
Bipolar Abstract Argumentation with Dual Attacks and Supports

Nico Potyka
University of Stuttgart, Germany
nico.potyka@ipvs.uni-stuttgart.de

Abstract

Bipolar abstract argumentation frameworks allow modeling
decision problems by defining pro and contra arguments and
their relationships. In some popular bipolar frameworks,
there is an inherent tendency to favor either attack or sup-
port relationships. However, for some applications, it seems
sensible to treat attack and support equally. Roughly speak-
ing, turning an attack edge into a support edge, should just
invert its meaning. We look at a recently introduced bipo-
lar argumentation semantics and two novel alternatives and
discuss their semantical and computational properties. Inter-
estingly, the two novel semantics correspond to stable seman-
tics if no support relations are present and maintain the com-
putational complexity of stable semantics in general bipolar
frameworks.

1 Introduction
Abstract argumentation (Dung 1995) studies the acceptabil-
ity of arguments abstracted from their content, just based on
their relationships. In the classical framework from (Dung
1995), arguments can only attack each other. However, in
many applications it seems reasonable that arguments can-
not only contradict, but can also support each other. There-
fore, in bipolar argumentation, an additional support relation
is considered (Amgoud et al. 2008; Oren and Norman 2008;
Boella et al. 2010; Cayrol and Lagasquie-Schiex 2013).
However, supports are often not considered as direct coun-
terparts of attacks, but rather as meta-relations with a spe-
cial meaning. In bipolar argumentation with deductive sup-
port, support relations are basically used to derive indirect
attacks. For example, if an argument directly or indirectly
supports an attacker of an argument, this is considered as a
supported attack (Cayrol and Lagasquie-Schiex 2013). De-
rived attacks like this are then used to translate the bipolar
argumentation framework to an attack-only framework that
can be interpreted by semantics for the standard framework.
While this is an elegant way to reduce bipolar argumenta-
tion to well established argumentation approaches, it causes
an asymmetry between attack and support as we will dis-
cuss later. Another example is bipolar argumentation with
evidential support (Oren and Norman 2008). Here, noth-
ing can be accepted unless directly or indirectly supported
by special prima-facie arguments. Furthermore, attacks can
only be successful if they are supported. While this approach

explicitly takes account of the positive meaning of support,
attacks and supports are still treated quite differently.

Our focus here is on bipolar argumentation frameworks
with dual attacks and supports. The intuitive idea is that
attack and support should be dual notions: replacing an at-
tack edge with a support edge should just invert its meaning.
While an attack should decrease the credibility of an argu-
ment, a support should increase its credibility by the same
amount. It is difficult to make this idea formally precise.
The idea that we follow here to accomplish this duality is to
define symmetrical constraints for attack and support rela-
tions. While complete symmetry can result in rather weak
semantics, a slight asymmetry in the definition suffices to
get meaningful semantics that still treat attacks and supports
equally.

We will start our discussion with deductive labellings that
have been introduced in (Potyka 2020). While deductive la-
bellings are based on a completely symmetrical definition
of attack and support, the definition is rather weak and ad-
mits labellings that can be very sceptical and indecisive. We
consider two alternatives called s-deductive and m-deductive
labellings that introduce a slight asymmetry. Similar to com-
plete semantics in attack-only argumentation frameworks,
they give preference to accepting arguments. As it turns
out, if there are no support relations, s-deductive and m-
deductive labellings actually correspond to common stable
labellings. In bipolar frameworks with supports, they differ
in the way how they handle conflicts between accepted at-
tackers and supporters. S-deductive labellings label an argu-
ment that is both attacked and supported by accepted argu-
ments undecided. M-deductive labellings try to resolve the
conflict by means of a majority decision. We demonstrate
how s-deductive and m-deductive labellings treat attack and
support equally, illustrate their differences and discuss some
of their general properties.

2 Background
A Dung-style (finite) abstract argumentation framework
(AAF) is a tuple (A,Att), where A is a finite set of argu-
ments and Att ⊆ A×A is the attack relation (Dung 1995).
If (A,B) ∈ Att, we say that A attacks B. With a slight
abuse of notation, we let Att(A) = {B | (B,A) ∈ Att}
denote the set of attackers of A. Semantics of argumen-
tation frameworks can be defined in terms of extensions
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Figure 1: BAF (A,Att, Sup) with A = {A,B,C}, Att =
{(A,C)}, Sup = {(B,C)}

or labellings in an equivalent way (Caminada and Gabbay
2009). We will use labellings here. A labelling is a function
L : A → {in, out, und} that assigns to each argument a la-
bel. We say that an argument A is accepted if L(A) = in
and that A is rejected if L(A) = out. Following (Caminada
and Gabbay 2009), we call a labelling

Complete: if L satisfies

1. L(A) = in if and only if L(B) = out for all B ∈
Att(A).

2. L(A) = out if and only if L(B) = in for some B ∈
Att(A).

Furthermore, we say that a complete labelling is

Grounded: if in(L) is minimal with respect to set inclu-
sion.

Preferred: if in(L) is maximal with respect to set inclu-
sion.

Semi-stable: if und(L) is minimal with respect to set in-
clusion.

Stable: if und(L) = ∅.
In many applications it is useful to consider not only attack
relations, but also support relations. A bipolar argumenta-
tion framework (BAF) is a tuple (A,Att, Sup), where A is
a finite set of arguments, Att ⊆ A × A is the attack rela-
tion as before and Sup is the support relation (Cayrol and
Lagasquie-Schiex 2013). We also assume that Att ∩ Sup =
∅. We let again Sup(A) = {B | (B,A) ∈ Sup} denote the
set of supporters of A. Graphically, we denote attack rela-
tions by solid edges and support relations by dashed edges.
Figure 1 shows an example BAF with one attack and one
support. For example, Figure 1 could be instantiated with
the following arguments:

C: Schools should be closed to slown down the spread of
COVID-19.

A: School shutdowns may force parents to ask older rela-
tives for help and may thus increase the number of infec-
tions in a high-risk group.

B: Slowing down the spread of the virus is vital to avoid a
collapse of the health system.

The meaning of the support relation can be defined in dif-
ferent ways. The intuitve idea of deductive support (Boella
et al. 2010; Cayrol and Lagasquie-Schiex 2013) is that if an
argument is accepted, every argument that it supports must
be accepted as well. In this way, arguments can also in-
directly support arguments via chains of support relations.
The dual idea (if an argument is accepted, all its supporters
must be accepted as well) is referred to as necessary support
(Cayrol and Lagasquie-Schiex 2013). However, deductive

support relations can be tranlsated to necessary support rela-
tions by just reversing their direction, so we will focus on de-
ductive support here. A deeper discussion of both and other
notions of support can be found in (Cayrol and Lagasquie-
Schiex 2013). One way to give formal meaning to deductive
support relations is to translate the bipolar argumentation
framework to an abstract argumentation framework with ad-
ditional attacks (Cayrol and Lagasquie-Schiex 2013). These
new attacks correspond to indirect attacks that are created
by the interplay between attack and support relations. The
following indirect attacks have been considered for this pur-
pose in (Cayrol and Lagasquie-Schiex 2013):

Supported Attack from A to B: there is a sequence of ar-
guments A1, . . . , An such that A1 = A, An = B,
(Ai, Ai+1) ∈ Sup for 1 ≤ i ≤ n − 2 and (An−1, An) ∈
Att.

Mediated Attack from A to B: there is a sequence of ar-
guments A1, . . . , An such that A1 = B, An = A,
(Ai, Ai+1) ∈ Sup for 1 ≤ i ≤ n − 2 and (An, An−1) ∈
Att.

Intuitively, there is a supported attack from A to B iff A di-
rectly or indirectly supports an attacker of B. There is a me-
diated attack from A to B iff A attacks an argument that is
directly or indirectly supported by B. The Dung framework
associated with (A,Att, Sup) is then defined as the Dung
framework (A,Att ∪ Atts ∪ Attm), where Atts and Attm

contain additional attacks that correspond to supported and
mediated attacks in (A,Att, Sup) (Cayrol and Lagasquie-
Schiex 2013). This is an elegant way to extend established
semantics to bipolar argumentation frameworks. However,
this solution does not treat attack and support equally. For
example, in Figure 1, it seems that C could as well be ac-
cepted as rejected. However, the translation takes only ac-
count of the mediated attack from A to B and ignores the
fact that C has a supporter. Hence, the only complete la-
belling of the associated Dung framework labels A in and
B and C out. The disparity between attack and support be-
comes more prevalent when we keep our attacker A, but add
n supporters Bi of C. Then A will be accepted and C and
all of its supporters Bi will be rejected even when C is sup-
ported by thousands of undisputed arguments.

3 Towards Bipolar Argumentation with Dual
Attacks and Supports

For decision-making problems, where the final decision is
based on pro (support) and contra (attack) arguments, it
seems reasonable that attack and support are treated equally.
That is, an attack relation should decrease the chance of ac-
ceptance in the same way as a support relation increases the
chance of acceptance. For example, in Figure 1, one may
prefer the contra argument A. However, it seems too re-
strictive to condemn B to be rejected just because it is a pro
argument. In this scenario, accepting A and rejecting B as
well as accepting B and rejecting A should be a valid option.
I would even argue that it can be reasonable to accept both A
and B. Then C should be undecided until further arguments
for or against C have been proposed. For our COVID-19
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Labelling A B C
L1 in out out
L2 out in in
L3 out out in
L4 out out out
L5 out out und
L6 out und und
L7 out und in
L8 und out out
L9 und out und
L10 und und und

Table 1: Deductive labellings for the BAF in Figure 1.

instantiation that we considered before, this means that we
have to collect further arguments that speak for or against a
school closure or one of the existing arguments in order to
make a decision.

In order to obtain dual behaviour of attack and support,
the following definition has been proposed in (Potyka 2020):
we call a labelling

Deductive: if L satisfies

1. If L(A) = in, then L(B) = out for all B ∈ Att(A).
2. If L(A) = out, then L(B) = out for all B ∈ Sup(A).
3. If L(B) = in for some B ∈ Att(A), then L(A) = out.
4. If L(B) = in for some B ∈ Sup(A), then L(A) = in.

Conditions 1 and 2 correspond to necessary conditions for
acceptance and rejection. We can accept (reject) only when
all attackers (supporters) are out. Conditions 3 and 4 corre-
spond to sufficient conditions. If one attacker (supporter) is
in, the argument must be out (in). Condition 1 and 3 make
sure that deductive labellings respect classical attacks. Con-
ditions 2 and 4 make sure that they interpret support in a dual
manner. As shown in (Potyka 2020), deductive labellings
also respect supported and mediated attacks.

Proposition 1 (from (Potyka 2020)). Let L be a deductive
labelling.

1. If L(A) = in and there is a supported attack from A to B,
then L(B) = out.

2. If L(A) = in and there is a mediated attack from A to B,
then L(B) = out.

While the definition of deductive labellings defines the
meaning of attack and support edges in a symmetrical fash-
ion, it is rather weak and admits many labellings as we
demonstrate in the following example.

Example 1. Consider again the BAF in Figure 1. We can
compute all labellings by going through the definition step
by step. For example, if A is accepted, B must be rejected
because of condition 3 of deductive labellings. Then C must
be rejected because of condition 1. By going through the
remaining cases, we can find all deductive labels that are
shown in Table 1. We can see that many labellings are rather
sceptical and indecisive. This is, in particular, reflected by
L4 and L10.

In order to make deductive labellings more credulous and
decisive, they can be refined by considering grounded, pre-
ferred, semi-stable and stable deductive labellings as before
by minimizing or maximizing particular labels. For exam-
ple, a deductive labelling is called stable if it does not label
any argument undecided. A discussion of stable deductive
labellings can be found in (Potyka 2020). While stable de-
ductive labellings are more decisive, one may argue that they
remain too sceptical because the labelling lout that labels ev-
ery argument out is always deductive.

Let us look at grounded, preferred and semi-stable deduc-
tive labellings in more detail. To begin with, we note that
grounded deductive labellings are overly sceptical. Since
lout is always deductive, grounded deductive labellings
never accept any argument.

Preferred deductive labellings are more interesting. How-
ever, they do not treat attack and support equally. While
the deductive support approach discussed in (Cayrol and
Lagasquie-Schiex 2013) favors attacks, preferred deductive
labellings favor supports. To see this, consider again the
BAF in Figure 1. The only preferred deductive labelling la-
bels B and C in and A out (labelling l2 in Table 1).

Semi-stable deductive labellings actually do not add any-
thing to stable deductive labellings. This is because the la-
belling lout is deductive. Therefore, there are always de-
ductive labellings that label zero arguments undecided. So
stable deductive labellings always exist and coincide with
semi-stable deductive labellings. A discussion of stable de-
ductive labellings can be found in (Potyka 2020). They be-
have quite well for small examples. The stable deductive la-
bellings for the BAF in Figure 1 are the labellings L1,L2,L3

and L4 from Table 1. However, one may argue that they are
still overly sceptical because they can reject arguments with-
out reason. This is an artifact of the desire to have a symmet-
rical definition of attacks and supports. If one demands that
everything that is not attacked is accepted, one may argue
that we should symmetrically demand that every argument
that is not supported must be rejected. However, these two
constraints are inconsistent in many cases (every argument
without parents must be accepted and rejected).

Because of the aforementioned shortcomings of deductive
labellings and their refinements, we will look at some alter-
natives in the following sections. In order to obtain more
decisive labellings, we will add a necessary condition for la-
beling an argument undecided. In order to obtain more cred-
ulous labellings, we will revise the sufficient conditions and
favor accepting arguments over rejecting them. This slight
asymmetry seems necessary in order to prevent an overly
sceptical behaviour.

4 S-Deductive Labellings
In AAFs, it is natural to demand that an argument is accepted
when all attackers are rejected. However, in BAFs, we have
to be more careful. This can be seen from the BAF in Figure
1 already. If we want to treat attack and support equally and
accept every argument that is unattacked, we would have to
accept both A and B and declare C undecided. While this
is a reasonable labelling, I would argue that it is also reason-
able to accept only one of A and B and to reject the other to

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

679



Labelling A B C
L1 in und in
L2 in out out
L3 out in in

Table 2: S-deductive labellings for the BAF in Figure 1.

allow for different viewpoints. We will therefore consider a
stronger precondition that not only considers direct attack-
ers of an argument, but also more indirect conflicts between
arguments. We say that argument A contradicts argument B
if there is an argument C such that

1. (A,C) ∈ Att and (B,C) ∈ Sup or
2. (B,C) ∈ Att and (A,C) ∈ Sup.
The opponents of an argument are defined as the set of ar-
guments that contradict it, that is, Opp(A) = {B ∈ A |
B contradicts A}. In the following definition, we use a vari-
ant of complete labellings’ sufficient condition for accep-
tance that demands not only that all attackers are out, but
also that all opponents are out. We call a labelling
S-Deductive: if L satisfies

1. If L(A) = in, then L(B) = out for all B ∈ Att(A).
2. If L(A) = out, then L(B) = out for all B ∈ Sup(A).
3. If L(A) = und, then L(B) = in for some B ∈ Att(A)

and L(B) = in for some B ∈ Sup(A).
4. L(A) = in whenever
(a) L(B) = out for all B ∈ Att(A) and
(b) L(B) = out for all B ∈ Opp(A).

The first two conditions are the necessary conditions from
the deductive labelling definition. The third condition is a
new necessary condition for undecidedness to make the se-
mantics more decisive. We demand that an argument can
only be undecided if there is a reason for both accepting and
rejecting the argument. The fourth condition is the sufficient
condition for acceptance that we discussed at the beginning
of this section.
Example 2. Consider again the BAF in Figure 1. The only
s-deductive labelling that can be undecided is C. This is
only possible if both A and B are accepted. This is indeed
possible since they are both unattacked.

If A is accepted, C cannot be accepted because of condi-
tion 1. C must be undecided if B is accepted and rejected if
B is not accepted.

Another s-deductive labelling dually accepts B and C and
rejects A. Table 2 shows the three s-deductive labellings for
the BAF in Figure 1. L2 is the grounded s-deductive la-
belling. L1 and L3 are the preferred s-deductive labellings.
Both L2 and L3 are semi-stable and stable s-deductive la-
bellings.

As opposed to deductive labellings, the definition of s-
deductive labellings does not contain explicit statements
about what must happen to an argument if a single attacker
or a single supporter is accepted. This allows to accept both
A and B for the BAF in Figure 1 by labelling C undecided.
The following proposition sheds some light on the influence
of single attack and support relations.

Proposition 2. Let (A,Att, Sup) be a BAF and let L be a
corresponding s-deductive labelling.

1. If (A,B) ∈ Att and L(A) = in, then L(B) ∈
{out, und}.

2. If (A,B) ∈ Att, L(A) = in and L(C) = out for all
C ∈ Sup(B), then L(B) = out.

3. If (A,B) ∈ Sup and L(A) = in, then L(B) ∈ {in, und}.
4. If (A,B) ∈ Sup, L(A) = in and L(C) = out for all

C ∈ Att(B), then L(B) = in.

Proof. 1. Since L(A) = in 6= out, the contrapositive of
condition 1 of s-deductive labellings implies that L(B) 6= in
and therefore L(B) ∈ {out, und}.

2. From item 1, we know that L(B) ∈ {out, und}. Since
L(C) = out 6= in for all C ∈ Sup(B), the contrapositive
of condition 3 of s-deductive labellings implies that L(B) 6=
und and thus L(B) = out.

3 and 4 follow analogously using condition 2 instead of
condition 1 of s-deductive labellings.

Item 1 says that if an argument is attacked by an accepted
argument, then it must be either rejected or undecided. This
is a weaker statement than in AAFs, but I would argue that
it makes sense in BAFs because an attack can be cancelled
by a support now. In this case, labelling the argument un-
decided seems reasonable. If there is no accepted argument
that cancels the attack, the argument must indeed be rejected
as explained in item 2. Items 3 and 4 state dual properties
for supports.

It is interesting to note that, in AAFs, S-deductive la-
bellings are always complete labellings.

Proposition 3. Let (A,Att, Sup) be a BAF such that Sup =
∅. Then every s-deductive labelling is a complete labelling
in the corresponding AAF (A,Att).

Proof. Let L be an s-deductive labelling. Note that con-
dition 4b) of s-deductive labellings is trivially satisfied if
Sup = ∅. Therefore, condition 4 and 1 together state that an
argument is accepted if and only if all attackers are rejected.
This corresponds to condition 1 of complete labellings.

Since Sup = ∅, the contrapositive of condition 4 of s-
deductive labellings implies that if L(A) = out 6= in, then
L(B) 6= out for some B ∈ Att(A). However, there can be
no undecided labellings if Sup = ∅ because of condition 3
of s-deductive labellings. Hence, if A is out, there must be
an attacker that is in. Furthermore, item 2 of Proposition 2
and the fact that Sup = ∅ implies that A is out whenever
an attacker is in. Hence, the second condition of complete
labellings is satisfied as well and L is a complete labelling.

As explained in the previous proof, s-deductive labellings
do not label anything undecided if there are no supporters.

Corollary 1. Let (A,Att, Sup) be a BAF such that Sup = ∅
and let L be an s-deductive labelling. Then L(A) 6= und for
all A ∈ A.
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Since complete labellings can label arguments undecided,
not every complete labelling corresponds to an s-deductive
labelling. In particular, in AAFs where no stable labelling
exists, no s-deductive labelling exists either. The standard
example is an attack cycle of length 3 given by the AAF
({A,B,C}, {(A,B), (B,C), (C,A)}). As it turns out, sta-
ble labellings are actually always s-deductive labellings.

Proposition 4. Let (A,Att) be an AAF and let L be a stable
labelling. Then L is an s-deductive labelling in the corre-
sponding BAF (A,Att, ∅).

Proof. Note that L is, in particular, a complete labelling and
does not label any arguments undecided. Condition 1 and
4 of s-deductive labellings follow immediately from condi-
tion 1 of complete labellings and the fact that no opponents
exist in AAFs. Condition 2 of s-labellings follows immedi-
ately from condition 2 of complete labellings. Condition 3
of s-labellings is satisfied trivially because no argument is
labelled undecided.

Taken together, our results show that, for AAFs, s-
deductive labellings coincide with stable labellings.

Corollary 2. Let G = (A,Att, Sup) be a BAF such that
Sup = ∅ and let G′ = (A,Att). Then the s-deductive la-
bellings of G are exactly the stable labellings of G′.

Proof. If L is an s-deductive labelling for G, Proposition 3
and Corollary 1 imply that L is a complete labelling for G′
that does not label any arguments undecided. Therefore, L
is a stable labelling for G′.

Conversely, if L is a stable labelling for G′, Proposition 4
implies that L is an s-deductive labelling for G.

As demonstrated in Example 2 for the BAF in Figure 1,
for general bipolar graphs, arguments can be labelled unde-
cided. However, this can only happen if the argument is both
supported and attacked by an accepted argument.

We also note that, as opposed to deductive labellings, s-
deductive labellings do not respect supported and mediated
attacks in the strong sense of Proposition 1. This is because
support chains can be broken. If a deductive labelling ac-
cepts an argument A, it has to accept every argument along
a support chain that starts at A. This is no longer true for s-
deductive labellings as we already saw in Example 2 for the
BAF in Figure 1. In this example, even though there is a me-
diated attack from A to B, we can accept both A and B by
labelling C undecided. As an example for a supported attack
that is not respected under s-deductive semantics, consider
the BAF at the top of Figure 2. There is an s-deductive la-
belling that accepts A, A′ and B and labels C undecided.
Hence, even though A is accepted and there is a supported
attack from A to C, C is not rejected. However, supported
attacks are respected in a weaker sense that is very similar
to the effect of classical attacks described in Proposition 2.

Proposition 5. Let (A,Att, Sup) be a BAF and let L be
a corresponding s-deductive labelling. Assume further that
there is a supported Attack from A1 to An given by the se-
quence of arguments A1, . . . , An such that (Ai, Ai+1) ∈
Sup for 1 ≤ i ≤ n− 2 and (An−1, An) ∈ Att.

Figure 2: Supported attack vs. support (top), attack vs. supported
support (middle) and supported attack vs. supported support (bot-
tom).

1. If L(A1) = in, then L(An) ∈ {out, und}.
2. If L(A1) = in and L(C) = out for all C ∈ Sup(An) ∪⋃n−1

i=2 Att(Ai), then L(An) = out.

Proof. 1. Since L(A1) = in 6= out, the contrapositive of
condition 2 of s-deductive labellings implies that L(A2) 6=
out. It follows inductively from the same argument that
L(A2) 6= out for 1 ≤ i ≤ n − 1. Since L(An−1) 6= out,
the contrapositive of condition 1 of s-deductive labellings
implies that L(An) 6= in, thus L(An) ∈ {out, und}.

2. Since no attacker of any Ai, i = 2, . . . , n − 1, is
in, the necessary condition for undecided (condition 3 of
s-deductive labellings) cannot be satisfied. Hence, item 1
implies that L(Ai) = in for 1 ≤ i ≤ n − 1. Since
L(An−1) = in and all supporters of An are out by assump-
tion, item 2 of Proposition 2 implies that L(An) = out.

Item 1 says that if there is a supported attacked from A1

to An and A1 is accepted, then An must be either rejected or
undecided. Item 2 explains that An must be rejected when
all arguments that could break the support chain from A1 to
An−1 or cancel the attack from An−1 to An are out.

As we saw in Example 2, simple attacks and supports are
treated equally under s-deductive semantics. It is interest-
ing to note that supported attacks are stronger than simple
supports and supported supports are stronger than simple at-
tacks. Furthermore, supported attacks and supported sup-
ports are equally strong. We demonstrate this in the follow-
ing example.

Example 3. Figure 2 shows some basic cases of supported
attacks and supported supports. For our COVID-19 instan-
tiation, the additional supporters may correspond to model
calculations or previous studies that back the supporting or
attacking argument. Consider again the BAF at the top of
Figure 2. There is a supported attack from A to C and a sup-
port from B to C. Let us compute all s-deductive labellings.
A does not have any attackers nor opponents and thus must
be accepted according to condition 4 of deductive labellings.
Therefore, A′ cannot be rejected according to condition 2. It
cannot be undecided either because of condition 3. Hence,
A′ must be accepted as well. B cannot be undecided because
of condition 3. If B is out, C must be rejected because it is
attacked but not supported by an accepted argument. If B is
in, C must be undecided. Hence, there are two labellings.
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One rejects C, the other one labels C undecided. The sup-
ported attack is stronger than the simple support in the sense
that C cannot be accepted.

In the BAF in the middle of Figure 2, there is a supported
support from B to C and an attack from A to C. We can
check as before that there are two m-deductive labellings.
Now, one accepts C, the other one labels C undecided. Dual
to the previous case, C cannot be rejected. The supported
support is stronger than the simple attack.

Finally, in the BAF at the bottom of Figure 2, we have a
supported attack from A to C and a supported support from
B to C. Similar to before, we can convince ourselves that
A,A′, C, C ′ must be in and thus B must be undecided. This
is actually the only s-deductive labelling. From this exam-
ple, we can see that supported attacks and supported sup-
ports are equally strong. However, as opposed to the inter-
action between simple supports and simple attacks, we do
not have labellings that accept either the attacker or the sup-
porter position. This can be justified by the fact that both
positions are supported by undisputed arguments.

Since stable s-deductive labellings do not admit any un-
decided arguments, Propositions 2 and 5 immediately imply
that they interpret simple and supported attacks in the strong
sense.
Corollary 3. Let (A,Att, Sup) be a BAF and let L be a
corresponding stable s-deductive labelling.

1. If (A,B) ∈ Att and L(A) = in, then L(B) = out.
2. If there is a supported attack from A to B and L(A) = in,

then L(B) = out.
From our discussion in Example 3, we can see that for

the BAFs at the top and in the middle of Figure 2, there
is exactly one stable s-deductive labelling. The one for the
top accepts A and rejects B and C, the one for the middle
accepts B and C and rejects A. For the BAF at the bottom,
no stable s-deductive labelling exists.

5 M-Deductive Labellings
S-deductive labellings allow accepting both an argument and
one of its opponents if the argument that is supported by one
and attacked by the other is undecided. In applications like
e-government, it seems reasonable to make the labellings
more decisive by resolving conflicts between accepted argu-
ments by a majority decision. This motivates the following
definition. We say that a labelling is
M-Deductive: if L satisfies

1. If L(A) = in, then L(B) = out for all B ∈ Att(A)
or |{B ∈ Att(A) | L(B) 6= out}| < |{B ∈ Sup(A) |
L(B) = in}|.

2. If L(A) = out, then L(B) = out for all B ∈ Sup(A)
or |{B ∈ Sup(A) | L(B) 6= out}| < |{B ∈ Att(A) |
L(B) = in}|.

3. If L(A) = und, then |{B ∈ Att(A) | L(B) = in}| =
|{B ∈ Sup(A) | L(B) = in}| > 0.

4. L(A) = in whenever
(a) L(B) = out for all B ∈ Att(A) and
(b) L(B) = out for all B ∈ Opp(A).

Figure 3: Two BAFs that allow resolving conflicts by majority de-
cisions.

Labelling A A′ B C
L1 in in in und
L2 in in out out
L3 in out in und
L4 out in in und
L5 out out in in

Table 3: S-deductive labellings for the BAF on the left in Figure 3.

As opposed to s-deductive labellings, we weaken the nec-
essary conditions for labelling an argument in or out, but
strengthen the necessary condition for labelling an argument
undecided. An argument can be accepted if all attackers are
out or if the number of attackers that are not out is smaller
than the number of supporters that are in. Dually, an argu-
ment can be rejected if all supporters are out or if the number
of supporters that are not out is smaller than the number of
attackers that are in. Labelling an argument undecided is
only possible if the number of accepted attackers equals the
number of accepted supporters and is non-zero.

For the BAF in Figure 1, the s-deductive and m-deductive
labellings are equal (see Table 2 for the labellings). How-
ever, if a conflict can be resolved by a majority decision, the
labellings differ.

Example 4. Consider the BAF on the left in Figure 3. Table
3 shows the s-deductive labellings for this example. L1,L3

and L4 label C undecided because it is both supported and
attacked. However, since L1 accepts more attackers than
supporters, one may argue that C should be rejected in
this case. This is indeed what happens for m-deductive la-
bellings. Table 4 shows all m-deductive labellings. For the
BAF on the right in Figure 3, the behaviour is dual. For the
m-deductive labelling, where B, B′ and A are accepted, C
must also be accepted now.

As opposed to s-deductive labellings, it is no longer true
that an argument cannot be accepted if an attacker is ac-
cepted. This is because an accepted attacker can now be
overruled by accepted supporters. However, we still have

Labelling A A′ B C
L1 in in in out
L2 in in out out
L3 in out in und
L4 out in in und
L5 out out in in

Table 4: M-deductive labellings for the BAF on the left in Figure
3.
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the following guarantees for the meaning of attack and sup-
port edges.

Proposition 6. Let (A,Att, Sup) be a BAF and let L be a
corresponding m-deductive labelling.

1. If |{B ∈ Att(A) | L(B) = in}| > |{B ∈ Sup(A) |
L(B) = in}|, then L(A) = out.

2. If |{B ∈ Sup(A) | L(B) = in}| > |{B ∈ Att(A) |
L(B) = in}|, then L(A) = in.

3. If |{B ∈ Sup(A) | L(B) = in}| = |{B ∈ Att(A) |
L(B) = in}| > 0, then L(A) = und.

Proof. 1. Since the number of accepted attackers is larger
than the number of accepted supporters, A cannot be un-
decided because of condition 3 of m-deductive labellings.
It cannot be accepted either because of condition 1 of m-
deductive labellings. Hence, it must be rejected.

2 follows analogously using condition 2 instead of condi-
tion 1 of m-deductive labellings.

3. A can be neither accepted nor rejected because of con-
ditions 1 and 2 of m-deductive labellings and thus must be
undecided.

For the special case of AAFs, the m-deductive and s-
deductive labellings are actually always equal.

Proposition 7. Let (A,Att, Sup) be a BAF such that Sup =
∅. Then every s-deductive labelling is an m-deductive la-
belling and vice versa.

Proof. Note that condition 2 of s-deductive and m-deductive
labellings is trivially satisfied in AAFs because there are no
support edges. Note also that condition 4 is equal for s-
deductive and m-deductive labellings, so it suffices to check
conditions 1 and 3.

Consider an s-deductive labelling L. Condition 1 of s-
deductive labellings is stronger and thus implies that L sat-
isfies conditions 1 of m-deductive labellings. Condition
3 of m-deductive labellings is trivially satisfied because s-
deductive labellings do not label any arguments undecided
(Corollary 1). Hence, L is an m-deductive labelling.

Conversely, consider an m-deductive labelling L. If
L(A) = in, condition 1 of m-deductive labellings implies
that we must have L(B) = out for all B ∈ Att(A) because
|{B ∈ Att(A) | L(B) 6= out}| < |{B ∈ Sup(A) | L(B) =
in}| = 0 can never be satisfied. Hence, L satisfies conditon
1 of s-deductive labellings. Since |{B ∈ Sup(A) | L(B) =
in}| = 0 in AAFs, m-deductive labellings cannot label any-
thing undecided in AAFs and so condition 3 of s-deductive
labellings is satisfied as well. Hence, L is an s-deductive
labelling.

Hence, in AAFs, we have the same guarantees for s-
deductive and m-deductive labellings. In particular, m-
deductive labellings correspond to stable labellings again.

Corollary 4. Let G = (A,Att, Sup) be a BAF such that
Sup = ∅ and let G′ = (A,Att). Then the m-deductive
labellings of G are exactly the stable labellings of G′.

Figure 4: BAF with conflict between supported attack from A to B
and supporters of B.

Like s-deductive labellings, m-deductive labellings do not
respect supported and mediated attacks in the strong sense
of Proposition 1. This can be seen from the same coun-
terexamples that we discussed in the previous section. We
could state a result similar to Proposition 5. However, the
preconditions become rather long, so we refrain from doing
so. Roughly speaking, if there is a supported attack from
A to B and neither the supports nor the final attack along
the supported attack path between A and B are overruled by
other accepted arguments, then B must be out. There is no
analogue to Corollary 3 for stable m-deductive labellings,
though. This is because for m-deductive labellings, the ar-
guments along a supported attack path cannot only become
undecided, but may also become in if an attacker is over-
ruled or out if a supporter is overruled.

Example 5. Consider the BAF in Figure 4. Let us first look
at s-deductive labellings. A has neither attackers nor oppo-
nents and thus must be accepted. Therefore, A′ cannot be
rejected nor undecided and thus must be accepted as well.
Since C and C ′ have opponents but no attackers, they can
be either accepted or rejected. If they are both rejected, B
must be rejected. Otherwise, B must be undecided. It is in-
teresting to note that the situation does not change if we add
an arbitrary number of simple supporters of B. Thus, under
s-deductive semantics, a supported attack is stronger than an
arbitrary number of simple supporters. In particular, there
is a unique stable s-deductive labelling that rejects B,C and
C ′.

For m-deductive labellings, again A and A′ must be ac-
cepted and C and C ′ can be either accepted or rejected.
However, for the labelling that accepts both C and C ′, B
will be accepted now. Hence, under m-deductive semantics,
multiple simple supports can overrule a supported attack. In
particular, there are two stable m-deductive labellings. Both
accept A and A′. One rejects C,C ′ and B, the other one
accepts C,C ′ and B. Hence, under stable m-deductive se-
mantics, a supported attack cannot be overruled by a simple
support, but by two simple supports.

We have again dual relationships between supported sup-
ports and simple attacks.

6 Computing S-deductive and M-deductive
Labellings

As explained in Corollaries 2 and 4, for the special case that
there are no support edges, s-deductive and m-deductive la-
bellings correspond to stable labellings in AAFs. Therefore,
inference under stable semantics in AAFs can be seen as a
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special case of inference under s-deductive and m-deductive
labellings and all lower complexity bounds for stable se-
mantics can be transferred to s-deductive and m-deductive
labellings. We consider the following inference problems
discussed in (Dunne and Wooldridge 2009) for AAFs:

EX: Given a BAF (A,Att, Sup), decide whether an S-
labelling exists.

CA (Credulous Acceptance): Given a BAF (A,Att, Sup)
and an argument A ∈ A, decide whether L(A) = in for
at least one S-labelling.

SA (Sceptical Acceptance): Given a BAF (A,Att, Sup)
and an argument A ∈ A, decide whether L(A) = in for
all S-labelling.

We have the following results.

Proposition 8. For both s-deductive and m-deductive se-
mantics

1. EX is NP-complete.
2. CA is NP-complete.
3. SA is coNP-complete.

Proof. 1. Since EX is NP-hard for stable semantics (Dunne
and Wooldridge 2009), it suffices to give a polynomial-
time reduction from EX for stable semantics to EX
for s-deductive/m-deductive labellings to prove hardness.
Given an AAF (A,Att), create the corresponding BAF
(A,Att, Sup). According to Corollaries 2 and 4, there is
a stable labelling for (A,Att) iff there is a s-deductive/m-
deductive labelling for (A,Att, Sup).

For membership, just notice that every s-deductive/m-
deductive labelling is a yes-certificate. It is easy to check
that it can be verified in polynomial time by just checking
that it satisfies all necessary conditions of s-deductive/m-
deductive labellings.

2. Hardness follows with the same reduction as in 1 from
the fact that CA is NP-hard for stable semantics (Dunne
and Wooldridge 2009). Since stable and s-deductive/m-
deductive labelling are equal for AAFs according to Corol-
laries 2 and 4, an argument is accepted by a stable labelling
if and only if it is accepted by an s-deductive/m-deductive
labelling.

Membership follows as before by noting that checking if
a labelling labels an argument in adds only linear additional
cost.

3. Hardness follows analogously to 2 from the fact
that SA is coNP-hard for stable semantics (Dunne and
Wooldridge 2009).

Membership follows from observing that every labelling
that is not s-deductive/m-deductive is a no-certificate. It
is easy to check that it can be verified in polynomial time
by checking that it violates a necessary condition of s-
deductive/m-deductive labellings.

A general implementation for these problems is work
in progress. In principle, we can apply ideas similar to
AAFs and solve the inference problems using solvers for
SAT problems (Alviano 2018; Dvorák et al. 2012; Beierle,
Brons, and Potyka 2015), ASPs (Egly, Gaggl, and Woltran

Figure 5: Example BAF from (Amgoud et al. 2008).

2008), CSPs (Lagniez, Lonca, and Mailly 2015) or Markov
networks (Potyka 2020). While this often results in fast
solutions due to the existence of sophisticated solvers for
these problems, we note that s-deductive and m-deductive
labellings feature a more complicated structure than argu-
mentation problems under stable semantics in AAFs. This is
because constraints are not only based on the predecessors of
arguments (attackers and supporters), but can also depend on
the predecessors of their successors (potential opponents).

7 Related Work
Several bipolar argumentation approaches have been dis-
cussed in the past, we sketch only a few. We already gave a
brief overview of deductive support (Cayrol and Lagasquie-
Schiex 2013) and evidential support (Oren and Norman
2008) in the introduction. A more elaborate discussion of
both approaches can be found in (Cayrol and Lagasquie-
Schiex 2013). Some other bipolar semantics have been stud-
ied in (Amgoud et al. 2008). In this work, the authors do not
only consider supported attacks, but also supported supports.
In particular, they considered a refinement of admissible sets
that demands that the set is conflict-free, defends all its el-
ements and is closed under the support relation. Figure 5
shows an example from (Amgoud et al. 2008). The only
admissible set is {D,E, F} (Amgoud et al. 2008). To see
this, note that C cannot be defended against the attack by
C. Therefore, it cannot be accepted. Since accepting A or
B would entail accepting C, they cannot be accepted either.
This example shows that attack is again stronger than sup-
port under their semantics because C is necessarily rejected
even though it is both attacked and supported. In contrast,
our deductive, s-deductive and m-deductive labellings allow
accepting C. Note that there is actually a supported support
from B to C that is stronger than the simple attack from E to
C under s-deductive and m-deductive semantics, so that they
will actually never reject C.

Bipolar argumentation also plays a prominent role in
gradual argumentation frameworks as discussed in (Am-
goud et al. 2008; Baroni et al. 2015; Rago et al. 2016;
Amgoud and Ben-Naim 2016; Potyka 2018). Roughly
speaking, in these frameworks, a strength value for argu-
ments is computed iteratively based on an initial base score
and the strength of attackers and supporters. If this proce-
dure converges, we can assign to every argument a well-
defined strength value. Since arguments are evaluated nu-
merically and we do not have to think about several ex-
tensions, the idea of duality is easier to formalize for these
frameworks. Roughly speaking, we can demand that an at-
tack’s negative effect on the base score equals a support’s
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positive effect, see (Potyka 2019) Definition 5.1 and Propo-
sition 5.2 for a more precise statement. A discussion of the
relevance of bipolar argumentation in the context of proba-
bilistic argumentation can be found in (Polberg and Hunter
2018). While pure AAFs can be sufficient for interesting
applications, support edges are vital for many recent appli-
cations of argumentation frameworks. For example, in re-
view aggregation (Cocarascu, Rago, and Toni 2019), it is
important that both positive and negative aspects of a review
are taken into account. In fake news detection (Kotonya and
Toni 2019), claims in an article can be contradicted or sup-
ported by other sources. As a final example, in product rec-
ommendation (Rago, Cocarascu, and Toni 2018), there can
be features that make the product more (support) or less (at-
tack) interesting for a user.

8 Discussion and Conclusions
We discussed several ideas for implementing bipolar argu-
mentation with dual attacks and supports. The idea of du-
ality is that attacks and supports should be treated equally.
While this may not be necessary for every application, it
seems reasonable in domains where we want to balance
pro and contra arguments without favoring one or the other.
While the deductive semantics from (Potyka 2020) offers
perfect symmetry between attack and support, it admits
rather sceptical and indecisive labellings. The problem can
be mitigated by considering stable deductive labellings, but
even then labellings can reject arguments even though ac-
cepting them would not cause any conflict. The rationale for
this is that when we accept arguments that are not attacked,
we should dually reject arguments that are not supported in
order to maintain symmetry. However, in order to define
more credulous and decisive semantics for bipolar argumen-
tation frameworks, we may have to give up the demand for
complete symmetry.

We discussed s-deductive and m-deductive labellings that
introduce a slight asymmetry in favor of accepting argu-
ments. Arguments whose attackers and opponents are all
rejected, must be accepted. Even though there is no coun-
terpart for supports, these labellings still feature symmet-
rical behaviour of attack and support in many cases. One
important difference to deductive labellings is that an ac-
cepted attacker does not condemn an argument to be re-
jected. The attack can be cancelled by an accepted sup-
porter, which allows the argument to become undecided. If
there is conflicting evidence for the state of an argument, s-
deductive labellings generally label the argument undecided.
M-deductive labellings try to resolve the conflict by means
of a majority decision. While deductive labellings always re-
spect mediated and supported attacks as discussed in (Cayrol
and Lagasquie-Schiex 2013), s-deductive and m-deductive
labellings interpret them in a weaker sense. If all counterar-
guments along complex attack chains are rejected, mediated
and supported attack behave as usual. However, if counter-
arguments along the argumentation chain are accepted, the
attack can be cancelled. Even though complex attacks are
defeasible in general, supported attacks are stronger than
simple supports. In particular, supported supports behave
dually and are stronger than simple attacks.

It is also interesting to note that, from a computational
complexity perspective, reasoning with s-deductive and m-
deductive labellings in BAFs is not harder than reasoning
with stable labellings in AAFs. In particular, the three
semantics are actually equivalent for AAFs (BAFs with
empty support relation). However, since the constraints for
s-deductive and m-deductive labellings can become more
complex in real BAFs, computing them can be algorith-
mically more challenging than computing stable labellings.
An implementation and empirical runtime evaluation is cur-
rently work in progress.
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