ground
programs with the same complexity.

We conclude this section with the observation that the
bound of Theorem 17 cannot be significantly improved, even
for propositional DatalogMTLxcore programs.
Theorem 18. Checking Z-consistency in propositional
DatalogMTLxcore program is not in AC0.

Proof sketch. We prove the theorem by showing that for
every odd prime integer c there exists a propositional
DatalogMTLxcore program Π such that the MODc problem—
that is, the problem of checking whether c divides the num-
ber of true bits in an input—is reducible to consistency for
Π. This is enough for the theorem, since MODc problem is
not in AC0 by the Razborov-Smolensky theorem (Razborov
1987; Smolensky 1987).

Given an odd prime c, we consider the following program,
for propositions P , P ′, and R:

Π = {P ′ ← P, P ′ ← x{c}P ′,⊥ ← P ′ ∧R}.
It is folklore that MODc is true for an input if and only if
c divides the number d, the binary representation of which
has 1 only in the bits with numbers (c − 1) · i and such
that the i-th input bit is true (this immediately follows from
Fermat’s little theorem, claiming that ac−1 ≡ 1 (mod c) for
all prime c and all integers a, including 2). So, we can reduce
each such input to the dataset D = {P@{0}, R@{d}}, with
d defined as above. Then, Π and D are inconsistent if and
only if c divides d—that is, if and only if MODc holds.

6 Conclusions and Future Work
We have shown that the choice of integer semantics in
DatalogMTL leads to more favourable computational prop-
erties, whcih can be exploited in data-intensive applications.
In particular, we have proved that adopting the integer in-
stead of rational semantics, results in a drop of the data com-
plexity from P-hard to NC1-complete for the propositional
fragment of DatalogMTL; and from TC0-hard to ACC0, for
(both propositional and non-propositional) DatalogMTLxcore.

It is worth mentioning that similar fragments of
DatalogMTL were studied under the pointwise semantics
(called also as the event-based semantics), where a timeline
contains only time points explicitly mentioned in a dataset
(Ryzhikov, Wałęga, and Zakharyaschev 2019). In this set-
ting, the data complexity of reasoning was shown to be P-
complete for propositional DatalogMTL and NL-complete
for propositional DatalogMTLxcore; so in both cases higher
than under integer semantics.

As future work, we plan to investigate practical algo-
rithms for reasoning in the low complexity fragments of
DatalogMTL under integer semantics and consider their ap-
plications to stream reasoning.
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