Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

A Semantic Perspective on Omission Abstraction in ASP*

Zeynep G. Saribatur, Thomas Eiter

Institute of Logic and Computation, TU Wien, Austria

{zeynep, eiter} @kr.tuwien.ac.at

Abstract

The recently introduced notion of ASP abstraction is on re-
ducing the vocabulary of a program while ensuring over-
approximation of its answer sets, with a focus on having a
syntactic operator that constructs an abstract program. It has
been shown that such a notion has the potential for program
analysis at the abstract level by getting rid of irrelevant details
to problem solving while preserving the structure, that aids in
the explanation of the solutions. We take here a further look
on ASP abstraction, focusing on abstraction by omission with
the aim to obtain a better understanding of the notion. We
distinguish the key conditions for omission abstraction which
sheds light on the differences to the well-studied notion of
forgetting. We demonstrate how omission abstraction fits into
the overall spectrum, by also investigating its behavior in the
semantics of a program in the framework of HT logic.

1 Introduction

Abstraction for ASP (Saribatur and Eiter 2018; Saribatur
et al. 2019) is a method whose main aim is to achieve an
over-approximation of a program by reducing the vocabu-
lary while keeping the rules; this is valuable to aid tasks like
explanation finding or showing solutions that omit detail. It
was approached from the syntactic level, with the aim to ad-
just the rules in a way that the original answer sets still have
a representative in the abstract program while the structure
of the original program is preserved as much as possible.
Inspired by the seminal work in model checking (Clarke et
al. 2003) the focus so far has been on starting with a coarse
abstraction of the program and refining it until a concrete so-
lution is encountered, where at any time we have an abstract
program at hand that yields solutions without unnecessary
details that are omitted.

The well-studied concept of forgetting (Gongalves et al.
2017) on the other hand is about preserving the semantics
of the original program exactly, by adhering to a number of
properties that have been investigated over the years. Re-
cently, a syntactic forgetting operator has been introduced
(Berthold et al. 2019) which achieves the key property of
strong persistence (SP) whenever possible, at the expense
of preserving the original syntax. In terms of forgetting,

*Extended version can be found at http://www.kr.tuwien.ac.at/
research/reports/rr2001.pdf

733

the notion of over-approximation matches the weak conse-
quence (wC) property, which did not receive much attention
as it is in contrast with the main goal of forgetting. Our
previous investigations showed that a more relaxed abstrac-
tion approach and a methodology for refining an abstrac-
tion if needed can achieve valuable results, especially in sin-
gling out the relevant parts of a program for decision-making
(Saribatur and Eiter 2018; Saribatur et al. 2019; Eiter et al.
2019).

In this short paper, we review omission abstraction in the
light of forgetting. To clarify some differences and to get
some better understanding of abstraction by omission (Sari-
batur and Eiter 2018), we present desired properties that any
operator should satisfy; as we show, the previously intro-
duced operator omit is (under some trivial proviso) optimal
when adhering to the properties and we show how the no-
tion fits into the overall picture. We notably observe that
some of the forgetting operators can also count as omission
abstraction, when structure preservation and modularity is
not important. We also explore the behavior of omission ab-
straction through the semantics of a program by focusing on
HT-logic, which is regarded as the monotonic core of ASP.

This work sets a starting point for further research on ex-
ploring the use of ASP abstraction by taking a semantic view
on the notion; notably, the semantic view has been fruitfully
driving research on forgetting in the last decade. We provide
some results as a base for extensions and follow up work.

2 Background

ASP A logic program P over a set A of propositional
atoms is a set of rules 7 of the form

Qp 4 A,y O, MO g1, ..., NOE Oy, 0SS M <,

where each «; € A is a propositional literal and not is de-
fault negation; r is a constraint if g is falsity (L, then
omitted) and a fact if n=0. We also write H(r) < B(r)
or H(r) < B™(r), not B~(r), where H(r) = «, and
B*t(r) = {a1,...,qn} is the positive body and B~ (r) =
{am+1, - .., } the negative body. Furthermore, we let
B*(r) = BT(r) U B~(r). We occasionally omit from
B*(r), B(r) etc. if r is understood. The GL-reduct is given
by Pl = {ag + B*(r) | r € P,B=(r)NI = 0}. An
interpretation [is an answer set, if it is a minimal model of
PI. We denote the set of all answer sets by AS(P). For a

http://www.kr.tuwien.ac.at/research/reports/rr2001.pdf
http://www.kr.tuwien.ac.at/research/reports/rr2001.pdf

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

set S C A of atoms, S| |A denotes the projection to the atoms

in A and S is a shorthand for A\ S. As a common syntactic
extension, we consider choice rules of the form {«a} + B,
which according to the ASP Core-2 recommendation (Cal-
imeri et al. 2020) stands for the rules o < nota’, B and
o' + not a, B where o is a fresh (hidden) atom. An an-
swer set [is then identified with the interpretation obtained
from I by projecting off auxiliary atoms o’. We alternatively
may write {«} + B as a < not not «, B, i.e. use double
negation; the results of HT-Logic extend to the use of double
negation. An operator over a class C of programs over .4
is a partial function f : C x 24 — C, where f(P, A) is the
result of applying f on a program P by considering A C A.

HT-models An HT-interpretation is a pair (X,Y) such
that X C Y C A; itis total if X = Y and non-total
otherwise. An HT-interpretation (X,Y") is an HT-model
of a program P if Y = P and X = PY. The set of
all HT-models of P is denoted by HT (P). A set Y of
atoms is an answer set of P if (YY) € HT(P) and no
non-total (X,Y) € HT(P) exists. Two programs P, P,
are equivalent if AS(Py) = AS(P2), and strongly equiva-
lent, denoted by P; = Py, if AS(Py UR) = AS(P, UR)
for every R over A. As well-known, P; P, amounts
to HT(P1) = HT(P,) (Lifschitz, Pearce, and Valverde
2001).

2.1 Omission Abstraction

We call a program P’ over A’ an abstraction of a program
P over A, if there exists a mapping m : A — A U{T}
such that for each answer set I of P, I' = {m(l) | l € I}
is an answer set of P’. In (Saribatur and Eiter 2018) we
introduced the notion of omission-based abstraction which
relies on a mapping ma : A — AU {T} for a set A of
atoms to be omitted, such that m4(a) = T if « € A and
ma(a) =aifae A\ A.

Given an original program P and a set A of atoms to be
omitted, an abstract program omit(P, A) is constructed as
follows. For every rule r : & <— B in P, we have

T, ifANBT=0,a¢ A,
omit(r, A)={a}+ma(B),if ANB*#£0,a ¢ AU{L},
otherwise.

)

where m 4 (B) stands for BT (r) \ A,not (B~(r) \ A)
which projects away the omitted atoms. We showed that
omit(P, A) is an over-approximation of P. However, spuri-
ous answer sets may appear in omit(P, A), i.e., answer sets
which can not be mapped back to some original answer set.

Example 1. Consider the program P; and the resulting ab-
stract programs after applying omit(Py, A) for A = {a, c}
and A = {b} shown below.

P, omit(Py,{a,c}) | omit(Py,{b})
¢+ not d. ¢+ not d.

d + not c. {d}. d + not c.

a < not b, c. {a} +c.

b < d. b < d.

{{ea} {d, b3} | {{},{d,b}} {{c}, {c,a}, {d}}

734

Every answer set of Py can be mapped to some answer set of
omit(Py,{a,c}) resp. omit(Py,{b}) if the omitted literals
are projected away, i.e., AS(P1)z S AS(omit(Py, A)).
Note that omit(Py, {b}) also has a spurious answer set {c},
as it can not be mapped back to some original answer set.

We call an abstraction faithful if the constructed abstract
program has no spurious answer sets. A faithful abstraction
is referred as refinement-safe if all abstractions achievable
by adding back some omitted atoms are also faithful. We
remark that not every faithful abstraction can be refinement-
safe, e.g., omit(P, A) = () is faithful (whenever P is satisfi-
able), but adding back some atoms may reach an abstraction
with a spurious answer set.

3 Desiderata for Omission Abstraction

As mentioned above, abstraction aims at omitting details
from a program to simplify matters, while structure should
be preserved. Many operators f,(P, V) can be imagined
that omit atoms V' from a program P, yielding another pro-
gram in which no atom from V occurs. In order to assess
whether such f, can be regarded as an omission abstraction,
we consider the following desired properties:

(D1) Over-approximation should be
AS(f,(P,V)) D AS(P)|y holds.

(D2) Rules not involving atoms to omit must be preserved,
ie,{re P|risover V} C f,(P,V).

(D3) New rules should be introduced only if P contains
atoms to omit, i.e., if P is over V, then f,(P,V) C P.

Here (D1) is the semantic key requirement that no answer set
of the original program is lost in the abstraction; (D2)-(D3)
ensure that only modifications relevant to the abstraction are
made. To preserve the structure of rules containing atoms
to be omitted and to ensure that rules are not changed to
arbitrary ones, the next condition should be satisfied.

(D4) Rulesin f,(P, V) should be obtained by strengthening
/ weakening rules 7 in P, meaning that

achieved, 1i.e.,

(1) literals can only be added in the body of r, or
(ii) literals can only be removed from the body of r, or
(iii) the head of r can be modified.!
The next conditions are important for the incrementality of

the operator, which would be beneficial for the computation
of the omission.

(D5) Modularity: f,(P,V) = U,cp fo(r, V).
(D6) Iteration: for V = {v1, ..., v, },

fO(fo(fO(P7 Ul)a'U?)“'avn) = fo(P7 V)

Conditions (D5)-(D6) allow for applying the omission op-
erator incrementally by using the previously computed ab-
straction to compute the next one, rule by rule resp. atom
by atom. In particular, (DS) ensures that we can expand the
program without touching the previously abstracted parts.

'Ttem (iii) may be more restrictive, and e.g. allow only for the
change into a choice.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

Among the different operators that can satisfy (D1)-(DS5),
with a slight modification, omit becomes the operator that
achieves the tightest possible abstract program, with as few
spurious answer sets as possible, even if condition (D4) is
disregarded. To show this, we denote by F;, the class of
omission operators that satisfy (D1)-(D3) and (DS5), and de-
fine an ordering < on F, such that f, < f, for f,, for € F,
if AS(f,(P,V)) 2 AS(f,(P,V)) for every program P
and V, i.e., f, introduces less spurious answer sets than f,.

In order to avoid introducing guesses for tautologic rules
such as a « d, b, not b where b is to be omitted, let the omis-
sion operator omit™ be defined as omit except that such
tautologic rules are skipped. We then have the following.

Theorem 1. The operator omit™ is a minimal operator
w.rt. < in F,. Moreover, omit™ is the unique such opera-
tor under strong equivalence, i.e., every <-minimal f, € F,
satisfies omit™ (P, V) = f,(P,V) for all values of P and V.

This result shows that omit™ is optimal, i.e., there is no
tighter way of doing abstraction while adhering to (D1)-(D3)
and (DS), and provides us via (D4) also with a canonical
form. To achieve faithfulness in general, necessarily some
non-modular operations will be needed.

Furthermore, omit is closed in the class of normal pro-
grams (when choice rules are written through two auxiliary
rules), thus making it possible to be iterated (D6).

4 Through the Lens of Forgetting

We refer to (Gongalves, Knorr, and Leite 2016a; Delgrande
2017) for recent surveys on forgetting and just shortly sum-
marize the notions needed here. Below are some of the prop-
erties considered in forgetting, where F' is a class of forget-
ting operators and C a class of programs:

(wC) F satisfies weakened Consequence if, foreach f € F,
PeCandV C A wehave AS(P)i; € AS(f(P,V)).

(SI) F satisfies Strong (addition) Invariance if, for each f €
F,PeCandV C A wehave f(P,V)UR = f(PUR,V)
for all programs R € C over V.

(CP) F satisfies Consequence Persistence if, for each feF,
PeCand V C A wehave AS(f(P,V)) = AS(P) .

(SP) F satisfies Strong Persistence if, foreach f € F, P €
CandV C A, wehave AS(f(P,V)UR) = AS(PUR)

for all programs R € C over V.

Strong persistence is also considered by Gongalves,
Knorr, and Leite (2016b) for a particular forgetting instance
(P, V') where P is a program in C and V' C A, denoted by
(SP)(p,vy, which holds if AS(f(P,V)UR) = AS(P U
R) v for all programs R € C over V.They also introduced
a criterion 2 to characterize the instances for which an op-
erator achieving (SP)p,y/ is impossible.

Definition 1. (Gongalves, Knorr, and Leite 2016b) Let P be
a program over A and V- C A. An instance (P,V') satisfies
criterion Q) if there exists Y C A\V such that the set of sets

Ripyy = {R{};f‘m | A€ Rellpyy}

735

is non-empty and has no least element, where
R{ph, = {X\ V[(X,Y UA) € HT(P)}
Rellpyy ={ACV | (YUAY UA) € HT(P) and
PA' C Ast. (YUA YUA) € HT(P)}.

It was shown that it is not possible to forget about V' from
P while satisfying strong persistence exactly when (P, V)
satisfies criterion €). Later, when investigating further uses
of forgetting when 2 is satisfied, Gongalves et al. (2017)
considered two relaxed properties:

(sSP) F' satisfies strengthened Strong Persistence if, for
each f € F,Pe CandV C A, we have AS(f(P,V) U
R) C AS(P U R) y for all programs R € C over V.

(wSP) F satisfies weakened Strong Persistence if, for each
feF,PeCandV C A, WehaveAS(PUR)lv C

AS(f(P,V) U R) for all programs R € C over V.

They correspond to under- and over-approximation of the
answer sets, respectively. As easily seen,

Proposition 2. (wSP) is a consequence of (wC) and (SI).

Among the forgetting operators, Fisp (Gongalves, Knorr,
and Leite 2016b) and Fs,s (Knorr and Alferes 2014) sat-
isfy both (wC) and (SI). These operators can also be con-
sidered as omission abstraction since they are in line with
(D1)-(D3). However, the syntactic conditions (D4)-(D6) do
not hold in general, and it remains unclear whether they will
be achieved by particular operators. Iteration of the operator
within the class of normal programs might not be possible
as these operators are not closed.

4.1 Putting Omission Abstraction in this Picture

Here, we initiate the search for the relation between some
of the properties that have been considered for omission ab-
straction and for forgetting, respectively. We can see that
(D1)-(D3) with (D5) immediately allow us to conclude the
following.

Proposition 3. F, satisfies (wC) and (SI).

Since omission abstraction preserves all the rules that do
not mention the set V' of atoms to be omitted, in fact a
stronger version of (SI) is satisfied.

Proposition 4. For every f, € I, we have fo(PUR, V) =
fo(P, V) UR for all programs R over V.

We can also see that the weakened version of strong per-
sistence is also always satisfied.

Proposition 5 (WSP)). For every f, € F,, AS(f,(P, Vlu
R) 2 AS(P U R) holds for all programs R € C over V..

Faithfulness is a valuable property for abstraction, as it
keeps the relevant part of the program needed for reach-
ing a concrete result. However, it is not always possible
to achieve a faithful abstraction under modularity, thus the
property (CP) can not be satisfied in general; for a particular
instance (P, V'), denoted (CP),p), it is achievable.

Proposition 6. For every f, € F,, faithful omission ab-
straction fo(P, V') satisfies (CP)(p y/y.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

It was shown that (CP) and (SI) together are equivalent to
(SP) (Gongalves, Knorr, and Leite 2016a). However, this is
not true for particular instances (P, V'), thus we can not talk
about directly achieving (SP) p - from (CP).p . How-
ever, by Proposition 6, knowing that (CP) p v holds, one
can infer that spuriousness occurs as the added program R
interferes with the rules that were changed in the abstraction
fo(P, V). Diagnosing the necessary interaction of changed
and added rules when (SP) p v/ fails while (CP) p v holds
can serve as a basis for modifying an omission operator, in
particular on a restricted program class.

Nevertheless, it is also possible to achieve (SP)p vy for
some (P, V') with F,. For this, we use the class Fj; of for-
getting operators in (Gongalves, Knorr, and Leite 2016b),
which focuses on constructing programs with HT-models
(X,Y) where X is in the intersection (YR}, or in the

union | J szp,v)' It was shown that F; satisfies (wC), (CP),
(sSP), but not (SI). Thus, by Proposition 5 we obtain

Proposition 7. For f, € F,, if HT (fo(P,V)) = HT (f(P,
V) for f € Fu, then AS(f(P,V)U R) = AS(P U R)

for all programs R € C over V.

This shows that if omission abstraction f, (which satisfies
(wSP)) obtains the same HT models as the operators in Fy,
(which satisfy (sSP)), we can say that (SP)< PV is achieved.
This understanding can lead to finding a new set of operators
achieving the desired properties from both sides.

Example 2. The HT-models of the abstract program
omit(Py,{a,c}) from Example 1 are ((),0),(0,b), (b,b),
(db, db) which is equivalent to HT (f(P1,{a,c})) for f €
Fr, and thus omit(Py, {a, c}) satisfies (SP)(py {a,c})-

Furthermore, given that Gongalves, Knorr, and Leite
(2016b) proved that (SP)p 1y is not possible if (P, V') sat-
isfies €2, we conclude the following.

Proposition 8. Letr f, € F,. If some f € Fyy exists such
that HT (fo(P,V)) = HT (f(P,V)), then (P, V') does not
satisfy €.

For some operators, when incrementally omitting a set of
atoms while achieving abstractions that satisfy (wC), it may
be possible to eventually achieve an abstraction that satis-
fies strong persistence. For operator omit, however, we can
conclude from our results in the next section that if after
omitting some atoms, (wC) holds but not (CP)< PV)s then
(SP)(p,1y can not be achieved after omitting further atoms.

Note that even when (SP)p 1/ is not possible, it would
still be possible to achieve (CP)(p y).

5 Focusing on HT Logic

In this section, we take a deeper look into the semantics of
abstraction through the HT logic,” by investigating the be-
havior of the omission operator omit, to get a better under-
standing of the concept. Note that the omission operator
omit can be extended to handle rules with double negation;
details can be found in the extended version.

>We write choice rules {a} + B as a + not not a, B. con-
fining double negation to this use, and constraints L <+ a, B. as
f < a,not f, B, for a handle on all possible original HT-models.

736

The first observation is on preserving the total models in
the abstraction.

Proposition 9. If (YY) € HT(P) then (Y,Y)y €
HT (omit(P,V)).

Proof. Assume (Y \ VY \ V) ¢ HT (omit(P,V)). This
means Y \ V | B(#) but Y \ VE H(#) for some 7 €
omit(P,V). So # cannot be a choice rule. However 7
also cannot be an unchanged rule as it would contradict

(YY) e HT(P). O

Although all total models (Y,Y) are preserved in
HT (omit(P,V)), not all non-total (X,Y) € HT(P)
might be preserved, thus causing spurious answer sets in
omit(P, V).

The next proposition tells us that if setting all omit atoms
V to true resp. false preserves an HT-model, then setting all
to false yields an abstract HT-model.

Proposition 10. Ler (X,Y) € HT (P). If (XUV,YUV) €
HT(P)and (X\V,Y\V) € HT(P), then (X\V,Y\V) €
HT (omit(P,V)).

Unfortunately, HT (omit(P,V')) € HT (P)y does not
always hold; sometimes, ‘“new” HT-models could be intro-
duced with the abstraction.

Definition 2 (spurious HT-model). An HT-model (X,Y) €
HT (omit(P,V)) is spurious, if no (X', Y') € HT (P) ex-
ists ... X' \V =X, andY'\V =Y.

As regards spurious total models, they can occur only if
rules change in the abstract program as follows.

Proposition 11. If (Y,Y)eHT (omit(P,V)) is spuri-
ous, then some rule r € P satisfies BT (r)NV #£0 and
H(r)¢V.

Note that a spurious total HT-model in the abstract pro-
gram does not necessarily mean that there are spurious an-
swer sets, since also further spurious non-total models can
occur. However, the following result shows that spurious
non-total models occur only for spurious total models.

Proposition 12. If (X, Y) € HT (omit(P,V)) is spurious,
then (Y,Y') € HT (omit(P,V)) is also spurious.
Based on this, we then obtain the following property.

Proposition 13. omit(P,V) has no spurious total HT-
models iff HT (omit(P,V)) € HT (P) v

We can also characterize the definition of faithfulness of
an abstraction omit(P, V') (i.e., (CP)(p) through the HT
semantics.

Proposition 14 (Faithfulness via HT semantics). For a pro-
gram P and atoms V, omit(P, V) is faithful iff we have:

1. forall (YY), (X,Y) € HT(P) where X C Y, some
non-total (X', Y \ V) € HT (omit(P,V)) exists; and

2. for all (YY) € HT (omit(P,V)) s.t. for every A" C
V where (YUA) YUA'Y ¢ HT(P) some non-total
(X,Y) € HT (omit(P,V)) exists.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

Condition 1 ensures that all HT-models that are not an-
swer sets do not become answer sets in the abstraction,
while condition 2 ensures that for new total HT-models some
“killer models” exist eliminating them as answer sets.

From Prop. 9-12 and 13 we get the following result.

Theorem 15. If omit(P,V) is faithful and satisfies
HT (omit(P, V') € HT(P)y, then omit(P, V") is faith-
Sul for every V' C V.

Notice that this result also extends to the case whenever
omit(P, V) satisfies (SP)p vy .

This result shows that if omit(P, V) satisfies the condi-
tions in Theorem 15, then it would be possible to add back
some of the omitted atoms to the program, while preserving
faithfulness. Notice that this coincides with our notion of
refinement-safe faithfulness. This notion helps to avoid the
cases of having faithful abstractions that omit too many de-
tails but no longer remain faithful when some of the details
are added back. Another way of viewing refinement-safety
is from the other way around. Atoms can be omitted one-by-
one, while still preserving the decisions until omission can
no longer be made without introducing spuriousness. Our
result gives a semantic condition which is sufficient but not
necessary for obtaining refinement-safety.

6 Conclusion

We have reviewed omission abstraction in the light of recent
work on forgetting from logic programs. To understand the
difference, we have described desired properties for the for-
mer, and we showed optimality of the omit operator; some
forgetting operators can be viewed as achieving omission
abstraction while not adhering to modularity and incremen-
tality in general. It remains to extend this work and chart
classes of programs where forgetting operators satisfy the
latter. In that, the modularity condition, which was the start-
ing criteria for abstraction, may be weakened so that a pro-
gram can be partitioned into subprograms for independent
omission while still maintaining the results in Section 4.1.
The longer range aim is to recognize how omission abstrac-
tion aligns with the forgetting spectrum, and how results
and tools of the latter may be used to construct omission
abstraction operators with certain properties. Moreover, the
concept of omission abstraction and its possible applications
may bring a fresh perspective to research in forgetting.

Our semantic look at the omission abstraction operator
omit in the well-established framework of HT-logic pro-
vides a base for future investigations towards understanding
ASP abstraction and its desired properties. A characteriza-
tion of faithfulness (in particular of refinement-safe faithful-
ness) would be interesting, yet we expect it to be more in-
volved. This should be even more true for a relativized ver-
sion of faithfulness, in which auxiliary atoms (as customary
in ASP encodings) are disregarded, making it more suitable
for applications; its linkage to the forgetting framework also
remains to be studied.

Acknowledgments

We thank Jodo Leite for his questions on the possible rela-
tions of forgetting to abstraction and for pointing to the ref-

737

erences. Furthermore, we are grateful to the reviewers for
their helpful and constructive comments.

References

Berthold, M.; Gongalves, R.; Knorr, M.; and Leite, J. 2019.
A syntactic operator for forgetting that satisfies strong per-
sistence. Theory and Practice of Logic Programming 19(5-
6):1038-1055.

Calimeri, F.; Faber, W.; Gebser, M.; Ianni, G.; Kaminski,
R.; Krennwallner, T.; Leone, N.; Maratea, M.; Ricca, F.; and
Schaub, T. 2020. Asp-core-2 input language format. Theory
and Practice of Logic Programming 20(2):294-309.
Clarke, E.; Grumberg, O.; Jha, S.; Lu, Y.; and Veith, H.
2003. Counterexample-guided abstraction refinement for
symbolic model checking. Journal of the ACM 50(5):752—
794.

Delgrande, J. P. 2017. A knowledge level account of forget-
ting. Journal of Artificial Intelligence Research 60:1165—
1213.

Eiter, T.; Saribatur, Z. G.; and Schiiller, P. 2019. Abstraction
for zooming-in to unsolvability reasons of grid-cell prob-
lems. In Proc. of the IJCAI 2019 Workshop on Explainable
Artificial Intelligence (XAl).

Gongalves, R.; Knorr, M.; Leite, J.; and Woltran, S. 2017.
When you must forget: Beyond strong persistence when for-
getting in answer set programming. Theory and Practice of
Logic Programming 17(5-6):837-854.

Gongalves, R.; Knorr, M.; and Leite, J. 2016a. The ultimate
guide to forgetting in answer set programming. In Proc. of
the 15th International Conference on Principles of Knowl-
edge Representation and Reasoning (KR), 135-144.

Gongalves, R.; Knorr, M.; and Leite, J. 2016b. You can’t
always forget what you want: On the limits of forgetting in
answer set programming. In Proc. of the 22nd European
Conference on Artificial Intelligence (ECAI), 957-965. 10S
Press.

Knorr, M., and Alferes, J. J. 2014. Preserving strong equiv-
alence while forgetting. In Proc. of the 14th European Con-
ference on Logics in Artificial Intelligence (JELIA), 412—
425.

Lifschitz, V.; Pearce, D.; and Valverde, A. 2001. Strongly
equivalent logic programs. ACM Transactions on Computa-
tional Logic 2(4):526-541.

Saribatur, Z. G., and Eiter, T. 2018. Omission-based ab-
straction for answer set programs. In Proc. of the 16th Inter-

national Conference on Principles of Knowledge Represen-
tation and Reasoning (KR), 42-51. AAAI Press.

Saribatur, Z. G.; Schiiller, P.; and Eiter, T. 2019. Abstrac-
tion for non-ground answer set programs. In Proc. of the

16th European Conference on Logics in Artificial Intelli-
gence (JELIA), LNCS. Springer. 576-592.

	Introduction
	Background
	Omission Abstraction

	Desiderata for Omission Abstraction
	Through the Lens of Forgetting
	Putting Omission Abstraction in This Picture

	Focusing on HT Logic
	Conclusion

