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Abstract
We currently have access to a plethora of statistical analy-
ses based on sampling limited parts of a population. Meta-
analysis is the task of combining several statistical results to
obtain a more precise and reliable picture of the population.
By the nature of sampling, all these results are uncertain, and
difficult to combine with other knowledge. In this position
paper, we propose a first approach for automated reasoning
in meta-analyses.

1 Introduction
In the area of (logic-based) knowledge representation, our
goal is to be able to express the knowledge of an appli-
cation domain in a manner that allows for its effective use
within intelligent applications. For this purpose, it is well-
understood that methods capable of handling domain uncer-
tainty are needed in most practical applications. This need
has motivated the study of many uncertainty-representation
languages, mostly based on probabilistic logics (Nilsson
1986; Fagin, Halpern, and Megiddo 1990; Halpern 1990;
Dubois and Prade 1994).

Abstracting from language and interpretation differences,
most probabilistic logics assign a probability (a number in
[0, 1]) to some statements of the knowledge base. A com-
mon critique made in these cases is the source of the prob-
abilities; i.e., how are these numbers obtained? A way to
slightly answer to this critique is to weaken the probabilistic
constraints, providing only some bounds (e.g., the probabil-
ity is at least 0.5) or using imprecise probabilities (Walley
1991). The reality is that in all these cases, the issue is only
being shifted: how do we determine the bounds? In fact,
even imprecise probabilities often have precise limits.

Historically, we do have well-understood and robust
methods for estimating probabilities, which are based on
statistics. In particular, in scientific, dissemination, and
other kinds of communications, we often encounter un-
certainty represented through a confidence interval (Kiefer
1977). Confidence intervals are obtained by observing only
a part of the population and are thus uncertain themselves. In
particular, values outside of the interval are still possible (if
unlikely). Interestingly, we often encounter several different
studies—each providing its own confidence interval—for a
single property of interest. Rather than merely intersecting
all these intervals, a statistical meta-analysis combines the

results of the studies to obtain a more accurate and repre-
sentative interval. With this information and other statistical
tools, it is possible to identify biases or potentially falsified
numbers, among other things. A typical example arises in
the area of political poling. In them, results are often pro-
vided with an associated margin of error. If two polls say
that Candidate A will receive, say, 40%±3% and 42%±1%
of the votes, respectively, we do not immediately conclude
that the results are contradictory, or that the actual interval is
41–43%.

Surprisingly, despite its ubiquituous use for population
analysis, these kinds of statistical analyses have been largely
ignored in knowledge representation. In this position pa-
per, we argue the need for a logic-based representation lan-
guage capable of handling standard meta-analytical tasks,
and more; and present the first steps towards this goal. As
we show, dealing with confidence intervals is not a trivial
task, as it requires understanding the statistical methods be-
hind them. However, with a few simplifying assumptions
and computations, it is possible to obtain robust automated
reasoning methods over them.

2 Binomial Confidence Intervals
For the scope of this paper, we are interested in finding out
the proportion of a population of interest that satisfies some
given properties. As populations are big, and identifying
the properties may require costly or intrusive procedures, it
is unfeasible to expect to know these proportions precisely;
for example, asking every adult for their voting preference is
extremely costly. Instead, we rely on statistical techniques
that provide approximate knowledge on them. A simple
such technique is based on the normal approximation (Wal-
lis 2013), which we briefly describe next.

Suppose that 100p% of the population has property P .
We can equivalently express this by saying that the proba-
bility of a randomly chosen individual to have property P
is p. By the central limit theorem, if n individuals are inde-
pendently chosen at random, the proportion of elements in
this sample that satisfy P (denoted as p̂) behaves as a normal
distribution with mean p and variance p(1−p)

n . If we are only
interested in a single value that estimates the true proportion
p, we could use p̂, which is in fact the maximum likelihood
estimator (mle) of p. However, it is more informative to con-
sider a confidence interval, which also takes into account the
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variability of the sampling process. Although the notion of
a confidence interval allows for any confidence degree, the
standard scientific and journalistic practices use only a 95%
confidence. To simplify the presentation, we consider this
restricted setting as well for most of this paper.

In essence, given a sample of size n, with a sample pro-
portion of property P of p̂, there is a 95% probability that
the true proportion p lies within the interval(

p̂− 1.96

√
p̂(1− p̂)

n
, p̂+ 1.96

√
p̂(1− p̂)

n

)
.

When reporting these results, the value ±1.96
√

p̂(1−p̂)
n is

often called the margin of error. Note that the constant 1.96
appears only because we are interested in the 95% confi-
dence interval. For other confidence levels, the only differ-
ence in the interval would be the use of this constant.

Importantly, a confidence interval expresses a 95% chance
that the true value lies in it. Thus, it is totally plausible that
p is not in it. Moreover, if several such samples are carried
out, the likelihood of at least one of them not containing the
true proportion increases. This means that intersecting the
intervals is not a good idea, when trying to summarise them
into a single result. Still, all the samples are informative.

Note that sampling information is commonly expressed
through the central estimator p̂ and the margin of error e, but
detailed information such as the sample size or the number
of successes is often ommited. These can be obtained by re-

calling that e = 1.96
√

p̂(1−p̂)
n , and hence n ≈ 1.962 p̂(1−p̂)e2 .

Suppose now that two independently taken samples of sizes
n1 and n2 yield the mles p̂1 and p̂2, respectively. This can
be seen as a unique sample of size n = n1 + n2 with a pro-
portion of successes equal to p̂ = p̂1n1+p̂2n2

n1+n2
. This idea can

be generalised in the obvious way to combine the results of
multiple independent samples.

While this result is very well understood, it relates a pop-
ulation to one specific property. On the other hand, we often
have data about different properties that we would like to re-
late, or about different populations which we would like to
combine for a broader understanding, or to compensate for
a lack of data. For example, suppose that we want to find
out the proportion of parents intending to vote for Candidate
A without having to make a new sample. Or, from samples
in different regions, find the global vote intention. This is
where KR comes into place to help statistics.

3 CI Representation
We present a simple language, which allows to express sub-
class relationships and confidence intervals relating prop-
erties of individuals. Consider a countable set X of vari-
ables, which we will often call properties. A subclass state-
ment (SS) is an expression of the form

∧n
i=1 xi → y, where

xi, y ∈ X , 1 ≤ i ≤ n. A confidence interval state-
ment (CIS) is an expression of the form m∧

j=1

yj |
n∧
i=1

xi

 : p± e

where xi, yj ∈ X , 1 ≤ i ≤ n, 1 ≤ j ≤ m, and p, e ∈ (0, 1).
The variables xi in an SS or a CIS are called its body, while
the variable y or the variables yj are its head.

In a nutshell, subclass statements
∧n
i=1 xi → y are just

Horn clauses, which express that individuals who have all
the properties x1, . . . , xn must also have property y. On the
other hand, the CIS

(∧m
j=1 yj |

∧n
i=1 xi

)
: p ± e expresses

that 100p% of individuals who belong to
∧n
i=1 xi also be-

long to
∧m
j=1 yj—or, more formally, that the probability of

an individual belonging to the first conjunction to have all
the properties of the second conjuction is p—with a margin
of error e. A CI knowledge base (KB) is a finite set of SSs
and CISs. Note that SSs have only one property in the head,
while CISs have a conjunction. The reason for this will be-
come clear once we introduce the semantics.

To formalise this semantics, we interpret properties as
sets in the usual first-order fashion. An interpretation is a
pair I = (∆I , ·I), where ∆I is a non-empty set called
the domain, and the interpretation function ·I maps every
x ∈ X to a set xI ⊆ ∆I . This function is extended to
conjunctions of properties in the obvious manner; that is,
(
∧n
i=1 xi)

I =
⋂n
i=1 x

I
i . The interpretation I satisfies the

SS
∧n
i=1 xi → y iff

⋂n
i=1 x

I
i ⊆ yI .

The semantics of CISs is more subtle. Recall that con-
fidence intervals are built from a partial observation of the
population, and are thus surrounded by uncertainty. In fact,
the only absolute guarantee that we can make from a non-
trivial CI is that some individuals comply with the condi-
tional property while others do not. Formally, the interpreta-
tion I satisfies the CIS

(∧m
j=1 yj |

∧n
i=1 xi

)
: p±e iff there

are elements δ, γ ∈ ∆I such that δ ∈
⋂n
i=1 x

I
i ∩

⋂m
j=1 y

I
j

and γ ∈
⋂n
i=1 x

I
i \

⋂m
j=1 y

I
j . I is a model of the KB K

iff it satisfies all the SSs and CISs in K. K entails the SS∧n
i=1 xi → y iff every model of K satisfies this SS. If that is

the case, we denote it by K |=
∧n
i=1 xi → y.

We can readily see at this point that conjunctions on the
heads of SSs do not affect the semantics; e.g., x→ y1∧y2 is
equivalent to x→ y1, x→ y2. However, this is not true for
CISs; e.g., (y1 ∧ y2 | x) : p± e is not equivalent to the two
CISs (y1 | x) : p ± e and (y2 | x) : p ± e. The differences
are more pronounced once we consider the meaning of these
confidence intervals as well. Note that, although we cannot
instill the requirements of a confidence interval into the no-
tion of satisfiability of a CIs by an interpretation, we will
always consider a CIS as a fact obtained through a sound
statistical analysis. Moreover, any two CISs in a KB will be
considered to be independent; i.e., obtained through an in-
dependent sampling method. Intuitively, this means that the
sampled individuals are not related throughout the samples.

The question of consistency—that is, deciding whether
there exists a model of a given KB—can be easily reduced
to consistency of a logic program, and hence is decidable
in polynomial time. We are more interested in extracting
(probabilistic) information from the class of CISs, and using
it to make decisions. Two basic meta-analysis inferences are
accumulation and rescaling of confidence intervals. These
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can be used, together with SSs, to analyse bias and detect
suspicious intervals.

3.1 Accumulation
As mentioned earlier, a confidence interval is not guaranteed
to contain the proportion of interest, but even in those cases
it is informative as it shows the result of a statistical analysis.
In its most basic form, a meta-analysis will use several CIs
to obtain a more precise approximation of the desired value.

Suppose that the KB contains the CISs (y | x) : pi ± ei,
1 ≤ i ≤ k, and that these are all the CISs of y given
x. We want to produce one CIS which summarises all the
information of these n CISs. From the k different analy-
ses, we can extract the estimators of the sample sizes (see
Section 2) ni := 1.962 pi(1−pi)

e2i
and through the weighted

average method get n̂ :=
∑k
i=1 ni and p̂ :=

∑k
i=1 pini
n̂ .

Thus, we can substitute the k CISs with the more accurate

(y | x) : p̂± 1.96
√

p̂(1−p̂)
n̂

For example, consider two CISs (y | x) : 0.24 ± 0.084
and (y | x) : 0.28± 0.12, which were obtained by sampling
a population with 100 and 50 individuals, respectively—
although that information is not given, nor necessary for our
approach. These two CISs can be accumulated into the sin-
gle statement (y | x) : 0.2533 ± 0.07, which is a new 95%
confidence interval for the same conditional statement. Note
that the center of this new interval is not merely the average
of the other two centers; in addition, the interval is not the
intersection of the other two (which would be (0.16, 0.324)),
and it is shorter.

The accumulation of CISs can be easily generalised to ar-
bitrary conditional statements containing conjunctions in the
body and in the head. In fact, all the computations depend
exclusively on the numbers of the CI, and are not influenced
by the properties in the conditional.

3.2 Rescaling
Even though the standard for communicating confidence in-
tervals is 95%, this does not mean that other levels of con-
fidence are not of interest. Since we are assuming that all
CISs represent confidence intervals at a level of 95%, we
know that its margin of error is using the constant factor
1.96. To obtain a different confidence level, it suffices to
multiply the error by the constant zα/2

1.96 , where zα/2 is the
z-value of the standard normal distribution representing the
point after which the probability of observing a value is α/2,
and the desired confidence level is 100(1− α).

We have previously found the CIS (y | x) : 0.2533±0.07
which represents a 95% confidence interval for the condi-
tional property (y | x). For a 99% confidence interval,
we need to know the value of z0.005, which is 2.57. Then,
0.2533 ± 0.07 2.57

1.96 is such an interval for the conditional
property (y | x). Instead, a 90% CI is 0.2533± 0.07 1.65

1.96 .

3.3 Using Background Knowledge
For the previous two inferences, we needed only the proper-
ties of confidence intervals and meta-analyses, but it is more
interesting to combine them with the background knowledge

expressed by the SSs in the KB. First of all, consider the case
where we know that K |= x → y and (z | y) : p ± e ∈ K,
but we are interested in a confidence interval for (z | x). In
practical terms, we know the behaviour of a population (y)
w.r.t. a property (z), but we are more interested in knowing
how a subpopulation (x) behaves. In general, unless x and
y are equivalent (i.e., K |= y → x as well), we cannot de-
duce any CI for (z | x): it could well be the case that none
of the individuals in x satisfy z, or that all of them do, or
anything in between. However, assuming that the subpop-
ulation is not biased against the property z w.r.t. y, we can
approximate the desired CI by simply using the known pa-
rameters from the CIS inK. That is, p± e is an approximate
interval for (z | x). Note that even this simple deduction can
aid in complex inferences. In fact, it can be used as a pre-
processing step to obtain more CISs to be accumulated when
trying to get a better understanding of a conditional property,
or dually, could be used after accumulation to obtain some
new information.

Let us consider now the case where we have a confi-
dence interval for a conditional property—perhaps obtained
through accumulation and deduction—which we trust, and
are given a new interval, for which we want to evaluate how
likely it is, given our previous knowledge. Recall that a 95%
confidence interval states that the true parameter is contained
in this interval with probability 0.95. If two confidence inter-
vals intersect (even with a very short intersection), then they
are coherent with each other, and we cannot refute any of
them under the 95% confidence being used. If they do not
intersect, then assuming that one of them is correct means
that the other has a likelihood of less than 5% of being a real
confidence interval. But the question is whether we can pro-
vide a more precise estimate for this likelihood. Clearly, the
farther away the two intervals are, the easier it should be to
refute one of them (as their mutual likelihood decreases).

Suppose that we know the CIS (y | x) : p ± e and want
to find the likelihood of an interval (y | x) : p′ ± e′ where
p ± e and p′ ± e′ do not intersect. Suppose w.l.o.g. that
p+e < p′−e′; the opposite case can be treated analogously.
Recall that we can rescale the confidence interval by simply
multiplying a factor to the error bound. We are interested in
finding the highest confidence interval which still excludes
p′−e′; that is, we want a constant f such that p+f = p′−e′,
which is easily computed as f = p′ − e′ − p. To rescale, we
want a zα/2 such that e zα/21.96 = f ; that is, zα/2 = 1.96f/e.
By using the inverse z relation, we get the value α such that
the 100(1− α)% confidence interval still excludes p′ ± e′.

For example, consider the CIS (y | x) : 0.2533 ± 0.07
which we have computed before, and suppose that we are
told that, through a new sample, the interval 0.4± 0.06 was
found. Then, we obtain f = 0.4− 0.06− 0.2533 = 0.0867
and zα/2 = 2.83, which means that α/2 = 0.0023. That is,
the likelihood of the interval 0.4 ± 0.06 to be a result from
an analysis of the same population is less than 0.5%. Thus,
we can safely refute this interval, as not being trustworthy.

As a final inference, recall that at the beginning of this
section we described a method for approximating a confi-
dence interval for a subpopulation, under the assumption
that the subpopulation is unbiased w.r.t. the desired prop-
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erty. Using this approximation, and the method for refut-
ing unlikely intervals just described, it is also possible to
check whether the population is biased or not. Suppose that
from the KB we can deduce x → y, (z | y) : p ± e and
(z | x) : p′ ± e′. If the subpopulation x was unbiased, then
p± e and p′ ± e′ should be compatible confidence intervals
for (z | x). If these intervals do not intersect, we can com-
pute the likelihood of obtaining them together, giving us a
likelihood of bias.

4 Combining Intervals
Going beyond the usual tasks of meta-analysis, one may
want to combine the known confidence intervals for different
properties to obtain new ones, which have not been studied
yet. We study two such approaches next.

First, consider two CISs (yi | x) : pi ± ei with i = 1, 2.
Once again, it is in general impossible to compute an inter-
val for (y1∧y2 | x) without further knowledge, as we do not
know how y1 and y2 are correlated. In cases where we can
assume independence of y1 and y2, we are trying to com-
pute an estimate for the product of two proportions (Buehler
1957). We can achieve this following the well-known Delta
method (Doob 1935). In essence, we need to approximate
the mean and the variance of the distribution of the prod-
uct parameter. The center estimator is, as expected, just the
product of the two estimators; e.g., p̂ = p1p2; the more com-
plex part is to compute the variance. This can be approxi-
mated by the function

V ar(p̂) = p21

( e2
1.96

)2
+ p22

( e1
1.96

)2
,

which tells us that a 95% confidence interval for (y1∧y2 | x)
is

p1p2 ± 1.96

√
p21

( e2
1.96

)2
+ p22

( e1
1.96

)2
.

If rather than trying to conjoin the variables in the head
of CISs we are interested in chaining conditionals, we can
follow a similar approach thanks to Bayes’ rule. Given the
two CISs (z | y) : p± e and (y | x) : p′± e′, it is impossible
to deduce an interval for (z | x), mainly because we have
no information about the proportion of elements that are in
x but not in y who still have the property z. However, we
can compute one for (y ∧ z | x). Indeed, by Bayes rule,
we know that P (y ∧ z | x) = P (z | y ∧ x)P (y | x).
Formally, we do not know the first factor of this product,
but under the covering rule, when K |= y → x then the
equality reduces to P (y ∧ z | x) = P (z | y)P (y | x). This
means that to estimate the proportion of elements of x that
have both properties y, z, we need to make the product of
two estimators as done in the previous paragraph.

Finally, suppose that we know that two properties y1 and
y2 partition the population x and, in contrast with the as-
sumptions made so far in this paper, we know the exact
proportion of elements of x that satisfy y1; say that this
proportion is `. Then, from the CISs (z | yi) : pi ± ei,
i = 1, 2, we can compute a CI for (z | x) using the mix-
ture distribution of the two known conditionals (Seidel 2011;
Frühwirth-Schnatter 2006). In this case, the center of the in-
terval is the weighted sum of the two centers p1, p2 based

on the proportion ` which we have assumed to know. That
is, p̂ = p1` + p2(1 − `). For the variance of the estimator,
the construction is slightly more complex, but it results in
v̂ := `

(
e1
1.96

)2
+(1− `)

(
e2
1.96

)2
+ `(1− `)(p1−p2)2. Thus,

we can conclude that the 95% confidence interval for (z | x)
is

p1`+ p2(1− `)± 1.96
√
v̂.

5 Conclusions
We have considered the first steps towards a logic for per-
forming automated meta-analysis based on a finite class of
confidence intervals and subset relationships as background
knowledge. For this purpose, we assume that all confidence
intervals are expressed with the de-facto standard of a 95%
confidence, and obtained through independent sampling.
Moreover, we consider that the intervals for the binomials—
which are the only kind of distribution that we treat in this
paper—are all built using the normal approximation based
on the central limit theorem.

In this paper, we showed how to make basic inferences for
combining the confidence intervals akin to the tasks com-
monly required in a meta-analysis, and went beyond with a
few novel derivations. One of the goals of this paper is to
show that even at this basic level, dealing with confidence
intervals is far from trivial, and requires computations not
commonly available in logic. This is perhaps why, despite
widely available statistical theory and techniques, this kind
of logic has been widely disregarded in the past.

Obviously, the formalism presented here has several lim-
itations, which need to be handled in future work. First
and foremost, the language considered is very inexpres-
sive. From the logical side, it cannot express any negations,
nor any complex relationship between properties. From the
probabilistic perspective, it is limited to a class of confi-
dence intervals for the parameter of a binomial. Moreover,
throughout the paper we assume that all CIs are indepen-
dent, which stops being true when further derivations are
based in implicit consequences computed before. Our main
goal is to make this formalism robust, allowing for different
statistical analyses, and a more expressive language for the
background knowledge which allows for a tighter integra-
tion between logic and statistics.

The main goal of this paper is to serve as a starting point
for a more ambitious agenda, in which knowledge represen-
tation and statistical methods coexist.
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